

Lecture Notes in Computer Science 2037
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Egbert J.W. Boers et al. (Eds.)

Applications of
EvolutionaryComputing

EvoWorkshops 2001: EvoCOP, EvoFlight,
EvoIASP, EvoLearn, and EvoSTIM
Como, Italy, April 18-20, 2001
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Main Volume Editor

Egbert J.W. Boers
Leiden University, Institute of Advanced Computer Science
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
E-mail: boers@liacs.nl

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Applications of evolutionary computing : proceedings / EvoWorkshops
2001: EvoCOP ... Como, Italy, April 18 - 20, 2001. Egbert J. W. Boers
et al. (ed.). - Berlin ; Heidelberg ; NewYork ; Barcelona ; Hong Kong ;
London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol. 2037)
ISBN 3-540-41920-9

CR Subject Classification (1998): C.2, I.4, F.2-3, I.2, G.2, J.2, J.1, D.1

ISSN 0302-9743
ISBN 3-540-41920-9 Springer-Verlag Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg NewYork
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP Berlin, Stefan Sossna
Printed on acid-free paper SPIN 10782476 06/3142 5 4 3 2 1 0

Volume Editors

Egbert J.W. Boers
Leiden Institute of Advanced
Computer Science
Leiden University
Niels Bohrweg 1
2333 CA Leiden, The Netherlands
Email: boers@liacs.nl

Jens Gottlieb
SAP AG
Neurottstrasse 16
69190 Walldorf, Germany
Email: jens.gottlieb@sap.com

Pier Luca Lanzi
Polytechnic of Milan
Piazza Leonardo da Vinci, 32
20133, Milan, Italy
Email: lanzi@elet.polimi.it

Robert E. Smith
The Intelligent Computer
Systems Centre
The University of The West of England
Coldharbour Lane
Frenchay, Bristol BS16 1QY
United Kingdom
Email: robert.smith@uwe.ac.uk

Stefano Cagnoni
Dept. of Computer Engineering
University of Parma
Parco Area delle Scienze 181/a
43100 Parma, Italy
Email: cagnoni@ce.unipr.it

Emma Hart
Napier University
School of Computing
219 Colinton Road
Edinburgh EH14 1DJ, UK
Email: emmah@dcs.napier.ac.uk

Günther R. Raidl
Algorithms and Data Structur es Group
Institute of Computer Graphics
Vienna University of Technology
Favoritenstrasse 9-11/186
A-1040 Vienna, Austria
Email: raidl@ads.tuwien.ac.at

Harald Tijink
Data and Knowledge Systems Depart-
ment
National Aerospace Laboratory NLR
P.O. Box 153
8300 AD Emmeloord, The Netherlands
Email: tijinkh@nlr.nl

Preface

Evolutionary Computation (EC) is a rapidly expanding field of computer science
in which problem solving, optimization, and machine learning techniques inspi-
red by genetics and natural selection are studied.

In recent years, a number of studies and results have been reported in the
literature which have disclosed the potentials of EC techniques and shown their
capability to solve hard problems in several domains.

This volume contains the proceedings of EvoWorkshops 2001, an event in-
cluding the First European Workshop on Evolutionary Computation in Combi-
natorial Optimization (EvoCOP), the Second European Workshop on Evolutio-
nary Aeronautics (EvoFlight), the Third European Workshop on Evolutionary
Computation in Image Analysis and Signal Processing (EvoIASP), the First Eu-
ropean Workshop on Evolutionary Learning (EvoLearn), and the Second Euro-
pean Workshop on Evolutionary Scheduling and Timetabling (EvoSTIM). These
workshops were held in Como, Italy, on 18 and 19 April 2001, as part of Eu-
roGP 2001, the Fourth European Conference on Genetic Programming.

EvoCOP focuses on applications of evolutionary algorithms and related heu-
ristic search methods to various combinatorial optimization problems. It also
covers general methodological aspects of such algorithms like operator analyses,
search dynamics, fitness landscapes, and algorithmic comparisons, which are the
driving force in gaining a better understanding of evolutionary search and hence
support the design of effective evolutionary algorithms for combinatorial opti-
mization problems of practical relevance.

EvoFlight is aimed at bringing together researchers and industrial parties to
discuss the use of evolutionary computation in aerospace.

EvoIASP, held in 2001 for the third time, was the first event ever specifically
dedicated to the applications of EC to image analysis and signal processing.

The aim of EvoLearn is to provide an opportunity for people interested in
algorithms which “learn through evolution” to share ideas, discuss the current
state of research, and to discuss the future directions of this particular area of
Evolutionary Computation.

EvoSTIM presents the latest results in the fields of scheduling and timetab-
ling, that are amongst the most successful applications of evolutionary techni-
ques.

It was the aim of all workshops to give European and non-European resear-
chers in these fields, as well as people from industry, an opportunity to present
their latest research, discuss current developments and applications, besides fo-
stering closer future interaction between members of all scientific communities
that may benefit from the application of EC techniques.

EvoWorkshops 2001 were sponsored by EvoNet, the European Network of Ex-
cellence in Evolutionary Computation, as activities of EvoFlight, EvoIASP, Evo-
Stim, the working groups on Evolutionary Aeronautics, on Evolutionary Image

VI Preface

Analysis and Signal Processing, on Evolutionary Scheduling and Timetabling of
EvoNet, and of several other EvoNet members.

Fifty-two papers were accepted for publication out of 75 submissions, making
EvoWorkshops 2001 the largest of the three events held since 1999. We are
extremely grateful to all members of the program committee for their quick and
thorough work.

April 2001 Egbert J.W. Boers
Stefano Cagnoni

Jens Gottlieb
Emma Hart

Pier Luca Lanzi
Günther R. Raidl
Robert E. Smith

Harald Tijink

Organization

EvoWorkshops 2001 was organized by EvoNet as part of EuroGP 2001.

1 Organizing Committee

EvoCOP co-chair: Jens Gottlieb, SAP AG, Germany
EvoCOP co-chair: Günther R. Raidl, Vienna University of Technology,

Austria
EvoFlight co-chair: Robert E. Smith, University of West of England, UK
EvoFlight co-chair: Harald Tijink, NLR, The Netherlands
EvoIASP chair: Stefano Cagnoni, University of Parma, Italy
EvoLearn chair: Pier Luca Lanzi, Polytechnic of Milan, Italy
EvoSTIM chair: Emma Hart, Napier University, Edinburgh, UK
EvoWorkshops chair: Stefano Cagnoni, University of Parma, Italy
EuroGP co-chair: Julian Miller, The University of Birmingham, UK
EuroGP co-chair: Marco Tomassini, University of Lausanne, Switzerland
Local chair: Pier Luca Lanzi, Polytechnic of Milan, Italy
Local chair: Andrea G B Tettamanzi, Genetica srl, Italy

2 Program Committee

Giovanni Adorni, University of Genoa, Italy
Wolfgang Banzhaf, University of Dortmund, Germany
Egbert J.W. Boers, University of Leiden, The Netherlands
Alberto Broggi, University of Pavia, Italy
Larry Bull, University of West England, UK
Edmund Burke, University of Nottingham, UK
Stefano Cagnoni, University of Parma, Italy
Jie Cheng, J. D. Power & Associates, MI, USA
Ela Claridge, The University of Birmingham, UK
David Corne, University of Reading, UK
Carlos Cotta-Porras, University of Malaga, Spain
Peter Cowling, University of Nottingham, UK
Michiel de Jong, CWI, The Netherlands
Agoston E Eiben, Leiden University, The Netherlands
Terry Fogarty, Napier University, UK
David Fogel, Natural Selection, Inc., CA, USA
Jens Gottlieb, SAP AG, Germany
Jin-Kao Hao, University of Angers, France
Emma Hart, Napier University, UK
Daniel Howard, DERA, UK

VIII Organization

Bryant Julstrom, St. Cloud State University, MN, USA
Dimitri Knjazew, SAP AG, Germany
Joshua Knowles, University of Reading, UK
Gabriele Kodydek, Vienna University of Technology, Austria
Mario Köppen, FhG IPK, Germany
Jozef Kratica, Serbian Academy of Sciences and Arts, Yugoslavia
Pier Luca Lanzi, Polytechnic of Milan, Italy
Yu Li, University of Picardie, France
Ivana Ljubic, Vienna University of Technology, Austria
Evelyne Lutton, INRIA, France
Elena Marchiori, Free University Amsterdam, The Netherlands
Dirk Mattfeld, University of Bremen, Germany
Zbigniew Michalewicz, University of North Carolina, NC, USA
Martin Middendorf, University of Karlsruhe, Germany
Julian Miller, The University of Birmingham, UK
Filippo Neri, University of Turin, Italy
Peter Nordin, Chalmers University of Technology, Sweden
Ben Paechter, Napier University, UK
Georgios I. Papadimitriou, Aristotle University, Greece
Riccardo Poli, The University of Birmingham, UK
Günther Raidl, Vienna University of Technology, Austria
Colin Reeves, Coventry University, UK
Peter Ross, Napier University, UK
Claudio Rossi, Ca’ Foscari University of Venice, Italy
Franz Rothlauf, University of Bayreuth, Germany
Conor Ryan, University of Limerick, Ireland
Robert E. Smith, University of West of England, UK
Wolfgang Stolzmann, DaimlerChrysler AG, Germany
Thomas Stützle, Darmstadt University of Technology, Germany
Peter Swann, Rolls Royce plc, UK
Andrea G B Tettamanzi, Genetica srl, Italy
Harald Tijink, NLR, The Netherlands
Andy Tyrrell, University of York, UK
Christine Valenzuela, Cardiff University, UK
Marjan van den Akker, NLR, The Netherlands
Hans-Michael Voigt, GFaI - Center for Applied Computer Science, Germany

Sponsoring Institution

EvoNet, the Network of Excellence on Evolutionary Computing.

Table of Contents

EvoCOP Papers

Graph Problems

The Link and Node Biased Encoding Revisited: Bias and Adjustment of
Parameters . 1

Thomas Gaube, Franz Rothlauf

An Effective Implementation of a Direct Spanning Tree Representation in
GAs . 11

Yu Li

An Evolutionary Algorithm with Stochastic Hill-Climbing for the
Edge-Biconnectivity Augmentation Problem . 20

Ivana Ljubić, Günther R. Raidl

Application of GRASP to the Multiconstraint Knapsack Problem 30
Pierre Chardaire, Geoff P. McKeown, Jameel A. Maki

Knapsack Problems

Path Tracing in Genetic Algorithms Applied to the Multiconstrained
Knapsack Problem . 40

Jens Levenhagen, Andreas Bortfeldt, Hermann Gehring

On the Feasibility Problem of Penalty-Based Evolutionary Algorithms for
Knapsack Problems . 50

Jens Gottlieb

Coloured Ant System and Local Search to Design Local
Telecommunication Networks . 60

Roberto Cordone, Francesco Maffioli

Ant Algorithms

Cooperative Ant Colonies for Optimizing Resource Allocation
in Transportation . 70

Karl Doerner, Richard F. Hartl, Marc Reimann

An ANTS Algorithm for Optimizing the Materialization of Fragmented
Views in Data Warehouses: Preliminary Results . 80

Vittorio Maniezzo, Antonella Carbonaro, Matteo Golfarelli,
Stefano Rizzi

X Table of Contents

Miscellaneous Applications

A Genetic Algorithm for the Group-Technology Problem 90
Ingo Meents

Generation of Optimal Unit Distance Codes for Rotary Encoders through
Simulated Evolution . 100

Stefano Gregori, Roberto Rossi, Guido Torelli, Valentino Liberali

On the Efficient Construction of Rectangular Grids
from Given Data Points . 110

Jan Poland, Kosmas Knödler, Andreas Zell

Assignment Problems

An Evolutionary Annealing Approach to Graph Coloring 120
Dimitris A. Fotakis, Spiridon D. Likothanassis, Stamatis K. Stefanakos

A Constructive Evolutionary Approach to School Timetabling 130
Geraldo Ribeiro Filho, Luiz Antonio Nogueira Lorena

A Co-evolutionist Meta-heuristic for the Assignment of the Frequencies in
Cellular Networks . 140

Benjamin Weinberg, Vincent Bachelet, El-Ghazali Talbi

A Simulated Annealing Algorithm for Extended Cell Assignment Problem
in a Wireless ATM Network . 150

Der-Rong Din, Shian-Shyong Tseng

Analysis of Evolutionary Algorithms

On Performance Estimates for Two Evolutionary Algorithms 161
Pavel A. Borisovsky, Anton V. Eremeev

A Contribution to the Study of the Fitness Landscape for a Graph Drawing
Problem . 172

Rémi Lehn, Pascale Kuntz

Evolutionary Game Dynamics in Combinatorial Optimization:
An Overview . 182

Marcello Pelillo

Permutation Problems

A Parallel Hybrid Heuristic for the TSP . 193
Ranieri Baraglia, José Ignacio Hidalgo, Raffaele Perego

Effective Local and Guided Variable Neighbourhood Search Methods for
the Asymmetric Travelling Salesman Problem . 203

Edmund K. Burke, Peter I. Cowling, Ralf Keuthen

Table of Contents XI

Pheromone Modification Strategies for Ant Algorithms Applied to
Dynamic TSP . 213

Michael Guntsch, Martin Middendorf

Conventional and Multirecombinative Evolutionary Algorithms for the
Parallel Task Scheduling Problem . 223

Susana Esquivel, Claudia Gatica, Raúl Gallard

EvoFlight Papers

Two-Sided, Genetics-Based Learning to Discover Novel Fighter
Combat Maneuvers . 233

Robert E. Smith, Bruce A. Dike, B. Ravichandran, Adel El-Fallah,
Raman K. Mehra

Generation of Time-Delay Algorithms for Anti-Air Missiles
Using Genetic Programming . 243

Henry O. Nyongesa

Surface Movement Radar Image Correlation Using Genetic Algorithm 248
Enrico Piazza

A Conceptual Approach for Simultaneous Flight Schedule Construction
with Genetic Algorithms . 257

Tobias Grosche, Armin Heinzl, Franz Rothlauf

EvoIASP Papers

Genetic Snakes for Color Images Segmentation . 268
Lucia Ballerini

A Distributed Genetic Algorithm for Parameters Optimization to Detect
Microcalcifications in Digital Mammograms . 278

Alessandro Bevilacqua, Renato Campanini, Nico Lanconelli

Dynamic Flies: Using Real-Time Parisian Evolution in Robotics 288
Amine M. Boumaza, Jean Louchet

ARPIA: A High-Level Evolutionary Test Signal Generator 298
Fulvio Corno, Gianluca Cumani, Matteo Sonza Reorda,
Giovanni Squillero

A Pursuit Architecture for Signal Analysis . 307
Adelino R. Ferreira da Silva

Genetic Algorithm Based Heuristic Measure for Pattern Similarity
in Kirlian Photographs . 317

Mario Köppen, Bertram Nickolay, Hendrik Treugut

XII Table of Contents

Evolutionary Signal Enhancement Based on Hölder Regularity Analysis . . . 325
Jacques Lévy Véhel, Evelyne Lutton

Building ARMA Models with Genetic Algorithms . 335
Tommaso Minerva, Irene Poli

Evolving Market Index Trading Rules Using Grammatical Evolution 343
Michael O’Neill, Anthony Brabazon, Conor Ryan, J.J. Collins

Autonomous Photogrammetric Network Design Using Genetic Algorithms . 353
Gustavo Olague

The Biological Concept of Neoteny in Evolutionary Colour Image
Segmentation – Simple Experiments in Simple Non-memetic
Genetic Algorithms . 364

Vitorino Ramos

Using of Evolutionary Computations in Image Processing for Quantitative
Atlas of Drosophila Genes Expression . 374

Alexander V. Spirov, Dmitry L. Timakin, John Reinitz, David Kosman

EvoLearn Papers

Selection of Behavior in Social Situations . 384
Samuel Delepoulle, Philippe Preux, Jean-Claude Darcheville

Clustering Moving Data with a Modified Immune Algorithm 394
Emma Hart, Peter Ross

Belief Revision by Lamarckian Evolution . 404
Evelina Lamma, Lúıs M. Pereira, Fabrizio Riguzzi

A Study on the Effect of Cooperative Evolution on Concept Learning 414
Filippo Neri

The Influence of Learning in the Evolution of Busy Beavers 421
Francisco B. Pereira, Ernesto Costa

EvoSTIM Papers

Automated Solution of a Highly Constrained School Timetabling
– Preliminary Results . 431

Marc Bufé, Tim Fischer, Holger Gubbels, Claudius Häcker,
Oliver Hasprich, Christian Scheibel, Karsten Weicker, Nicole Weicker,
Michael Wenig, Christian Wolfangel

Design of Iterated Local Search Algorithms . 441
Matthijs den Besten, Thomas Stützle, Marco Dorigo

Table of Contents XIII

An Evolutionary Algorithm for Solving the School Time-Tabling Problem . 452
Calogero Di Stefano, Andrea G. B. Tettamanzi

Optimizing Employee Schedules by a Hybrid Genetic Algorithm 463
Matthias Gröbner, Peter Wilke

A Genetic Algorithm for the Capacitated Arc Routing Problem and Its
Extensions . 473

Philippe Lacomme, Christian Prins, Wahiba Ramdane-Chérif

A New Approach to Solve Permutation Scheduling Problems with Ant
Colony Optimization . 484

Daniel Merkle, Martin Middendorf

Street-Based Routing Using an Evolutionary Algorithm 495
Neil Urquhart, Ben Paechter, Kenneth Chisholm

Investigation of Different Seeding Strategies in a Genetic Planner 505
C. Henrik Westerberg, John Levine

Author Index . 515

The Link and Node Biased Encoding Revisited:
Bias and Adjustment of Parameters

Thomas Gaube and Franz Rothlauf?

Department of Information Systems (BWL VII)
University of Bayreuth / Germany

thomas.gaube@stud.uni-bayreuth.de, rothlauf@uni-bayreuth.de

Abstract. When using genetic and evolutionary algorithms (GEAs) for
the optimal communication spanning tree problem, the design of a suit-
able tree network encoding is crucial for finding good solutions. The link
and node biased (LNB) encoding represents the structure of a tree net-
work using a weighted vector and allows the GEA to distinguish between
the importance of the nodes and links in the network. This paper inves-
tigates whether the encoding is unbiased in the sense that all trees are
equally represented, and how the parameters of the encoding influence
the bias. If the optimal solution is underrepresented in the population,
a reduction in the GEA performance is unavoidable. The investigation
reveals that the commonly used simpler version of the encoding is biased
towards star networks, and that the initial population is dominated by
only a few individuals. The more costly link-and-node-biased encoding
uses not only a node-specific bias, but also a link-specific bias. Similarly
to the node-biased encoding, the link-and-node-biased encoding is also
biased towards star networks, especially when using a low weighting for
the link-specific bias. The results show that by increasing the link-specific
bias, that the overall bias of the encoding is reduced. If researchers want
to use the LNB encoding, and they are interested in having an unbiased
representation, they should use higher values for the weight of the link-
specific bias. Nevertheless, they should also be aware of the limitations
of the LNB encoding when using it for encoding tree problems. The en-
coding could be a good choice for the optimal communication spanning
tree problem as the optimal solutions tend to be more star-like. However,
for general tree problems the encoding should be used carefully.

1 Introduction

The optimal communication spanning tree (OCST) problem [1] is defined to
find a tree-structured communication network that connects all given nodes and
satisfies their communication requirements for their minimum total cost. The
number and positions of the network nodes are given a priori and the cost of the
network is determined by the cost of the links.

Like other constrained spanning tree problems, the OCST problem is NP-
hard [2, p. 207]. Thus, several genetic and evolutionary based algorithms (GEA)
were proposed for solving the problem [3,4,5]. When using GEAs for the OCST
? Visiting researcher at the Illinois Genetic Algorithms Laboratory.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 1–10, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

2 T. Gaube and F. Rothlauf

problem and not applying genetic operators directly to the phenotypes [6], the
design of a proper representation is demanding as there is a semantic gap between
the structure of tree networks and common integer or bitstring representations.
Recently researchers proposed encodings such as characteristic vectors [3,7,8,4],
predecessor encodings [9], Prüfer numbers [5], random keys [10] and weighted
encodings [11] for encoding the problem.

The characteristic vector indicates by a bitstring vector of length n(n − 1)/2
if a link is used. This representation has high locality as small changes of the
bitstring also result in small changes of the encoded tree. However, there are
a lot of invalid solutions which makes using either repair operators, or specific
mutation and recombination operators necessary.

When using the predecessor encoding, one node must be assigned to be the
root of the network. The immediate predecessor on the path in the direction
to the root is stored in a chromosome of length n. Therefore, invalid solution
candidates can exist. Each element of the vector is of base n. As there are n
choices for the root node, the encoding is redundant.

The Prüfer number encoding described in [12] encodes a tree with a string of
length n − 2 and each element of the string is of base n. However, although the
encoding is compact and elegant, it suffers due to its weak locality. As a result,
slight mutations of genes are followed by totally different network structures,
and recombined offspring do not resemble the trees of their parents [13].

Rothlauf et. al. [10] extended the random key encoding [14] to tree network
design problems. A vector of length n(n − 1)/2 consisting of floating numbers
ranging from zero to one was used as a chromosome. A decoding algorithm builds
the tree based on the order of the values in the vector and skips edges which
form cycles until the tree is complete.

The link and node biased (LNB) encoding is a representation from the class of
weighted encodings and was developed by [15]. Additional encoding parameters
are necessary to balance the importance of link and node weights. The encoding
was proposed to overcome the problems of characteristic vectors, predecessor
representations and Prüfer numbers. Later Abuali et. al. [16] compared different
representations for probabilistic minimum spanning tree (PMST) problems and
in some cases found the best solutions by using the LNB encoding. Raidl and
Julstrom [11] observed for a similar weighted encoding which was used for the
degree-constrained minimum spanning tree (d-MST) problem, solutions superior
to those of several other optimization methods.

In this paper we want to investigate if there are any solution candidates
preferred in the initial population, and how the setting of the two encoding
parameters affects the bias of an arbitrary initial population. This is important
because if the encoding prefers some solution candidates, a degradation of a GEA
is often inescapable. To get rid of adjusting the encoding parameters, Palmer
[15] presented in the original paper results, using only one of the two possible
parameters. We want to investigate the limitations of this approach and show
the dependency of the solution quality of the initial population when using both
parameters.

The Link and Node Biased Encoding Revisited 3

The paper is structured as follows. In the following section we give a short
description of the LNB encoding. In section 3 we give a theoretical reason for the
problems with biased encoding by introducing the notion of building blocks (BB)
and reviewing results from [17]. This is followed by an investigation into whether
the LNB encoding using node weights only is biased, and how the individuals are
represented in an initial population. In section 5 we investigate how the setting
of the encoding parameters affects the bias of the encoding. The paper ends with
concluding remarks.

2 A Short Description of the LNB Encoding

In this section we want to review the motivation and the resulting properties of
the link-and-node-biased encoding as described in [15], and [18].

As the costs of a communication network strongly depend on the length of
the links, network structures that prefer short distance links tend to have in
general a higher fitness. It is useful to run more traffic over the nodes near the
gravity center of an area, than over nodes at the edge of this area [19]. Thus, it is
desirable to be able to characterize nodes to either be interior (some traffic only
transits), or leaf nodes (all traffic terminates). As a result, the more important
a link is, and the more transit traffic that crosses the node, the higher in general
is the degree of the node. Nodes near the gravity center tend to have a higher
degree than nodes at the edge. So the basic idea of the encoding is to encode
the importance of a node. The more important the node is, the more traffic that
should transit over this node.

When applying this idea to the OCST problem, the given distance matrix
that defines the distances between any two nodes, is biased according to the
importance of the nodes a link is connected to. If a node is not important,
the modified distance matrix should increase the length of all links that are
connected to this node.

The chromosome b holds the biases for each node, and has length n for an n
node network. The values in the distance matrix dij are modified according to
b using the weighting function

d′
ij = dij + p(bi + bj)dmax.

The bias bi is a floating number between zero and one, dmax is the largest value
in the distance matrix and p controls the influence of the biases. In the following
we want to denote this approach as the node-biased encoding.

Using the bias-vector for encoding tree networks we get the encoded network
structure by calculating the minimum spanning tree for the modified distance
matrix. In the original work Prim’s algorithm [20] was used. By running Prim’s
MST algorithm, nodes that are situated near other nodes will probably be in-
terior nodes of high degree in the network. Nodes that are far away from the
other nodes will probably be leaf nodes. Thus, the higher the bias of a node,
the higher is the probability that it will be a leaf node. To finally get the tree’s
fitness the encoded network is evaluated by using the original distance matrix.

4 T. Gaube and F. Rothlauf

Palmer noticed in the original work that each bias bi modifies a whole row and
a whole column in the distance matrix. Thus, not all possible solution candidates
can be encoded by this representation [15, pp. 66-67].

To overcome this problem he introduced in the second, extended version of
the representation an additional link-bias. The chromosome holds biases not only
for the n nodes but also for all possible n(n − 1)/2 links and has overall length
l = n(n+1)/2. Therefore, the weighting function for the elements in the distance
matrix was extended to

d′
ij = dij + P1bijdmax + P2(bi + bj)dmax

with the link-specific bias bij . Using this representation the encoding could rep-
resent all possible trees. However, the string length is increased from l = n to
l = n(n + 1)/2. In the following we want to denote this representation as the
link-and-node-biased encoding.

Using the simple node-biased, or the more general link-and-node-biased en-
coding, makes it necessary to determine the value of one, respectively two, ad-
ditional encoding parameters. In the original work from Palmer only results for
the node-biased encoding and p = 1 are presented.

If the setting of the parameters could result in a biased representation of the
individuals, a degradation of a GA is sometimes unavoidable as illustrated in
the following section.

3 Unbiased Initial Populations and Building Block
Supply

In this section we want to review the requirement for representations to be
unbiased, and strengthen our investigation using work from [17]. Their model
could be used for explaining why and how the quality of genetic search is affected
by biased representations.

The equal distribution of the initial population is a desirable property of
effective encodings [21]. Palmer formulated in his thesis necessary criteria for
tree representations [15, pp. 39]:

”It should be unbiased in the sense that all trees are equally repre-
sented; i.e., all trees should be represented by the same number of encod-
ings. This property allows us to effectively select an unbiased starting
population for the GA and gives the GA a fair chance of reaching all
parts of the solution space.”

Palmer recognized correctly that a widely usable encoding should be unbiased.
For the LNB encoding he drew the conclusion at the end of his thesis that the

“... new Link and Node Bias (LNB) encoding was shown to have all the
desirable properties ...” [15, pp. 90]

including those to be unbiased. However, we will illustrate in the following sec-
tions that this claim is not true.

The Link and Node Biased Encoding Revisited 5

Using the notion of building blocks (BB) in the context of representations
means that we want unbiased encodings to represent all BBs uniformly. The
encoding should uniformly represent individuals containing high- and low-quality
BBs. If the individuals are represented unbiased, then the BBs are represented
unbiased, too. Biased encodings, however, overrepresent some specific building
blocks in a randomly generated population.

The theoretical results from [17] could be used to explain why and how the
quality of genetic search is affected by biased representations. They calculated
the probability of failure for a GA as

α = exp
(

−x0
2d

σBB
√

πm′

)
,

where d is the signal difference between the best and second best BB, m′ = m−1
with m is the number of BB in the problem, σ2

BB is the BB variance and x0 is the
expected number of copies of the best BB in the randomly initialized population.
The probability of GA failure goes with O(exp(−x0)).

The result from Harik et. al. tells us that when the number of copies of the
best BB in the randomly initialized population is reduced, the probability of GA
failure grows exponentially. Transferring these results to biased encodings, we
recognize that encodings that overrepresent individuals, which consist of mainly
low-quality BBs, result in an exponential decrease of GA solution quality.

However, in general, biased encodings do not always lead to a decrease in
solution quality. If an encoding is biased towards individuals that are similar
to the good solutions, the solution quality of a GA is increased exponentially.
Therefore, researchers and practitioners should be careful with using biased en-
codings. If the good solutions are similar to the individuals the encoding is biased
towards, it could be a good choice. However, if it is biased towards low quality
solutions, a failure of the GA is inescapable.

4 The Node-Biased Encoding
It is known that the node-biased encoding is not capable of representing all pos-
sible network structures [15]. We want to investigate if the represented networks
are encoded unbiased. We start with a distance matrix where all elements have
the same value. This is followed by an investigation where the position of the
nodes is chosen randomly.

4.1 All Links Have the Same Length

We assume that all values dij in the unbiased distance matrix are equal. Thus,
the values in the biased distance matrix are determined by b. We denote with bl
the lowest bias in b. It is the bias for the lth node and all other biases are larger.
Using this definition the modified length of each link connecting node i and j is
always higher than the length of the link connecting either i and l or j and l:

di,l < di,j for bl = min{b1, . . . bn},

6 T. Gaube and F. Rothlauf

where i, j, l ∈ {0, . . . , n}, i 6= l, i 6= j and l 6= j. As the decoding algorithm
chooses the shortest n − 1 links that do not create a cycle for creating the
encoded network, the only structure that could be represented by the node-
biased encoding is a star network with center l.

For an n node network the number of possible star networks is n, whereas
the number of all possible networks is nn−2. Thus, only a small fraction of
networks could be represented by the node-biased encoding. However, at least
the represented star networks are unbiased, as the elements of b are uniformly
distributed in the initial population.

We present an empirical verifi-
non-star star with center

l = 1 l = 2 l = 3 l = 4
0% 25.01% 24.97% 24.92% 25.10%

Table 1. Average percentage of represented
network types for a 4 node problem

cation of these results for a small
4 node problem in table 1. There
are 16 possible networks, and 4 of
them are stars with center l. For the
experiments we created 1000 initial
populations of size 1000. We see

that it is not possible to create non-stars, and that the stars are represented
uniformly. As a result, the node-biased representation is biased towards star
networks if the distances between the nodes have the same value.

4.2 Random Length of Links

Now we assume that the nodes are placed randomly on a two-dimensional
plane.

For our investigation we randomly

0

0.2

0.4

0.6

0.8

1

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

rank

non-biased encoding

0

0.2

0.4

0.6

0.8

1

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

rank

non-biased encoding

0

0.2

0.4

0.6

0.8

1

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

rank

non-biased encoding

Fig. 1. Distribution of network types

placed four nodes on a quadratic plane
of size 1000 x 1000 and created ran-
domly 1000 node-biased vectors. The
distances between the nodes were cal-
culated using the Euclidean distance.
We performed 1000 experiments with
different randomly located nodes.

If the representation would be un-
biased each individual is created with
probability p = 1/nn−2 = 1/16 =
6.25%. However, our experiments re-

vealed that star networks are strongly overrepresented. An average of 50.8%
of all randomly created individuals are a star, whereas the portion of stars for
all individuals is only 4/16 = 25%. Furthermore, the results show that all four
stars are created uniformly. This means each of the four star networks is created
with an average probability of about 12.7%

To investigate how the individuals are distributed in a randomly created
population, we ordered the represented networks according to their frequency.
In figure 1, we plot the cumulative frequency of the ordered number of copies an
individual has in a randomly created population for a 4 node problem. If all in-
dividuals would be created with the same probability, the cumulative frequency

The Link and Node Biased Encoding Revisited 7

would be linear over all possible individuals. However, for the node-biased en-
coding some individuals are created much more often. For our 4 node problem
more than 90% of all individuals encode only five possible networks. In contrast
to the overrepresentation of some individuals, some of the individuals are not
represented at all. On average, 6 out of 16 possible networks are not represented
at all when randomly creating 1000 individuals.

The simple node-biased encoding is biased towards star networks. A few indi-
viduals dominate a randomly created population and some solution candidates
are impossible to be created. In the following section we want to investigate
how the bias is influenced by the setting of its two parameters when using the
link-and-node-biased encoding.

5 The Link-and-Node-Biased Encoding
Palmer [15] proposed the link-and-node-biased encoding using node and link
biases as a way to overcome some of the problems with the node-biased (NB)
encoding. In the following we investigate how the bias which we have noticed for
the NB encoding, is influenced by the choice of the two parameters P1 and P2.

To investigate the bias of the LNB encoding, we randomly create a link-and-
node-biased vector and measure the maximum number of links the individual has
in common with one of the n stars. The more links an individual has in common
with one of the stars, the more star-like it is. In figure 2 we present results for a
randomly created 8, 16 and 32 node-problem. The average maximum number of
links a randomly created link-and-node-biased individual has in common with
a star is plotted over P1 and P2 and compared to an unbiased encoding. The
number of links could vary from 2 (the individual represents a list network) to
n−1 (the individual represents a star network). The parameters P1 and P2 vary
between 0 and 1, and we generated 2000 individuals for each parameter setting.

The results show that for all three problem instances that the bias of the
LNB encoding strongly depends on P2. For small values of P2 the individuals
are slightly biased towards non-star structures, whereas for large values of P2
the individuals are strongly biased towards star networks. An increase of P1
reduces the strong influence of P2 on the bias of the encoding. For small P2, the
individuals are only slightly biased, and for large P2 they are less biased towards
stars.

The results show that with increasing P2, a randomly created link-and-node-
biased individual is more biased towards star networks. With increasing P1,
however, the population becomes less biased. In agreement with section 4 we see,
that using only a node bias (P1 = 0) leads to a strongly biased representation.
To get a more unbiased representation large values should be used for P1.

6 Summary and Conclusions
After a short review of tree network encodings we focus on the link and node
biased encoding as described in [15]. We describe the encoding and illustrate
that for setting the link-specific bias to zero we get the simplified node-biased

8 T. Gaube and F. Rothlauf

link-and-node-biased encoding
non-biased encoding

0 0.2 0.4 0.6 0.8 1P1
0

0.2
0.4

0.6
0.8

1

P2

2

3

4

ave number of links

link-and-node-biased encoding
non-biased encoding

0 0.2 0.4 0.6 0.8 1P1
0

0.2
0.4

0.6
0.8

1

P2

3

4

5

6

7

ave number of links

(a) 8 node problem (b) 16 node problem

link-and-node-biased encoding
non-biased encoding

0 0.2 0.4 0.6 0.8 1P1
0

0.2
0.4

0.6
0.8

1

P2

4
6
8

10
12

ave number of links

(c) 32 node problem

Fig. 2. Average maximum number of links a randomly generated individual has in
common with a star. With increasing P2 an individual is strongly biased towards star
structures. Higher values for P1 result in a more unbiased representation

encoding. Palmer stated as a necessary condition for encodings that it has to
be unbiased in the sense that all individuals are equally represented. In section
3 we use the results from [17] to explain the effects of biased encodings on the
solution quality of GAs. This is followed by an investigation into the bias of the
node-biased encoding. Finally, we study how the bias of the link-and-node-biased
encoding depends on the setting of both parameters.

We have seen that the simple node-biased encoding is biased towards star
networks. Furthermore, a randomly created population is dominated only by a
few individuals and some individuals could not be represented by the encoding
at all. The investigation in the link-and-node-biased encoding reveals that the
bias of the representation depends strongly on the used parameter setting. Using
only a node-specific bias results, similar to the node-biased encoding, in a strong
bias towards star networks. But fortunately the bias of the representation is
decreased when using higher weights for the link-specific bias. Therefore, we
strongly encourage users not to use only a node-specific, but also a link-specific
bias, if they want to use the link-and-node-biased encoding, and if they are
interested in having a more unbiased encoding.

The Link and Node Biased Encoding Revisited 9

Because optimal solutions for the optimal communication spanning tree prob-
lem often tend to be star-like, the LNB encoding could be a good choice for this
problem. In general, however, the encoding has some serious problems, especially
when using the simplified node-biased encoding. Researchers should therefore be
careful when using this encoding for other problems because some network struc-
tures are not encoded at all, and a randomly generated individual is biased.

Acknowledgments. The authors would like to thank David E. Goldberg, Mar-
tin Pelikan, Kumara Sastri, Armin Heinzl, Clarissa von Hoyweghen and the
anonymous reviewers of the paper for useful comments and help with the project.

Support for this work was provided by the Deutschen Forschungsgemein-
schaft under SFB-DFG 1083. This work was also sponsored by the Air Force
Office of Scientific Research, Air Force Materiel Command, USAF, under grant
F49620-00-1-0163. Research funding for this work was also provided by the Na-
tional Science Foundation under grant DMI-9908252. Support was also provided
by a grant from the U. S. Army Research Laboratory under the Federated Labo-
ratory Program, Cooperative Agreement DAAL01-96-2-0003. The U. S. Govern-
ment is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the Air Force Office of Scientific
Research, the National Science Foundation, the U. S. Army, or the U. S. Gov-
ernment.

References

1. T. C. Hu. Optimum communication spanning trees. SIAM Journal on Computing,
3(3):188–195, September 1974.

2. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York, 1979.

3. L. Davis, D. Orvosh, A. Cox, and Y. Qiu. A genetic algorithm for survivable net-
work design. In S. Forrest, editor, Proceedings of the Fifth International Conference
on Genetic Algorithms, pages 408–415, San Mateo, CA, 1993. Morgan Kaufmann.

4. L. T. M. Berry, B. A. Murtagh, and S. J. Sugden. A genetic-based approach
to tree network synthesis with cost constraints. In Hans Jürgen Zimmermann,
editor, Second European Congress on Intelligent Techniques and Soft Computing -
EUFIT’94, volume 2, pages 626–629, Promenade 9, D-52076 Aachen, 1994. Verlag
der Augustinus Buchhandlung.

5. J. R. Kim and M. Gen. Genetic algorithm for solving bicriteria network topology
design problem. In Peter J. Angeline, Zbyszek Michalewicz, Marc Schoenauer,
Xin Yao, Ali Zalzala, and William Porto, editors, Proceedings of the 1999 IEEE
Congress on Evolutionary Computation, pages 2272–2279. IEEE Press, 1999.

6. Y. Li and Y. Bouchebaba. A new genetic algorithm for the optimal communi-
cation spanning tree problem. In C. Fonlupt, J.-K. Hao, E. Lutton, E. Ronald,
and M. Schoenauer, editors, Proceedings of Artificial Evolution: Fifth European
Conference, page xx, Berlin, 1999. Springer.

10 T. Gaube and F. Rothlauf

7. K. S. Tang, K. F. Man, and K. T. Ko. Wireless LAN desing using hierarchical
genetic algorithm. In T. Bäck, editor, Proceedings of the Seventh International
Conference on Genetic Algorithms, pages 629–635, San Francisco, 1997. Morgan
Kaufmann.

8. M. C. Sinclair. Minimum cost topology optimisation of the COST 239 European
optical network. In D. W. Pearson, N. C. Steele, and R. F. Albrecht, editors,
Proceedings of the 1995 International Conference on Artificial Neural Nets and
Genetic Algorithms, pages 26–29, New York, 1995. Springer-Verlag.

9. M. Krishnamoorthy, A. T. Ernst, and Y. M. Sharaiha. Comparison of algorithms
for the degree constrained minimum spanning tree. Tech. rep., CSIRO Mathemat-
ical and Information Sciences, Clayton, Australia, 1999.

10. F. Rothlauf, D. E. Goldberg, and A. Heinzl. Network random keys – a tree network
representation scheme for genetic and evolutionary algorithms. Technical Report
No. 8/2000, University of Bayreuth, Germany, 2000.

11. G. R. Raidl and B. A. Julstrom. A weighted coding in a genetic algorithm for the
degree-constrained minimum spanning tree problem. In Janice Carroll, Ernesto
Damiani, Hisham Haddad, and Dave Oppenheim, editors, Proceedings of the 2000
ACM Symposium on Applied Computing, pages 440–445. ACM Press, 2000.

12. H. Prüfer. Neuer Beweis eines Satzes ueber Permutationen. Arch. Math. Phys.,
27:742–744, 1918.

13. F. Rothlauf and D. E. Goldberg. Pruefernumbers and genetic algorithms: A lesson
on how the low locality of an encoding can harm the performance of GAs. In
Kalyanmoy Deb, Günther Rodolph, Xin Yao, and Hans-Paul Schwefel, editors,
Proceedings of the 2000 Parallel Problem Solving from Nature VI Conference, pages
395–404. Springer, 2000.

14. J. C. Bean. Genetic algorithms and random keys for sequencing and optimization.
ORSA Journal on Computing, 6(2):154–160, 1994.

15. C. C. Palmer. An approach to a problem in network design using genetic algorithms.
unpublished PhD thesis, Polytechnic University, Troy, NY, 1994.

16. F. N. Abuali, R. L. Wainwright, and D. A. Schoenefeld. Determinant factorization:
A new encoding scheme for spanning trees applied to the probabilistic minimum
spanning tree problem. In L. Eschelman, editor, Proceedings of the Sixth Interna-
tional Conference on Genetic Algorithms, pages 470–477, San Francisco, CA, 1995.
Morgan Kaufmann.

17. G. Harik, E. Cantú-Paz, D. E. Goldberg, and Brad L. Miller. The gambler’s ruin
problem, genetic algorithms, and the sizing of populations. Evolutionary Compu-
tation, 7(3):231–253, 1999.

18. C. C. Palmer and A. Kershenbaum. Representing trees in genetic algorithms. In
Proceedings of the First IEEE Conference on Evolutionary Computation, volume 1,
pages 379–384, Piscataway, NJ, 1994. IEEE Service Center.

19. A. Kershenbaum. Telecommunications network design algorithms. McGraw Hill,
New York, 1993.

20. R. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36:1389–1401, 1957.

21. S. Ronald. Robust encodings in genetic algorithms: A survey of encoding issues. In
Proceedings of the Forth International Conference on Evolutionary Computation,
pages 43–48, Piscataway, NJ, 1997. IEEE.

An Effective Implementation of a Direct
Spanning Tree Representation in GAs

Yu Li

LaRIA, Univ. de Picardie Jules Verne
33, Rue St. Leu, 80039 Amiens Cedex, France

fax: (33) 3 22 82 75 02
{yli@laria.u-picardie.fr}

Abstract. This paper presents an effective implementation based on
predecessor vectors of a genetic algorithm using a direct tree representa-
tion. The main operations associated with crossovers and mutations can
be achieved in O(d) time, where d is the length of a path. Our approach
can avoid usual drawbacks of the fixed linear representations, and provide
a framework facilitating the incorporation of problem-specific knowledge
into initialization and operators for constrained minimum spanning tree
problems.

1 Introduction

Recently, many efforts have been spent to deal with constrained minimum span-
ning tree (MST) problems by using Genetic Algorithms (GA). These include the
degree-constrained MST problem, the Optimal Communication Cost Spanning
Tree (OCCST) problem, the capacitated-MST problem, etc [1]. The used GAs
differ mainly in the way how spanning trees are represented. We can classify the
tree representations in GAs into three categories.

The first is mainly based on the fixed linear representations (e.g. the Sim-
ple Genetic Algorithm of Goldberg [2]), such as, bit string, Predecessor vector,
Prüfer number, etc [3, 4]. However, these linear representations often present
some drawbacks: infeasible solutions, lack of locality, difficult to incorporate do-
main knowledge, etc.

The second is based on decoder techniques. A general decoder-based tech-
nique is the weight-coded approach [4, 5]. Another decoder-based technique con-
sists of an integer vector which influences the order to connect vertices to the
growing spanning tree by a modified version of Prim’s algorithm [6].

Finally, the third category uses relatively simple and direct tree representa-
tions. In these approaches, crossovers and mutations directly manipulate trees.
The advantage of direct tree representations is that they can avoid usual draw-
backs of the fixed linear representations and facilitate the incorporation of
problem-specific knowledge into initialization and operators. In [3, 7], two ef-
fective GAs directly working on trees are presented for the degree-constrained

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 11–19, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

12 Y. Li

MST problem and the capacitated-MST problem. In [8], a direct tree represen-
tation together with variation genetic operators on trees are proposed and tested
on the OCCST problem.

In [8], an adjacency list and edge lists [9] are used to implement genetic
operators on trees. However, they are not effective for large instances, since the
main operations of crossovers and mutations are in O(n2) time, where n is the
number of vertices in a complete undirected graph. In this paper, we propose an
effective implementation based on predecessor vectors. Some desirable properties
of predecessor vectors allow the main operations of crossovers and mutations to
be achieved in O(d) time, where d is the length of a path.

The paper is organized as follows. Section 2 reviews crossovers and mutations
based on a direct tree representation proposed in [8]. Section 3 discusses the
distinction between representation and implementation in GAs and presents an
effective implementation. Section 4 presents the first result of our implementation
for the OCCST problem, and Section 5 concludes this paper.

2 Crossovers and Mutations Based on a Direct Tree
Representation in [8]

Three types of crossovers manipulating trees have been proposed: edge crossover,
path crossover, and subtree crossover. These crossovers are based on the exchange
of edges.

edge crossover consists in randomly selecting some edges from two parent
trees, and exchanging these edges between two parent trees to generate two
offspring trees. To keep the spanning tree structure, the exchange proceeds as
follows: first select an edge from parent 1 that is not already in parent 2, add the
edge into parent 2, and finally delete another edge lying on the cycle introduced
by the addition. path crossover and subtree crossover can be considered as the
exchange of edges in paths or subtrees.

Figure 1 illustrates three examples of edge crossover, path crossover and
subtree crossover.

Similar to the crossovers, three types of mutations have been proposed: edge
mutation, path mutation and subtree mutation. The difference of the mutations
from the crossovers is that edges, paths, and subtrees are selected not from a
parent tree but rather from the original graph.

3 Effective Implementation Based on Predecessor Vectors

In our GA using the direct tree representation, crossovers and mutations are
essentially additions and deletions of edges within a tree, together with search-
ing for paths in a tree. It’s important to design effective data structures and
algorithms for these operations.

We observe that, if we use predecessor vectors as data structures to represent
a rooted tree, we can generate a path between two vertices in O(d) time, where

Direct Spanning Tree Representation in GAs 13

B

E

F

O

R

E

C

R

O

S

S

O

V

E

R

B

E

F

O

R

E

C

R

O

S

S

O

V

E

R

B

E

F

O

R

E

C

R

O

S

S

O

V

E

R

A

F

T

E

R

C

R

O

S

S

O

V

E

R

A

F

T

E

R

C

R

O

S

S

O

V

E

R

A

F

T

E

R

C

R

O

S

S

O

V

E

R

5

12 6 7 4

10 11 9 3

8 1 2

5

12 6 7 4

10 11 9 3

8 1 2

4

1 8

10 3
9 12 6

7

11
5 2

4

1 8

10 3
9 12 6

7

11
5 2

5

12 6 7 4

10 11

4

1 8

10 3
9

7

11

1
3

2

8

9

12

5 2
6

5

12 6 7 4

10 11 9 3

8 1 2

5

12 6 7 4

10 11 9 3

8 1 2

4

1 8

10 3
9 12 6

7

11
5 2

4

1 8

10 3
9 12 6

7

11
5 2

5

12

10 11

4

1 8

10 3
9

7

11
5

Edge Crossover

6

12
2

8 2

41

3

6 7

9

5

12 6 7 4

10 11 9 3

8 1 2

5

12 6 7 4

10 11 9 3

8 1 2

4

1 8

10 3
9 12 6

7

11
5 2

4

1 8

10 3
9 12 6

7

5 2

5

12 7 4

3

1 2

4

1 8

10 3
9 6

Path Crossover

6 9

8 1110

11

12

5 2
11

7

parent1 offspring1

parent2 offspring2
Tree Crossover

offspring2parent2

offspring1parent1

offspring2parent2

parent1 offspring1

Fig. 1. Crossovers on trees

14 Y. Li

d is the length of the path. The main issue to use this data structure is how to
maintain a tree rooted at some vertex during addition and deletion of edges.

Before presenting our implementation, we first discuss the distinction be-
tween representation and implementation in GAs. Then, we present the tree
representation with a predecessor vector and the transformation of a tree rooted
at a vertex into rooted at another vertex. Finally we propose an algorithm for
adding and deleting an edge in a tree and an algorithm for generating a path
between two vertices. We re-illustrate the example of path crossover of Figure 1
in Figure 5.

3.1 Distinction between Representation and Implementation in
GAs

We emphasize the distinction between representation and implementation in
GAs. In fact, this is a key issue in designing our GA. For a GA working on some
representation, i.e. its operators directly manipulate this representation, there
can be different implementations with different data structures. For example, in
[8], an adjacency list and edge lists are used as data structures, here we can use
predecessor vectors as data structures to implement the same GA.

This distinction has been mentioned in [10], however, it is not usually obvi-
ous in many GAs using the fixed linear representations. For example, in a GA
using the predecessor encoding, the predecessor vector is not only used as data
structure but also as representation, because operators directly manipulate it.
However, in our GA, the predecessor vector is just used as data structure, and
operators do not directly manipulate it.

This distinction can simplify the design of GAs. We first consider represen-
tation and concentrate on the design of initialization and genetic operators to
adapt to a specific problem, then we consider effective data structures to imple-
ment the genetic operators.

3.2 Representing a Tree with a Predecessor Vector

Given a undirected connected graph G, the vertices in G are labeled with the
number 1,2, ..., n. A spanning tree is a connected subgraph of G which covers
all the vertices of G, but does not contains any cycle.

A spanning tree can be represented using a predecessor vector. It consists in
designating the root r for the tree and then recording the predecessor of each
node in the tree rooted at r in a vector pred. Let pred[i] = j where j is the
predecessor of i in T . As a convention, set pred[r] = r. Thus, every rooted tree
T is represented by a vector of n numbers from 1 and n.

3.3 Transformation of a Tree Rooted at r to Rooted at r′

Since any vertex can be designated as the root, there are n rooted trees corre-
sponding to a spanning tree. From the view of representing a tree, these n rooted

Direct Spanning Tree Representation in GAs 15

trees are equivalent, since we can get the original tree from any one of them. In
other word, it is not important to designate which vertex to be root.

The transformation of a tree rooted at r to rooted at r′ can be achieved by
simply reversing the linkage from r to r′. It just takes O(d) time, where d is the
length of the path from r to r′.

Figure 2 shows an example of transforming a tree rooted at 5 to another
rooted at 2 and their corresponding predecessor vectors.

5

12 6 7 4

10 11 9 3

8 1 2

 Tree rooted at 2(3)(1) Tree rooted at 5 (2)
and 2 becomes root
Reverse the linkage from 2 to 5

5

12 6 7

10 11 9

8

2

1 3
4

5

12 6 7 4

10 11 9 3

8 1 2

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

3 3 4 5 5 5 5 9 6 12 12 5 3 2 2 3 4 5 5 9 6 12 12 5

Fig. 2. Transformation of a tree rooted at 5 to another rooted at 2 and their corre-
sponding predecessor vectors

3.4 Algorithm for Adding and Deleting an Edge

The main issue to use this data structure is how to maintain a tree rooted at
some vertex when adding and deleting edges, because deleting an edge (u, v) will
make u become another possible root, and adding an edge (i, j) can make i have
two predecessors if i is not the root (Figure 3).

Based on the equivalence of spanning trees rooted at different vertices, we
solve this problem as follows. For an edge (i, j) to be added, we first make
i become the root by reversing the linkage from the root r to i, and search
for an edge (u, v) which can be removed, e.g., an edge neither common to the
two parents nor inserted recently. Then we delete (u, v) and add (i, j). Adding
(i, j) makes i have a predecessor j and therefore i is not the root, and deleting
(u, v) makes u become the root. This procedure leads to the same result as the
operators presented in Section 2 which directly manipulate trees. This procedure
is illustrated in Figure 3.

16 Y. Li

We describe the algorithm of adding and deleting an edge as follows.

Procedure addDeleteEdge((i, j), pred)
if the edge (i, j) is not in the tree, then

make i become a root by reversing the linkage from r to i
search an edge (u, v) which can be removed on the path from j to i
remove (u, v) from tree by pred[u]← u, and u becomes a root
add (i, j) to tree by pred[i]← j

ji v u ji v uor

ji v u

make i become root

ji v u

delete (u, v), u becomes root, add (i, j)

(i, j) to be added, (u, v) or (v, u) to be deleted

Fig. 3. Illustration of addDeleteEdge()

3.5 Algorithm for Generating a Path in a Predecessor Vector

To generate the path from vertex i to vertex j, we construct in parallel a path
from i and a path from j by following their predecessors, until they meet at
a vertex k. The path from i meeting the path from j means that, the current
vertex k to be put in the path from i exists in the path from j. The resulting
path from i to j can be formed by concatenating the path from i to k and the
path from k to j. This procedure is illustrated in Figure 4.

We give the algorithm for generating a path from i to j as follows.

Procedure getPath(i, j, pred)
pathi ← {i}, pathj ← {j}
(ui, vi)← (i, pred[i])
(uj , vj)← (j, pred[j])

Direct Spanning Tree Representation in GAs 17

k

j

i

meeting node

(k)j

i

meeting node

path j

i
path = subPath(path , i,k)

i

subPath(path , k,j)
j

path j

subPath(path , k,j) = {}
j

i
path = subPath(path , i,k)

i

Fig. 4. Illustration of getPath() for the case that pathi meets pathj

while pathi and pathj do not meet at some vertex do
if ui is not root, then

put vi into pathi
if pathi meets pathj at vi, then

mark vi with k by k ← vi
pass to the next edge by (ui, vi)← (vi, pred[vi])

if uj is not root and two paths do not meet, then
put vj into pathj
if pathj meets pathi at vj, then

mark vj with k by k ← vj
pass to the next edge by (uj , vj)← (vj , pred[vj])

pathij ← subPath(pathi, i, k) + subPath(pathj , k, j)

3.6 Example of Path Crossover Based on This Implementation

We demonstrate the example of path crossover of Figure 1 based this implemen-
tation in Figure 5.

4 Application to the OCCST Problem

We re-implement the GA presented in [8] for the OCCST problem using the
implementation algorithms above. First, our goal is just to test the feasibility of
these algorithms. Table 1 gives a comparison about time used for instances in
[8]. This comparison is very rough, for the experiments have not been finished.
However, we notice an obvious improvement. Moreover, the larger the instance,
the larger the improvement is.

The program is written in C++ and the tests are done on a 300 MHz AMD
k6-2 PC under Linux. The algorithm is executed 5 times for each example. The
parameters for the GA are set as below:

18 Y. Li

5

12 6 7 4

10 11 9 3

8 1 2

(1)

into the tree rooted at 5

the path 2-12-8 to be added

5

12 6 7 4

10 11 9 3

8 1 2

5

12 6 7 4

10 11 9 3

8 1 2

(3) make 12 become root, add (12, 8),

remove (9,6), and 9 become root
(2) make 2 become root, add (2,12),

remove (5,4), and 5 become root

Fig. 5. Path Crossover in Figure 1 based on the predecessor vector implementation

– the crossover probability is 0.6;
– the mutation probability is 0.001;
– the population size is 200;
– the maximum generation is 50;
– the operators are path crossover and path mutation.

Table 1. Comparison of times on 4 instances for the OCCST problem

Instance Old Implementation New Implementation
(nb of vertices) Best(time[s]) Avg(time[s]) Best(time[s]) Avg(time[s])
12 5.83 6.06 11.09 11.51

24 73.01 76.34 60.86 63.55

35 340.64 348.12 160.01 164.35
(non-uniform distance)
35 277.58 284.19 109.78 112.67
(uniform distance)

5 Conclusions

This paper presents an effective implementation based on predecessor vectors
of a GA using a direct tree representation. The main issue to use predecessor
vectors as data structures is how to maintain a tree rooted at some vertex during
addition and deletion of edges. Based on the equivalence of spanning trees rooted
at different vertices, we propose an algorithm for adding and deleting an edge

Direct Spanning Tree Representation in GAs 19

in O(d) time, where d is the length of a path. We propose also an algorithm for
generating a path between two vertices in O(d) time.

In the future, we will exploit this representation and its implementation for
constrainted MST problems. We will also extend this idea to other problems
whose solutions are more complex, for example, a cycle, a graph, etc.

Acknowledgments. This work is partially supported by “le conseil Régional
de Picardie” (Pôle modélisation, projet parallélisme).

We thank Chumin Li and Alain Cournier for their comments which helped
to improve this paper.

References

1. Crecenzi P., Kann V. A compendium of NP optimization problems. Available online
at http://www.nada.kth.se/theory/compendium/, Aug. 1998

2. Goldberg D. E. Genetic algorithms in search, optimization and machine learning.
Addison-Wesley (Reading, Mass).

3. Raidl G. R. An Efficient Evolutionary Algorithm for the Degree-Constrained Min-
imum Spanning Tree Problem. Proc. of the 2000 IEEE Congress on Evolutionary
Computation, San Diego, CA, pp. 104-111, July 2000.

4. Palmer C. C., Kershenbaum A. An approach to a problem in network design using
genetic algorithms. Networks, vol. 26 (1995) 151-163.

5. Raidl G. R., Julstrom B. A. A Weighted Coding in a Genetic Algorithm for the
Degree-Constrained Minimum Spanning Tree Problem. Proc. of the 15th ACM Sym-
posium on Applied Computing, Como, Italy, pp. 440-445, March 2000.

6. 6. Knowles J., Corne D. A new evolutionary approach to the degree constrained
minimum spanning tree problem. IEEE Transactions on Evolutionary Computation,
Volume 4 number 2, pp. 125-134, July 2000.

7. Raidl G. R., Drexel C. A Predecessor Coding in an Evolutionary Algorithm for
the Capacitated Minimum Spanning Tree Problem. Late-Breaking-Papers Proc. of
the 2000 Genetic and Evolutionary Computation Conference, Las Vegas, NV, pp.
309-316, July 2000.
bibitemli Li Y., Bouchebaba Y. A new genetic algorithm for the optical commu-
nication spanning tree problem. Proc. of Artifical Evolution 99, LNCS 1829, pp.
162-173, Dunkerque, France, 1999.

8. Gibbons A. Algorithmic graph theory. Cambridge University Press, New York.
9. Michalewicz Z. Genetic Algorithms + Data Structures = Evolutionnary Programs.

Springer-Verlag, 3rd edition, 1996.

An Evolutionary Algorithm with Stochastic
Hill-Climbing for the Edge-Biconnectivity

Augmentation Problem

Ivana Ljubić and Günther R. Raidl

Institute for Computer Graphics and Algorithms, Vienna University of Technology,
Favoritenstraße 9–11/186, 1040 Vienna, Austria

{ljubic|raidl}@ads.tuwien.ac.at

Abstract. Augmenting an existing network with additional links to
achieve higher robustness and survivability plays an important role in
network design. We consider the problem of augmenting a network with
links of minimum total cost in order to make it edge-biconnected, i.e. the
failure of a single link will never disconnect any two nodes. A new evolu-
tionary algorithm is proposed that works directly on the set of additional
links of a candidate solution. Problem-specific initialization, recombina-
tion, and mutation operators use a stochastic hill-climbing procedure.
With low computational effort, only locally optimal, feasible candidate
solutions are produced. Experimental results are significantly better than
those of a previous genetic algorithm concerning final solutions’ qualities
and especially execution times.

1 Introduction

All communication networks are designed for certain demands and requirements.
In the course of time, traffic demands typically increase and the networks are
often not as satisfying as at the beginning. Therefore, the augmentation of net-
works by additional links plays an important role in network design. In addition
to the increase of band-width, an increase of robustness and survivability is often
needed. A network can be made robust against failures in connections between
two sites or against site failures. The costs of such augmentations should usually
be as small as possible.

The robustness of a certain network, is in graph theory described by the
vertex and edge k-connectivity. A connected undirected graph G = (V, E) has
edge (vertex) connectivity k if at least k edges (vertices) must be deleted to
disconnect G. The removal of vertices hereby includes the removal of all adjacent
edges. Therefore, a vertex k-connected network is always edge k-connected, but
not necessarily vice versa.

The problem of augmenting a graph to become k = 1 connected is identical
to the minimum spanning tree (MST) problem, which can be solved efficiently
in polynomial time. However, in practical communication networks, a larger
connectivity-level for higher reliability is often needed. From the other side,
costs usually limit the connectivity level k to a small value.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 20–29, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

An Evolutionary Algorithm with Stochastic Hill-Climbing 21

In this paper, we concentrate on edge-connectivity with k = 2. This problem
is also called edge biconnectivity augmentation problem (E2AUG). Our goal is,
therefore, to augment a given network with additional links of minimum total
costs, to make it edge-biconnected.

Eswaran and Tarjan [1] showed that E2AUG is NP-hard. The problem re-
mains NP-hard, even in the case when all connections have weights chosen from
the set {1, 2} only. Due to the hardness of the problem, it was addressed by
heuristic methods including a hybrid genetic algorithm (HGA) [2]. In contrast
to this previous HGA, we present here a new evolutionary algorithm (EA) based
on a powerful preprocessing and a straight-forward edge-set representation. The
recombination and mutation operators produce only feasible solution candidates
and contain a local stochastic hill-climbing which removes redundant edges. That
way, the EA searches the space of locally optimal solutions only.

The initialization, recombination, and mutation operators are specifically
designed for the considered problem. Recombination and mutation preserve a
great amount of parental structures, i.e. the locality is high. The average com-
putational effort of recombination and mutation operators is low, which allows
a fast execution on large graphs, too. Empirical results indicate the new EA is
significantly better concerning the quality of final solutions, as well as the execu-
tion times when compared to the previous HGA and another iterative heuristic
for the E2AUG.

The next section provides a mathematical definition of E2AUG and a sum-
mary of previous work related to the problem. In Section 3, an explanation of
the preprocessing is given. Section 4 describes the EA with its stochastic local
hill-climbing procedure in detail. An empirical comparison to the previous HGA
is given in Section 5, and final conclusions are drawn in Section 6.

2 The Edge-Biconnectivity Augmentation Problem

Given are a connected, undirected graph G = (V, E), and an additional set
AUG of edges connecting nodes in V (AUG ∩ E = ∅). Each edge e ∈ AUG has
associated costs c(e) > 0. The graph GA = (V, E ∪ AUG) is edge-biconnected.
The goal is to augment graph G using a subset S of edges from AUG with
minimum total costs c(S) =

∑
e∈S c(e), so that graph GS(V, E ∪S) is also edge-

biconnected.
In graph G, an edge e ∈ E is called a bridge if its deletion disconnects G. GS

must therefore not contain any bridges. That is why this problem is also called
bridge-connectivity augmentation problem.

The problem has been stated the first time by Eswaran and Tarjan [1]. In this
work a polynomial algorithm for E2AUG is given for the specific case when all
edge costs are the same and graph GA is complete. A survey on several related
problems and approximation algorithms is given by Khuller [3].

In 1981, Frederickson and Jájá [4] proposed an approximative algorithm for
E2AUG based on the following steps:

22 I. Ljubić and G.R. Raidl

Firstly, all already biconnected components in G are shrinked into “super-
nodes”, whereby all self-loops are discarded; from multiple edges e ∈ AUG con-
necting the same pair of nodes in the shrinked graph, only the cheapest edge is
retained. In this way, the problem of augmenting a general connected graph G,
can always be reduced to the problem of augmenting a spanning tree.

In the next step, the shrinked graph G is interpreted as a directed tree: a
random root r is chosen and all edges in E are directed toward this root. After
that, the algorithm searches for a minimum outgoing branching, i. e. a directed
tree with paths from the root r to all other nodes (Gabow et al. [5]), using edges
from the shrinked set AUG and E. A feasible set of augmenting edges S ⊂ AUG
can finally be derived from the set of edges included in this branching. It is
proven that this algorithm determinates a solution with costs no greater than
two times the costs of the optimal solution.

The time complexity of this algorithm has been improved by Khuller and
Thurimella [6]. Recently, Zhu et al. [7,8] proposed an iterative scheme based on
the branching algorithm. They provide a heuristic formula for measuring how
good a certain augmenting edge in a determined outgoing branching can be.
Using this formula, only one edge at a time, as one step of an iterative process,
is fixed, and the edge’s cost is set to zero. Then, a new minimum outgoing
branching is derived, and the edge is fixed. This process continues until the
evaluated branching has zero costs and a complete set S is obtained.

Ljubic et al. [2] proposed a hybrid genetic algorithm (called HGA) for
E2AUG. This algorithm is based on a binary encoding, in which each bit cor-
responds to an edge in AUG , on standard uniform crossover, and on bit-flip
mutation. Infeasible solutions are repaired using a greedy repair-algorithm in a
Lamarckian way. This algorithm temporarily removes the bridges one by one
from an infeasible solution and searches for the cheapest edge from AUG con-
necting the two separated components. For a better performance, the algorithm
uses caching [9].

Although better results are obtained by HGA than by several previous ap-
proaches, this method has also disadvantages: The genetic code has length
|AUG |, which is not efficient for larger complete or dense graphs. The required
space and time to evaluate a solution is O(|V |2) in such cases, while the num-
ber of edges included in biconnectivity augmentation is always less then |V |,
according to Mader’s theorem [10]. Furthermore, many genetic codes created by
recombination and/or mutation are mapped to one and the same phenotypic
solution due to the repair operator. This effect endangers the GA to converge
too quickly to suboptimal solutions.

In this paper, we present a new evolutionary approach which overcomes these
disadvantages using a compact edge-set encoding, problem-based operators, and
a local stochastic hill-climbing. This EA searches the space of local optima only.
Such an approach belongs to a broader group of combinatorial optimization
algorithms, called local-search-based memetic algorithms [11].

An Evolutionary Algorithm with Stochastic Hill-Climbing 23

20

1110

7

6

8
3 5

3

7
1

3 5

20

1

3

8

1 1 1

3

1

3 5
53

3

3

1 1

(a) (b)

(c) (d) (e)

AUG

shrinked node

E

Fig. 1. An example for preprocessing: (a) given graph G = (V, E) and set AUG, (b)
after shrinking, (c) after elimination of edges, (d) after fixation of edges from AUG,
(e) after another shrinking.

3 Preprocessing

Good preprocessing can reduce a problem’s search space significantly. Our pre-
processing is based on the next three steps which are illustrated in Fig. 1:
Shrinking: This reduction has been originally described by Frederickson and Jájá
[4]. Edge-biconnected components of a graph are its maximal edge-biconnected
subgraphs (maximal in the sense that no other node from the graph can be
added, without violating biconnectivity). By this procedure, all edge-biconnected
subgraphs are found and shrinked into “super-nodes”. From the edges from AUG
that connect the same components, only the cheapest ones are included and all
others are discarded. Self-loops, i.e. augmenting edges connecting nodes of the
same component, are always discarded. For each edge in the shrinked graph
a reference back to the corresponding edge of the original problem is stored.
After shrinking, the graph has always a tree structure, where all edges represent
bridges of the initial configuration. Note that now, GS = (V, E ∪ S) and GA =
(V, E ∪ AUG) can become multigraphs, since AUG and E are not necessarily
disjoint anymore (see Fig. 1 (b)).
Edge elimination: Edge e0 ∈ E is covered by an edge e = (u, v) ∈ AUG if e0 lies
on the tree path (in G) connecting nodes u and v. This procedure detects and
removes each edge ein from AUG , for which some other edge eout ∈ AUG exists,
such that the tree-path (in G) covered by ein is a subset of the tree path covered
by eout and eout is cheaper then ein. More formally, if ein = (u, v) ∈ AUG , and:

Path(e) = {e0 | e0 ∈ E and e0 is part of the path connecting u and v in G}
then, ein is obsolete if:

∃ eout = (s, t) ∈ AUG such that Path(ein) ⊂ Path(eout) ∧ c(ein) ≥ c(eout).

24 I. Ljubić and G.R. Raidl

Frederickson and Jájá [4, pp. 276–277] proposed a dynamic programming
algorithm for their branching based heuristic, that computes special distance
values for all edges in AUG and identifies all obsolete edges in the above sense
as a byproduct in O(|V |2) time.

Usually, the more star-like graph G is, the less edges can be eliminated by
means of this procedure.

Edge fixation: This procedure identifies edges that must necessarily be included
in the final solution. The sets Cover(e0), e0 ∈ E, are the sets of all augmenting
edges e = (u, v) ∈ AUG such that e0 lies on the (u, v)-path in G, i.e.

Cover(e0) = {e = (u, v) ∈ AUG | e0 ∈ Path(e)}. (1)

If there exists an edge e0 ∈ E such that |Cover(e0)| = 1, then edge e must
appear in all feasible solutions, since this is the only possibility to “cover” e0.
Edge e is therefore fixed by moving it from AUG to E. After such a fixation,
a new edge-biconnected component is created, which can further be shrinked
into a single new super-node. Since shrinking can enable further fixations, the
process is repeated until no more edges from AUG can be fixed.

Note that the more sparse graph GA is, the more edges can typically be fixed.

4 The Evolutionary Algorithm

Although preprocessing reduces the size of the problem, it is in general not able
to solve the problem completely. Therefore, we apply the following evolutionary
algorithm.

4.1 Edge-Set Encoding

Each candidate solution is directly represented by the set S of selected edges.
For this purpose, we use a hashed array as data structure. Insertion as well as
deletion of a single edge and the check whether an edge is contained or not take
always constant time. Furthermore, the space needed to store each individual is
O(S), where |S| < |V |.

4.2 Stochastic Hill-Climbing

The central part of the new approach is the local stochastic hill-climbing pro-
cedure, incorporated in the initialization, crossover, and mutation operators.
This procedure removes redundant edges from a given feasible solution in an
indeterministic way until the solution becomes edge-minimal concerning the bi-
connectivity property. This algorithm checks each edge in S in random order if
it can be removed without making the solution infeasible.

For each edge e0 ∈ E we determine the number of all edges from S that
“cover” e0 in an initial step:

ncov(e0) = |{e | e ∈ S and e0 ∈ Path(e)}|.

An Evolutionary Algorithm with Stochastic Hill-Climbing 25

procedure hill-climbing(var S):
begin

ncov(e0)← 0, for each e0 ∈ E;
for each e ∈ S do

for each e0 ∈ Path(e) do
ncov(e0)← ncov(e0) + 1;

while not all edges e ∈ S are processed
select a yet unprocessed edge e ∈ S;
if ncov(e0) ≥ 2, ∀e0 ∈ Path(e)

S ← S \ {e};
for each e0 ∈ Path(e)

ncov(e0)← ncov(e0)− 1;
end

Fig. 2. The EA’s stochastic hill-climbing.

An edge e ∈ S is then redundant and can be removed if:

∀ e0 ∈ Path(e) : ncov(e0) ≥ 2.

After each edge elimination from S, ncov(e0) is updated accordingly.
The pseudo-code presented in Figure 2 shows the algorithm in more de-

tail. During hill-climbing, each set Path(e), ∀e ∈ AUG , can be determined
in O(|path(e)|) time, if a depth-first search started from an arbitrarily cho-
sen root is performed and depth and parent informations are stored for each
node [12]. Hence, the worst-case execution time needed for determining all
ncov(e0), e0 ∈ Path(e), is O(|V ||S|), but in average the whole algorithm runs in
O(|S| log |V |) time.

4.3 Initialization

In order to create feasible initial solutions, we apply the described stochastic
hill-climbing procedure to the whole set AUG of edges that can be used for aug-
mentation, i.e. S = AUG . Due to the indeterminism of hill-climbing, generated
solutions are in general different and enough initial diversity is provided.

4.4 Edge Crossover

When designing a suitable crossover operator, our main goal was to produce a
new solution that inherits as many parental structures as possible in order to
provide a high level of locality. This can be accomplished by setting a child’s
edge-set to the union of the parental edge-sets and applying local stochastic
hill-climbing to it.

In this way, a new locally optimal solution is efficiently created out of the
parental edges only. Nevertheless, even if the same two parents are again selected
for mating, a different offspring is generated with high probability.

26 I. Ljubić and G.R. Raidl

procedure edge-delete mutation(var S):
begin

do pmut times:
choose e ∈ S randomly;
S ← S \ {e};
for each e0 ∈ Path(e) do

ncov(e0)← ncov(e0)− 1;
for each {e0 | e0 ∈ Path(e) ∧ ncov(e0) = 0} do

select e1 from Cover(e0) \ {e} randomly;
S ← S ∪ {e1};
for each e′ ∈ Path(e1) do

ncov(e′)← ncov(e′) + 1;
hill-climbing(S);

end

Fig. 3. Edge-delete mutation.

Meaningful building-blocks will be transmitted from parents to offsprings,
and strong locality is provided. Since |S| < |V | for each parental edge-set, the
computational effort of edge crossover is only O(|V | log |V |).

4.5 Edge-Delete Mutation

The mutation operator’s main purpose is to counteract premature convergence
and to maintain enough diversity in the population by introducing new edges
from AUG \ S. Edge-delete mutation replaces a randomly selected edge from
S by one or more different, appropriate edges from AUG \ S, so that edge-
biconnectivity is maintained. Since the offspring generated in this way is not
necessarily edge-minimal anymore, local stochastic hill-climbing is finally applied
again. The algorithm presented in Fig. 3 shows more details.

To be able to perform the mutation efficiently, we suggest to determine the
set Cover(e0) as defined in (1) for each e0 ∈ E as a part of preprocessing. Then
the mutation operator needs only O(|V | log |V |) time, too.

The parameter pmut is the number of times an edge is substituted and there-
fore controls how strong mutation will actually change a certain solution.

4.6 Edge-Cost Based Heuristics

Usually, cheaper edges will appear more frequently in optimal solutions than
expensive edges. Based on this observation, we include additional cost-based
heuristic in the hill-climbing and mutation algorithms.

Heuristic in hill-climbing: During hill-climbing, the order of processing the edges
in S is crucial. In each iteration, we bias the selection of the edge coming next
towards more expensive edges by performing a tournament selection on all yet
unprocessed edges in S. From a group of kimpr randomly chosen edges, the most
expensive edge is selected.

An Evolutionary Algorithm with Stochastic Hill-Climbing 27

Heuristic in edge-delete mutation: For mutation we select each replacement-edge
(needed to cover a newly introduced bridge e0) from Cover(e0) \ {e} by using a
tournament selection. Now, cheaper edges need to be preferred; thus, the edge
with the smallest costs is selected from a randomly chosen group of size kmut.

4.7 General EA Properties

We used a steady-state evolutionary algorithm in which only one new solution is
created by means of crossover and mutation. The new solution always replaces
the worst solution with one exception: Only new solutions that are not dupli-
cates of solutions already in population are accepted in order to maintain higher
diversity. Parents are chosen using tournament selection with the group size k.

5 Experimental Results

In this section we present experimental results of the proposed EA with stochas-
tic hill-climbing (EASHC) and the previous hybrid genetic algorithm (HGA)
from [2].

Since the problem of augmenting a general connected graph G, can effectively
be reduced to augmenting a tree (see Sec. 3), G is always a spanning tree in our
test instances. Table 1 shows the main properties of the considered instances.
Columns |Vpre| and |AUGpre| indicate the numbers of nodes and the numbers of
augmenting edges of G, respectively, after performing preprocessing. Instances
A3 to N2 were created using a generator from Zhu et al. [8]. All graphs were
randomly generated; column c(e) shows the intervals from which costs for each
e ∈ AUG were chosen. Results for problem instances A3 to N2 were adopted
from [2]. Instances R1 to E3 are new and larger than all previously tested ones.
In contrast to the other instances, E1 to E3 are Euclidean problems in which
nodes represent randomly placed points in the plane and edge costs correspond
to the points’ Euclidean distances.

It can further be observed that especially when GA is sparse (as in instances
A3, B1, B6), the fixing of edges together with the new iterative shrinking and
edge-elimination can dramatically reduce the problem size. On the other hand, if
GA is dense (instances N1 to E3), edge-fixation is not able to reduce the number
of nodes, but the edge-elimination is more effective. Especially for larger problem
instances, preprocessing times tpre are neglectable in comparison to the EA’s
total execution times, see Table 2. Preprocessing was able to reduce the problem
size |AUG | significantly: in case of instance B1 to ∼ 1/7, in average to about
the half.

Suitable EA parameters were determined by extensive preliminary tests: pop-
ulation size |P | = 100, group size for tournament selection of the EA k = 5,
during recombination kimpr = 5, and during mutation kmut = 4. The mutation
rate is pmut = 5. Each run was terminated when no new best solution was found
within the last 100,000 created solutions.

28 I. Ljubić and G.R. Raidl

Table 1. Properties of considered problem instances.

instance |V | |AUG| c(e) in |Vpre| |AUGpre| tpre[s]

A3 40 29 [1,780] 12 13 0.1
B1 60 55 [1,1770] 8 4 0.1
B6 70 81 [1,2415] 31 39 0.2
N1 100 1104 [10,50] 100 687 0.6
N2 110 1161 [10,50] 110 734 0.6
R1 200 9715 [1,100] 200 3995 11.2
R2 200 9745 [5,100] 200 3702 10.9
E1 200 19701 Euclidean 200 4104 25.8
E2 300 11015 Euclidean 300 4462 31.5
E3 400 7621 Euclidean 400 4806 51.6

Table 2. Average results of HGA and EASHC.

HGA EASHC
inst. best gap[%] σ(gap) eval t[s] gap[%] σ(gap) eval t[s]

A3 6607.0 0.0 0.0 380 0.1 0.0 0.0 0 0.1
B1 15512.0 0.0 0.0 50 0.0 0.0 0.0 0 0.1
B6 19022.0 0.0 0.0 9400 4.5 0.0 0.0 7 0.2
N1 383.0 2.6 2.0 95350 230.4 0.5 0.4 3998 10.4
N2 429.0 2.3 1.3 120400 544.9 0.0 0.0 3793 11.3
R1 121.4 1.1 1.0 244325 12398.3 0.0 0.1 12410 135.3
R2 320.5 6.7 1.7 243085 11434.4 0.7 0.1 38912 218.5
E1 2873.8 12.8 5.6 236305 20740.1 1.0 0.9 34129 191.0
E2 9355.2 8.9 1.7 236480 22602.5 0.4 1.6 97764 731.0
E3 21329.1 8.4 2.0 246640 23970.4 0.5 1.3 113831 1451.4

Table 2 presents average results obtained from 100 runs/instance in case of
EASHC, and 10 runs/instance in case of HGA. Column best shows each prob-
lem instance’s best known solution. For both algorithms percentage gaps of the
final solutions’ average total costs to the best known values best and standard
deviations of gaps σ(gap) are given. Evals indicates the average number of eval-
uated solutions until the finally best solution had been obtained, and t is the
corresponding execution time in seconds.

For all problem instances EASHC’s final solutions are better than or at least
equally good as those obtained by HGA. Nevertheless, EASHC needs in all cases
significantly fewer iterations and was much faster. For instance E1, EASHC was
more than 100 times faster.

6 Conclusion

The proposed EA has the following advantages: initialization, recombination,
and mutation produce only feasible, locally optimal solution candidates, due

An Evolutionary Algorithm with Stochastic Hill-Climbing 29

to the local stochastic hill-climbing. The iterative process is computationally
efficient since crossover and mutation run in O(|V | log |V |) time. Therefore, the
approach scales well to larger problem instances.

The direct representation in combination with the proposed variation op-
erators provides strong locality. In particular, crossover always generates new
solutions out of inherited parental edges only. Other investigations indicate that
the cost-based heuristics included in hill-climbing and mutation increase the per-
formance of the proposed EA substantially. The proposed EA obtained better
final solutions in dramatically shorter execution times than the previous hybrid
genetic algorithm.

Future work will include a generalization of the approach for k-edge connec-
tivity augmentation.

References

1. K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAM Journal on
Computing, 5(4):653–665, 1976.

2. Ivana Ljubić, Günther R. Raidl, and Jozef Kratica. A hybrid GA for the edge-
biconnectivity augmentation problem. In Kalyanmoy Deb, Günther Rudolph,
Xin Yao, and Hans-Paul Schwefel, editors, Proceedings of the 2000 Parallel Prob-
lem Solving from Nature VI Conference, volume 1917 of LNCS, pages 641–650.
Springer, 2000.

3. S. Khuller, B. Raghavachari, and N. Young. Low-degree spanning trees of small
weight. SIAM Journal of Computing, 25(2):355–368, 1996.

4. G. N. Frederickson and J. Jájá. Approximation algorithms for several graph aug-
mentation problems. SIAM Journal on Computing, 10(2):270–283, 1981.

5. H. N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan. Efficient algorithms for
finding minimum spanning trees in undirected and directed graphs. Combinatorica,
6(2):109–122, 1986.

6. S. Khuller and R. Thurimella. Approximation algorithms for graph augmentation.
Journal of Algorithms, 14(2):214–225, 1993.

7. A. Zhu. A uniform framework for approximating weighted connectivity problems.
B.Sc. thesis, University of Maryland, MD, May 1999.

8. A. Zhu, S. Khuller, and B. Raghavachari. A uniform framework for approximating
weighted connectivity problems. In Proceedings of the 10th ACM-SIAM Symposium
on Discrete Algorithms, pages 937–938, 1999.

9. J. Kratica. Improving performances of the genetic algorithm by caching. Computers
and Artificial Intelligence, 18(3):271–283, 1999.

10. W. Mader. Minimale n-fach kantenzusammenhängende Graphen. Math. Ann.,
191:21–28, 1971.

11. P. Moscato. Memetic algorithms: A short introduction. In D. Corne et al., editor,
New Ideas in Optimization, pages 219–234. McGraw Hill, Berkshire, England, 1999.

12. R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal of
Computing, 1:146–160, 1972.

Application of GRASP to the Multiconstraint
Knapsack Problem?

Pierre Chardaire, Geoff P. McKeown, and Jameel A. Maki

UEA Norwich, NR4 7TJ,
gpm@sys.uea.ac.uk

Abstract. A number of approaches based on GRASP are presented
for the Multiconstraint Knapsack Problem. GRASP combines greedy
construction of feasible solutions with local search. Results from applying
our algorithms to standard test problems are presented and compared
with results obtained by Chu and Beasley.

1 Introduction

In this paper, we consider the application of GRASP (Greedy Randomized Adap-
tive Search Procedure) to the multiconstraint knapsack problem (MKP). The
paper is structured as follows. In the current section, we begin by giving a brief
introduction to GRASP; we then introduce some notation for describing the
MKP and briefly review other metaheuristic approaches for the MKP. In Sec-
tion 2, we describe a number of GRASP approaches for the MKP. Our results
are presented in Section 3.

GRASP was pioneered by Feo and Resende (see [1]), and is an iterative meta-
heuristic search process for solving optimization problems. Each iteration in a
GRASP consists of a construction phase followed by a local search phase. The
best solution generated during the iterative process is kept as the overall result
(see figure 1). In a GRASP, we represent a solution as a subset of a given set
of components, N , where N is specified as part of a problem instance, I. The
idea is then to construct a solution component-by-component. If at some stage
a partial solution, S ⊂ N , has been constructed, then the next component is
selected from the set FS ⊆ N − S of unselected components whose inclusion
is still under consideration. A solution is constructed using a greedy function,
g : 2N × N → IR ∪ {⊥}. For i 6∈ FS , g(S, i) = ⊥. Otherwise, g(S, i) is a measure
of the “benefit” associated with the selection of i ∈ FS . In a maximization
(minimization) problem, ⊥ (representing “undefined”) could be −∞ (∞). Thus,
g(S, ·) (which we abbreviate by gS) denotes the greedy function given that a
partial solution, S, has been constructed. At each stage of the construction
process, the next component is picked at random from a restricted candidate
list (RCL) containing a number of the best remaining candidate components.
? This work was supported in part by the UK Defence Research and Evaluation

Agency, Malvern, England.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 30–39, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Application of GRASP to the Multiconstraint Knapsack Problem 31

Input Problem Instance(I); //I = (· · · , N, · · ·)
S∗ ← Initialize Best(I);
while not finished do {

S ← Construct Solution(I, g, α);
S′ ← Local Search(S);
S∗ ← Best Of(S′, S∗); }

Output S∗

Fig. 1. Structure of a GRASP

The RCL is determined using gS together with a parameter, α. In this paper,
the RCL in a GRASP is defined to be the best dα |FS |e candidate components,
where 0 < α ≤ 1. In this case, if α is fixed at the start of the algorithm, then
at one extreme (α → 0) the construction phase of a GRASP simply gives a
greedy construction, whilst at the other extreme (α = 1) it delivers a random
construction. Good choices of α will vary not only from one type of problem
to another but often also between instances of a given problem. In this paper,
we propose a scheme for determining suitable values of α dynamically for each
problem instance. These values are selected by experimenting with randomly
chosen values of α during a preliminary phase of the algorithm (the warming
period) and retaining a small number of good values of α for use in subsequent
iterations. From our experience on the test problems considered in this paper,
suitable values of α tend to lie in the range 0 < α ≤ 0.25.

When a solution, S, has been constructed, an iterative local search proce-
dure is applied, which repeatedly updates S to an improved neighbouring solu-
tion, until there is no better neighbouring solution. GRASP has been applied
to a wide range of combinatorial optimization problems (For numerous refer-
ences to applications of GRASP, see the bibliography maintained by Resende at
http://www.research.att.com/mgcr/doc/graspbib).

The multi-knapsack problem (MKP) can be formulated either as a maxi-
mization problem or as a minimization problem. A maximization instance of the
MKP has the following form:

MKP max

max px (= Z)

subject to Rx ≤ b

xj ∈ {0, 1} j = 1, . . . , n.

Each of the entries in the m × n matrix R = [rij] is a non-negative integer,
as is each entry in the m-component right-hand-side vector, b. We assume that
pj > 0, and rij ≤ bi <

∑n
j=1 rij , for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. A minimization

instance of the MKP has the following form:

MKP min

min px (= Z)

subject to Rx ≥ b

xj ∈ {0, 1} j = 1, . . . , n.

32 P. Chardaire, G.P. McKeown, and J.A. Maki

The MKP is applicable to a wide variety of resource allocation problems (see,
for example, [2,3]).

We define N = {1, 2, . . . , n}, M = {1, 2, . . . , m} such that j ∈ N corresponds
to the j-th 0-1 variable and i ∈ M to the i-th constraint in an MKP . We then
specify an instance of an MKP as a 6-tuple: I = (opt, N, M, p, R, b), where opt ∈
{max,min}. Given a max-instance, I, of an MKP , we obtain a complementary
min-instance, comp(I), by complementing all the variables, i.e. setting x = e−y,
where e denotes a vector with n components equal to 1. By doing this, the
objective in a max-instance is transformed to max pe−py. Since pe is a constant,
this is equivalent to minimizing py.
Thus, comp((max, N, M, p, R, b)) = (min, N, M, p, R, Re − b).
Similarly, comp((min, N, M, p, R, b)) = (max, N, M, p, R, Re − b).

A number of researchers have applied metaheuristic approaches to the MKP
(see, for example, [4,5]). Chu and Beasley’s algorithm [5] appears to be the most
successful GA to date for the MKP. In their algorithm, infeasible solutions are
“repaired” using a greedy heuristic based on Pirkul’s surrogate duality approach
[6]. Because all of the previously used bench-mark problems for the MKP are
solved in very short computing times using a modern MIP solver, Chu and
Beasley introduced a new set of bench-mark problems in their paper. We have
used these problems to test the GRASP approaches presented in this paper.

2 Application of GRASP to the Multi-knapsack Problem

We refer to our first GRASP for MKP as GRASP 0. This is a function of two
arguments: an instance, I, of MKP and the user-defined parameter, α. The result
of applying GRASP 0 to a given pair of arguments is a subset of N corresponding
to the set of variables assigned value 1 in the constructed solution. GRASP 0 is
applicable to both max and min instances of MKP and is defined as follows:

GRASP 0(I, α) =
{

G0(I, α), if I.opt = max
N − G0(comp(I), α), otherwise.

Here, the function G0 is itself a GRASP but one restricted to just MKP max.
From above, if I is a min instance, then comp(I) is a max instance. The set re-
turned when G0 is applied to comp(I) corresponds to the set of variables assigned
value 1 in a solution to comp(I). The set of variables assigned 1 in the corre-
sponding solution to the complementary problem, i.e. the original min instance,
is then given by taking the complement of the set returned by G0.

We begin by presenting G0. Initially, all of the 0-1 variables are free with
temporary value 0. We seek to construct a set of those variables to be assigned
value 1. At each stage of the process, we add to the set under construction one
of the “best” (w.r.t. the greedy heuristic being used) remaining free variables,
but not necessarily the best variable itself. A solution is represented by S ⊆ N ,
corresponding to the set of variables assigned value 1 in that solution. Each
construction starts from an empty set; thus, Initialize Best(I) simply returns
∅. One approach for defining a greedy heuristic for MKP max is to use the

Application of GRASP to the Multiconstraint Knapsack Problem 33

S ← ∅;
(CS , FS)← Update CF(M, N, R, b);
if CS = ∅ then return FS ; // Delete for G1

b′ ← b;
while FS 6= ∅ do {

l← dα |FS |e;
determine the elements θk ∈ FS , k = 1, . . . , l,
giving rise to the l best benefits with respect to gS ;
pick j ∈ {θ1, θ2, . . . , θl} at random;
S ← S ∪ {j};
for each i ∈ CS do

b′
i ← b′

i − rij ;
(CS , FS)← Update CF(CS , FS − {j}, R, b′);
if CS = ∅ then {

S ← S ∪ FS ; // Delete for G1

FS ← ∅; } }
return S

Fig. 2. The function Construct Solution(I, g, α) in G0

profit coefficients, p, weighted in some fashion to take account of the knapsack
constraints. A natural way of doing this is as follows. Let b′ denote the residual
resource vector at some stage of the construction process. Thus, if S repesents
the current partial solution, then

b′
i = bi −

∑
j∈S

rij , i ∈ M.

Let CS ⊆ M be such that i ∈ CS if and only if the residual resource associated
with the i-th constraint is still positive, i.e. CS = {i ∈ M | b′

i > 0}. gS is
then defined by gS(j) = pj/

∑
i∈CS

r′
ij , for all j ∈ FS , where r′

ij = rij/b′
i, for

i ∈ CS , j ∈ FS . Free variables are ranked in non-increasing order of their gS
values. One alternative way of weighting the profit coefficients, and with which we
have also experimented, is based on the idea of “pseudo utility ratios” introduced
by Pirkul in [6]. The function Construct Solution(I, g, α) for G0 is defined in
figure 2. The function Update CF (defined in figure 3), updates both the set of
free variables (F) and the set of constraints still under consideration (C) for a
given residual resource vector, b. If FS 6= ∅ when no constraint remains under
consideration, then for each k ∈ FS , xk may be set equal to 1. This is the
purpose of the final if statement in the while loop of Construct Solution. We
note that provided at least one left-hand-side coefficient, rij , in each of the given
constraints is non-zero, then our use of Update CF preserves as an invariant of
Construct Solution the fact that division by zero cannot occur when computing
r′
ij .

When GRASP 0 is applied to a min instance of MKP, we start from the all-
zero solution of comp(I), corresponding to the all-one solution of I in which each

34 P. Chardaire, G.P. McKeown, and J.A. Maki

free variable has value 1. An alternative approach to starting each constructed
solution of a max instance of MKP from the all-zero feasible solution, is to start
each constructed solution from the infeasible all-one solution. For a min instance,
this corresponds to starting each constructed solution from the infeasible all-zero
solution. We refer to this alternative GRASP as GRASP 1, defined as follows:

GRASP 1(I, α) =
{

G1(I, α), if I.opt = min
N − G1(comp(I), α), otherwise.

Here, the function G1 is a GRASP restricted to just MKP min. The result of
applying G1 to a min instance is a subset of N corresponding to the set of
variables assigned value 1 in the constructed solution. If I is a max instance,
then comp(I) is a min instance. The result of applying G1 to comp(I) specifies
the set of variables assigned value 1 in a solution to comp(I). The set of variables
assigned 1 in the corresponding solution to the complementary problem, i.e. the
original max instance, is then given by taking the complement of the set returned
by G1. Each iteration in G1 seeks to construct a feasible solution of the given min
instance starting from the all-zero infeasible solution. By selecting variables to
be set to 1, we seek to construct a feasible solution. Constraint i is now removed
from CS as soon as it is satisfied by the current partial solution, S. This is
indicated by b′

i ≤ 0, where b′
i is defined as before but now represents the return

on activity i still needed to achieve the minimum return, bi. FS now represents
the set of those free variables whose selection would decrease infeasibility.

The main differences between G1 and G0 occur in the definition of the
greedy heuristic and in the definition of Update CF. The structure for Con-
struct Solution is the same for both GRASPs except for two statements that
must be deleted for the G1 case (see figure 2). For G1, as soon as the current
partial solution is feasible (corresponding to CS = ∅), setting any further free
variable to 1 would give a solution with a worse objective value. For G0, on the
other hand, if none of the remaining free variables can violate any constraint
(corresponding to CS = ∅), then setting each of these variables to 1 gives a solu-
tion with an improved objective value. The modified specification for Update CF
is given in figure 4. A natural greedy heuristic for G1 is to rank the free vari-
ables still under consideration in non-increasing order of their gS values, where

for each j ∈ F do
if ∃i ∈ C such that rij > bi then // xj cannot be set to 1

F ← F − {j};
for each i ∈ C do

if bi = 0 then
// rij = 0 for all j ∈ F , so constraint i is redundant
C ← C − {i};

return (C, F)

Fig. 3. The function Update CF(C, F, R, b)

Application of GRASP to the Multiconstraint Knapsack Problem 35

for each i ∈ C do
if b′

i ≤ 0 then // constraint i is satisfied
C ← C − {i};

for each j ∈ F do
if rij = 0, ∀i ∈ C, then

// setting xj = 1 would not improve feasibility
F ← F − {j};

return (C, F)

Fig. 4. The function Update CF(C, F, R, b′) for G 1

gS is defined as for G0 except that r′
ij is now defined by r′

ij = min{rij/b′
i, 1}, for

i ∈ CS , j ∈ FS .
With GRASP 0, each construction starts from the all-zero feasible solution

whilst with GRASP 1, each construction starts from the all-one infeasible so-
lution. We now consider a GRASP for MKP max in which we start each con-
struction from any given initial solution, S0, which may be feasible or infeasible.
Such an initial solution could, for example, be selected at random or accord-
ing to some heuristic. If S0 is feasible, we proceed as in GRASP 0, seeking to
construct an improved feasible solution. Otherwise, we proceed as in GRASP 1,
seeking to construct a feasible solution starting from the infeasible solution, S0.
A transformed specification for Construct Solution that takes an initial solution,
S0, as a parameter and which covers both the feasible and infeasible cases is
given in figure 5. Note that the all-zero GRASP 0 and the all-one GRASP 1
cases are both special cases of this more general algorithm. If the boolean flag
Gzero is set, the GRASP 0 approach is used to construct a solution, otherwise
the GRASP 1 approach is used. The transformed Update CF function combines
both the GRASP 0 and the GRASP 1 versions; the parameter Gzero deter-
mines which version should be applied. Each construction in an application of
this GRASP starts from the same specified solution. Applying the GRASP a
number of times allows the search to start in different areas of the search space.

For our experiments, we have used both 1-opt and 2-opt search strategies.
In the former case, for each j ∈ S, we construct a new solution, S′, using the
GRASP 0 approach starting from S − {j} and for each k 6∈ S, we construct a
new solution, S′, using the GRASP 1 approach starting from set S ∪ {k}. In
the 2-opt method, for each pair (j, k) such that j ∈ S, k 6∈ S, we start from
S − {j} ∪ {k} and apply the general construction algorithm in figure 5 to this
initial solution. A GRASP for MKP max which uses a 2-opt local search is given
in figure 6. Since I is always a max-instance, we supress the opt parameter of I.
In our experiments, we have used the 1-opt search when a full 2-opt local search
is too expensive.

We have also investigated the effect of using information obtained by solv-
ing linear programming relaxations to update the feasible candidate list, FS .
We present the idea in the context of the Construct Solution function used in

36 P. Chardaire, G.P. McKeown, and J.A. Maki

Gzero ← is Feasible(S, I);
if not Gzero then {

S ← N − S;
b← Re− b; }

for each i ∈M do
b′
i ← bi −

∑
j∈S rij ;

(CS , FS)← Update CF(Gzero, M, N − S, R, b′);
if Gzero and CS = ∅ then

return S ∪ FS ;
while FS 6= ∅ do {

l← dα |FS |e;
determine the elements θk ∈ FS , k = 1, . . . , l,
giving rise to the l best benefits with respect to gS ;
pick j ∈ {θ1, θ2, . . . , θl} at random;
S ← S ∪ {j};
for each i ∈ CS do

b′
i ← b′

i − rij ;
(CS , FS)← Update CF(Gzero, CS , FS − {j}, R, b′);
if CS = ∅ then {

if Gzero then
S ← S ∪ FS ;

FS ← ∅; } }
if Gzero then return S else return N − S;

Fig. 5. The function Construct Solution(S, I, g, α)

GRASP 0 (see figure 2). Each time round the while loop, we solve the LP relax-
ation corresponding to the integer program obtained from the given instance of
MKP max, I, by setting xj = 1 for each j ∈ S. Let Z denote the optimal value
of such an LP relaxation and let Z∗ denote the value of the best solution so far
found for I. If Z ≤ Z∗, then we can terminate the current construction, since it
cannot lead to a better solution than our current best. Otherwise, we consider
each j ∈ FS which has an integer value (0 or 1) in the optimal solution of the
current LP relaxation. If xj = 0, we can decide whether or not to fix xj to 0
permanently in the solution we are constructing. To do this, we use the reduced
cost, dj say, corresponding to xj . dj(≤ 0) represents the minimum change in the
objective value if the value of xj changes from 0 to 1 (irrespective of any changes
made to the values of other variables). Thus, if Z + dj ≤ Z∗, then changing the
value of xj from 0 to 1 cannot lead to a better solution than our current best
solution, so we can remove j from FS . Similarly, if xj = 1 in the optimal so-
lution of the current LP relaxation, then if Z − dj ≤ Z∗, there is no point in
setting xj = 0. Hence, we remove j from FS and add it to S. A consequence of
permanently fixing one or more variables to 1 is that there may be a number
of fractional-valued variables which cannot be set to 1 in any feasible integer
solution in the resulting sub-space. If this is the case, all such fractional-valued
variables are fixed to zero and the resulting reduced LP relaxation is solved. If

Application of GRASP to the Multiconstraint Knapsack Problem 37

Input Problem Instance(I); // I = (N, M, p, R, b)
S0 = Input Solution(I);
S∗ ← S0;
while not finished do {

S ← Construct Solution(S0, I, g, α);
// Perfom Local Search(S):
S′ ← S;
for each (j, k) ∈ S × (N − S) do {

S′′ ← S − {j} ∪ {k};
S′′ ← Construct Solution(S′′, I, g, α);
S′ = Best Of(S′, S′′); }

S∗ = Best Of(S′, S∗); }
Output S∗

Fig. 6. A GRASP for MKP max

necesssary, this process is repeated. Finally, when picking an element from FS ,
we select only from amongst those elements whose corresponding variable is cur-
rently fractional-valued. The underlying greedy heuristic that we use is defined
by gS(j) = pjβj , where βj is the value of a fractional-valued variable, xj .

3 Results for MKP Test Problems

We give results for three versions of our general GRASP for MKP max. Version
1 corresponds to GRASP 0, in which we start each construction from the all-
zero solution and version 2 corresponds to GRASP 1, in which we start each
construction from the all-one solution. Version 3 (referred to as GRASP X), the
constuction is based on the linear programming approach described above. Each
run of the algorithms we have implemented consists of a warming period, during
which suitable values of α are determined, followed by a post-warming period
during which only these values of α are used. For each iteration of the warming
period, a value of α is selected at random from the interval

[3
2n , 0.25

]
where n

is the size of the problem instance. The choice of left-hand limit in this range
ensures that the RCL will always have length at least 2, thereby excluding the
pure greedy case.

We have tested our algorithms with the 27 problem sets available at the
OR-Library maintained by Beasley (see http://mscmga.ms.ic.ac.uk/info.html).
There are 10 instances per problem set. Each problem set is characterized by a
number, m, of constraints, a number, n, of variables and a tightness ratio, 0 ≤ t ≤
1. The vector b of an MKP instance with tightness ratio t is (bi = t

∑
j Rij)i=1,n.

In other words the closer to 0 the tightness ratio the more constrained the
instance. In our experiments, the maximum total number of iterations is set to
200 for all of the n = 100 and the n = 250 problem instances, and to 50 for all of
the n = 500 problem instances; the number of iterations in the warming period
is set to 70, when n = 100 or n = 250, and to 20 when n = 500; the algorithms

38 P. Chardaire, G.P. McKeown, and J.A. Maki

Table 1. Comparison between GRASP 0, GRASP X and CBGA

Instance Percentage Relative Error, E CPU
GRASP 0 GRASP X GRASP 0 GRASP X GA CHU

m n t ave. min max ave. min max best total best total best total
5 100 0.25 0.06 0.00 0.27 0.10 0.00 0.32 57 139 26 138 10 346
5 100 0.5 0.02 0.00 0.12 0.05 0.00 0.12 54 178 62 199 24 347
5 100 0.75 0.00 0.00 0.01 0.05 0.00 0.15 24 128 29 143 27 362
5 250 0.25 0.09 -0.04 0.16 0.14 0.08 0.25 1349 2458 1152 2640 51 682
5 250 0.5 0.03 0.00 0.09 0.04 0.01 0.06 1576 3263 1162 2978 277 709
5 250 0.75 0.01 0.00 0.02 0.02 0.00 0.07 750 2237 816 2190 196 763
5 500 0.25 0.18 0.15 0.24 0.51 0.27 0.95 34 44 44 64 265 1272
5 500 0.5 0.09 0.03 0.15 0.36 0.09 0.62 37 65 42 96 391 1346
5 500 0.75 0.05 0.03 0.07 0.27 0.11 0.51 44 82 98 151 386 1413

10 100 0.25 0.47 0.00 0.90 0.21 0.00 0.55 103 214 41 166 98 384
10 100 0.5 0.17 0.00 0.40 0.16 0.00 0.49 114 295 122 287 97 419
10 100 0.75 0.04 0.00 0.14 0.04 0.00 0.15 86 243 62 206 17 463
10 250 0.25 0.22 0.06 0.41 0.17 0.00 0.34 1583 3287 1303 3710 359 871
10 250 0.5 0.11 -0.01 0.24 0.04 -0.03 0.10 2510 4809 1749 5085 342 932
10 250 0.75 0.04 0.00 0.08 0.03 0.00 0.06 1749 1708 1027 3433 128 1011
10 500 0.25 0.37 0.23 0.62 0.55 0.04 0.92 36 57 41 94 703 1505
10 500 0.5 0.18 0.07 0.31 0.30 0.09 0.43 40 86 75 167 562 1729
10 500 0.75 0.13 0.08 0.18 0.18 0.06 0.30 33 97 139 231 938 1932
30 100 0.25 0.70 0.19 1.32 0.34 0.00 0.86 258 606 168 573 177 605
30 100 0.5 0.29 0.00 0.70 0.08 -0.17 0.31 326 948 380 927 118 782
30 100 0.75 0.07 0.00 0.23 0.02 0.00 0.08 184 698 346 850 90 904
30 250 0.25 0.93 0.61 1.44 0.21 0.00 0.54 1710 2733 1283 2581 583 1500
30 250 0.5 0.48 0.33 0.73 0.10 0.02 0.26 1531 3782 1912 3472 902 1980
30 250 0.75 0.18 0.08 0.36 0.07 0.01 0.12 1500 2703 1011 2504 1059 2441
30 500 0.25 1.20 0.50 1.81 0.35 0.13 0.85 63 97 241 533 1127 2438
30 500 0.5 0.57 0.31 0.82 0.31 0.15 0.52 104 169 450 877 1122 3199
30 500 0.75 0.33 0.22 0.45 0.18 0.02 0.39 100 196 823 1192 1903 3888

stop after 100 iterations without improvement of the best solution when n = 100
or n = 250 and after 30 such iterations when n = 500. When n = 100 or 250, the
2-opt heuristic is used during improvement phases, but only the 1-opt heuristic is
used when n = 500. In table 1, we display results for each data set for GRASP 0
and GRASP X, with results from Chu & Beasley’s GA (CBGA) included for
comparison. The results for GRASP 1 are of a similar quality to those obtained
for GRASP 0 and are not given in this paper. The percentage relative error, E, is
defined to be 100(zGRASP −zGA)/ max(zGRASP, zGA), where zGRASP and zGA denote
the best solution values found by the GRASP and by CBGA, respectively. The
columns labelled “ave.” “min”, “max” give the average, minimum and maximum
values, respectively, of E over the 10 instances in the data set. CPU times are
averaged over the instances of each data set and are given for Chu & Beasley’s
machine (approximatively 4.7 times slower than a Dec 500/400). “total” gives the

Application of GRASP to the Multiconstraint Knapsack Problem 39

average total execution time of the algorithm whereas “best” gives the average
CPU time to find the best solution returned by the algorithm.

For data sets with (m, n) = (5, 100) and (m, n) = (10, 100) all but one
of the solutions found by CBGA were proven to be optimal using an integer
programming solver. For both versions of our GRASP, the average gap for each
of the n = 100 data sets is a fraction of 1%. GRASP X obtains results as
good as those for CBGA in one third of the n = 100 problem instances and
obtains one result which is better than the result for CBGA. Total computing
times are generally slightly better for GRASP than for CBGA on the n = 100
problem sets, although CBGA usually obtains its best solution more quickly. In
general, GRASP performs less well on the n = 250 problem sets. However, for
both versions of the GRASP, the maximum gap for each of these data sets is
nearly always much less than 1%. Furthermore, GRASP 0 obtains two results,
and GRASP X one result, better than the corresponding results for CBGA. For
these problem sets, the 2-opt heuristic leads to expensive computing times for
GRASP. For the n = 500 data sets, only a single pass of our 1-opt local search
was performed. For GRASP 0 , this results in methods 20 to 30 times faster
than CBGA, and even GRASP X is 10 to 20 times faster than CBGA for all but
the m = 30 instances, for which GRASP X is still approximately 4 or 5 times
faster.

4 Conclusions

The quality of the results obtained by both versions of our GRASP is encourag-
ing. The maximum gap is less than 1% for all of the 270 instances for GRASP X
and for all but one of the data sets for GRASP 0. Using the more general GRASP
of figure 5, which can start from any initial solution may lead to even better re-
sults.

References

1. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. of
Global Optimization 6 (1995) 109–133

2. Weingarter, H. M.: Mathematical programming and the analysis of capital budget-
ing problems. Markham Publishing (1967) Chicago

3. Shih, W.: A Branch and Bound Method for the Multiconstraint Zero-One Knapsack
Problem. J. of the Operational Res. Soc. 30 (1979) 369–378

4. Cotta, C., Troya, J. M.: A hybrid genetic algorithm for the 0-1 multiple knapsack
problem. In: Artificial neural nets and genetic algorithms 3, eds. Smith, G. D.,
Steele, N. C., Albrecht, R. F., Springer-Verlag (1998) 251–255

5. Chu, P. C., Beasley, J. E.: A genetic algorithm for the multidimensional knapsack
problem. J. of Heuristics 4 (1998) 63–86

6. Pirkul, H.: A Heuristic Search Procedure for the Multiconstraint Zero-One Knapsack
Problem. Naval Research Logistics 34 (1987) 161–172

Path Tracing in Genetic Algorithms Applied to
the Multiconstrained Knapsack Problem

Jens Levenhagen1, Andreas Bortfeldt2, and Hermann Gehring2

1 Astrium GmbH, 88039 Friedrichshafen, Germany
2 Dept. of Business Informatics, University of Hagen, 58084 Hagen, Germany

Abstract. This contribution investigates the usefulness of F. Glover’s
path tracing concept within a Genetic Algorithm context for the solution
of the multiconstrained knapsack problem (MKP). A state of the art GA
is therefore extended by a path tracing component and the Chu/Beasley
MKP benchmark problems are used for numerical tests.

1 Introduction

The multiconstrained knapsack problem (MKP) is a well-known problem in com-
binatorial optimization and is defined as follows:

maximize Z =
n∑
j=1

pj · xj

subject to
n∑
j=1

wij · xj ≤ bi , wij ≥ 0 , bi ≥ 0 ,

xj ∈ {0, 1}

(1)

with i = 1, . . . , m and j = 1, . . . , n. Here, the xj denote specific items, wij
denote their weights (or sizes), pj their profits and bi the knapsack capacities.
It is worth mentioning that each item xj appears either in all knapsacks or in
none of them.

This kind of problem frequently occurs within the context of decision making
for project realization: assume that n possible projects have to share scarce
project factors like money, time and staff. Therefore a sensible project selection
has to be carried out which maximizes the overall profit (referring to an arbitrary
quantifiable cost variable) while at the same time all the factor constraints are
met. In that case the xj can be identified as possible projects and the wij as their
factor consumptions. Because one single constraint is assigned to each project
factor, the bi represent the factor resources [1]. Further applications of the MKP
are cutting stock problems or cargo loading problems [2].

Being a combinatorial optimization problem the MKP can be solved by ex-
act algorithms or by heuristics. As it is NP-hard in general1 the application of
heuristics is generally recommendable.
1 The MKP is pseudo-polynomial if weights and profits are bounded.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 40–49, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Path Tracing in Genetic Algorithms 41

During the last few years several powerful Genetic Algorithms (GA) were
developed for obtaining near-optimal solutions of the MKP. Chu and Beasley
found their GA superior to all former approaches and defined a collection of 270
difficult benchmark problems2 [2]. The GA by Raidl kept the overall concept of
the Chu and Beasley algorithm but differed by the specific realization of MKP
dependent operators [1]. An empirical comparison between these GAs was carried
out by Gottlieb. Moreover, he introduced additional initialization concepts which
lead to considerable performance improvements of both GAs [3].

Path tracing (PT) and embedded local search (ELS) represent two recent ap-
proaches for GA hybridization. PT was introduced by Glover as a generalization
of Scatter Search [4]. Genetic Algorithms with ELS represent a possible real-
ization of Memetic Algorithms (MA) which were founded by Moscato [5] and,
among others, investigated by Merz and Freisleben [6],[7]. A hybrid concept of
both PT and ELS was discussed by Reeves and Yamada in [8],[9].

Since at least PT is a relatively new optimization technique it was our first
aim to show how a GA for the MKP can be extended by both PT and ELS. More-
over, the paper investigates whether this extension leads to a significant perfor-
mance improvement or, on the contrary, whether the underlying fitness landscape
([7]) might give an explanation on why the approach does not work. We proceed
as follows: in section 2 a short introduction to the GAs by Chu/Beasley/Gottlieb
and Raidl/Gottlieb is given. Section 3 describes the essential elements of PT and
ELS whereas section 4 deals with the extension of the RGGA by PT and ELS.
Finally, numerical test results for this extended GA are presented in section 5
while section 6 concludes the paper.

2 Two State of the Art Genetic Algorithms for the
Multiconstrained Knapsack Problem

Genetic algorithms rank with the most popular heuristics for the solution of
combinatorial optimization problems and adapt the transmittance and selec-
tion mechanisms of natural evolution; see for example [10],[11],[12]. In many
cases the combination of a GA with another optimization scheme – as a cer-
tain way of hybridization – leads to a significant performance improvement.
This is due to the increased exploitation or exploration properties of the ad-
ditional scheme which will support or complement standard genetic operators
like Crossover or Mutation. Because our aim was to determine whether PT and
ELS are sensible GA hybridization concepts for the solution of the MKP, either
the Chu/Beasley/Gottlieb-GA (CBGGA) or the Raidl/Gottlieb-GA (RGGA)
seemed reasonable as a powerful starting-point for the implementation. The es-
sentials of both GAs will be briefly put together in the following.

MKP independent features of both GAs are stated in Table 1. Herein, Pc
denotes the crossover probability, Pm the mutation probability and N the popu-
lation size. The chromosome length equals the number of items n, the allele (0
or 1) of a specific gene j corresponds to the value of xj , and the bit-flip operator
performs a 0/1 or 1/0 allele change on a gene.
2 http://mscmga.ms.ic.ac.uk/info.html

42 J. Levenhagen, A. Bortfeldt, and H. Gehring

Table 1. MKP independent GA features

GA feature Realization
• Encoding • binary
• Selection • tournament (2 chromosomes)
• Crossover • uniform crossover
• Mutation • bit-flip operator
• Population concept • steady-state

• no duplicates
• Design parameter set D • Pc = 0.9/1.0, Pm = 0.01, N = 100

MKP dependent features account for a specific property of all knapsack prob-
lems which refers to search space reduction as follows. The whole search space S,
given by {0, 1}n, can be partitioned into subspaces F and I which comprise the
feasible and infeasible MKP solutions, respectively. A feasible solution is defined
as a chromosome that fulfills all problem constraints whereas an infeasible solu-
tion is a chromosome that violates at least one of them. F and I are separated
by the boundary (cf. [3])

B = {C ∈ F |C ≺ C̃ implies C̃ ∈ I} , (2)

where C is a boundary chromosome and no 0/1 allele exchange can be performed
on it without violating at least one constraint. Hence C represents a local op-
timum of the MKP with respect to a bit-flip induced neighbourhood N (C, 1)
(see section 3.1) and B is build up by the totality of local optima. Obviously it
is reasonable to bias the search towards B as the global optimum is necessarily
also a local one.

Both GA contain the following concepts for this bias search procedure. A
heuristic repair operator is applied to infeasible solutions C ∈ I (produced by
mutation and/or crossover) which makes them feasible (C∗ ∈ F). A succeeding
heuristic local optimization yields the desired boundary solutions (C∗∗ ∈ B).
Moreover, the initialization procedure is also adapted to yield only boundary
chromosomes [2],[3],[1]. With regard to our objective CBGGA and RGGA show
comparable performance properties and could both be used as a starting-point
for the PT/ELS implementation. While CBGGA achieves a slightly better overall
performance [3], RGGA has significant convergence advantages [1]. The latter
point caused us to choose the RGGA because a great number of numerical tests
for PT/ELS was to be carried out.

3 Path Tracing and Embedded Local Search

3.1 Path Tracing

In the past it was observed as a specific property of several problems that the
local optima concentrate within a relatively small part of S, the so-called big
valley [7],[8], which also contains the global optimum. Unfortunally until today

Path Tracing in Genetic Algorithms 43

no formal characterization of this big valley can be given. Hence, its existance
can only serve as an intuitive guideline for the development of new exploitation
operators which make use of this problem property.

Providing that a big valley really exists a relatively high weight should be
admitted to the exploitation, i.e. the search should be focused towards the big
valley region. A systematic and promising way of doing this is the application
of path tracing (PT).

Path tracing is based on the consideration that the probability of finding
good new solutions Cpk

on an interpolating path between two existing big valley
solutions C1, C2 is very high. So for its application a promising interpolating
path scheme has first to be determined. In case of binary encoding the bit-flip
operator automatically induces the Hamming metric

dH(Cj , Ck) =
n∑
i=1

|Cj(i) − Ck(i)| (3)

which equals the number of different alleles between two chromosomes Cj and
Ck. d12! = dH(C1, C2)! distinct paths exist between C1 and C2 thus forcing the
path tracing concept to choose a promising one out of this possibly very large
number. Since only information on the starting point C1 and the end point C2
is available at the beginning, a stepwise procedure is required. Therefore, we
introduce the 1-neighbourhood of chromosomes Ci:

N (Ci, 1) = {Cj | dH(Ci, Cj) = 1} . (4)

Starting with C1, each step consists of a propagation to a promising 1-
neighbourhood chromosome which shortens the distance to C2 by 1. There are
exactly d12 − 1 steps to be made, see Figure 1. To prevent high population con-

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
��
��
��
��
��
��
��
��

��
��
��
��

���
���
���
���...................................

C1 C
1

C C
p p 2

d 12

C
p

2
d -112

Fig. 1. Path tracing

densation PT can be extended by the introduction of an extrapolation concept.
A probability Pe is determined by which the actual distance to C2 is increased
by 1. The expected number of steps then raises from d12 − 1 to

E(nS) =
d12

1 − 2 · Pe
, with 0 < Pe < 0.5 (5)

and the given validity range of Pe assures that the PT algorithm terminates
within finite time. However, Pe should be chosen considerably smaller, i.e. 0.2 or
0.3. Additionally a tabu list concept is necessary to exclude an exact repersuing
of the already traced path [14].

44 J. Levenhagen, A. Bortfeldt, and H. Gehring

3.2 Embedded Local Search

Chromosomes created by PT are very promising if a big valley exists but they
are boundary solutions only by coincidence. Therefore, an additional local opti-
mization procedure can be applied to path chromosomes Cpk

to fulfill the desired
boundary property. For this purpose the ELS concept is very well suited as it
can be initiated at any time for an arbitrary actual chromosome and is able
to perform many direction changes before reaching the local optimum. If, on
the other hand, ELS was initiated at arbitrary points of S without the coarse
predirecting of PT it would in most cases only find weak local optima. So both
concepts supplement each other and a combined strategy is recommended.

C
1p

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�
�
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

����

����

�
�
�
�

����

�
�
�
�

...................................

C1

d

C
3(LS)

C C

12

p 2

p

C
p2

d -112

Fig. 2. Path tracing with embedded local search

The stepwise direction selection principle plays an important role for ELS.
It can be realized in two ways [8]:

– Selection of the fittest 1-neighbourhood chromosome if it dominates the ac-
tual ELS solution. This is called the principle of steepest fitness ascent. If
there is no superior neighbour the actual solution represents a local optimum
and ELS is terminated.

– Selection of the first identified 1-neighbourhood chromosome which domi-
nates the actual ELS solution (principle of next fitness ascent). The termi-
nation condition is the same as before.

Figure 2 shows an initiation of ELS at path chromosome Cp3 . After its termina-
tion at the local optimum Cp3(LS) , PT is continued at Cp3 and a steady-state-like
replacement strategy is applied: if Cp3(LS) dominates the worst population mem-
ber Cworst, the former replaces the latter.

4 Extension of the Raidl/Gottlieb GA by Path Tracing
and Embedded Local Search

Figure 3 shows the extended RGGA algorithm, further denoted as ERGGA.
Herein, Ppt denotes the initialization probability of PT and Nactual the evaluated

Path Tracing in Genetic Algorithms 45

number of non-duplicate chromosomes. It is further assumed that the fitness
function equals the MKP cost function: F = Z. Skipping line 08 yields the
original RGGA.

01: initialize population;
02: set Nactual = N ;
03: evaluate population;
04: store fittest population member Cbest;
05: WHILE Nactual < Nmax DO
06: perform tournament selection;
07: perform uniform crossover;
08: perform path tracing with probability Ppt;
09: perform mutation;
10: apply repair operator and local optimization;
11: IF new chromosome Cnew is no duplicate THEN
12: evaluate Cnew;
13: IF F (Cnew) > F (Cworst) THEN replace Cworst by Cnew; ENDIF;
14: IF F (Cnew) > F (Cbest) THEN set Cbest = Cnew; ENDIF;
15: Nactual := Nactual + 1;
16: ENDIF;
17: ENDWHILE;
18: return Cbest, F (Cbest);

Fig. 3. Algorithm of the extended Raidl/Gottlieb-GA (ERGGA)

The PT (Figure 4) and ELS (Figure 5) realizations were done according to
sections 3.1 and 3.2, respectively. In PT, after initializing both the tabu list and
Cp with C1 the sets Geq and Gdif of genes with equal and different alleles in Cp
and C2 are determined. These sets are ordered according to [1]. Then a bit-flip
operation is applied to a gene G ∈ Gdif (interpolation) or G ∈ Geq (extrapola-
tion) of Cp which yields C+

p . Hereafter the RGGA repair operator ([1]) removes
a possible constraint violation. To prevent an artificial extrapolation induced by
the repair procedure it is only applied to genes with a 1-allele for both C+

p and
C2. The resulting new chromosome C++

p is afterwards subjected to a duplicate
and tabu list check. If the result is negative Cp is set equal to C++

p and the tabu
list is updated. Then ELS is initiated on Cp with probability Pels. If the result of
the check is positive the algorithm continues with a bit-flip on Gdif \G or Geq \G.
Finally, PT terminates either under condition dp2 = 1 or if no chromosome C++

p
can be found.
In ELS, Cp(LS) is initialized with Cp. Then a subset N+(Cp(LS), 1) of
N (Cp(LS), 1) is determined which comprises all chromosomes with the follow-
ing properties: 1) no duplicates, 2) no constraint violation, 3) not in tabu list
and 4) superior to Cp(LS). If N+(Cp(LS), 1) is empty Cp(LS) represents a local
optimum and the loop terminates. If not, Cp(LS) is set equal to the fittest chro-
mosome in N+(Cp(LS), 1) and the loop is repeated. Finally, Cp(LS) is compared
to both the worst and fittest population member and possibly replaces one or
both of them.

46 J. Levenhagen, A. Bortfeldt, and H. Gehring

01: initialize Cp and tabu list with C1;
02: WHILE dH(Cp, C2) > 1 DO
03: set Path Successor Found = FALSE;
04: REPEAT
05: determine Geq and Gdif ;
06: get C+

p by applying bit-flip operator to G ∈ Gdif of Cp (interpol.) OR
get C+

p by applying bit-flip operator to G ∈ Geq of Cp (extrapol.);
07: get C++

p by applying repair operator to C+
p ;

08: IF C++
p is no duplicate AND C++

p /∈ tabu list THEN
09: set Path Successor Found = TRUE;
10: set Cp = C++

p ;
11: insert Cp into tabu list;
12: perform embedded local search with probability Pels;
13: ELSE
14: remove G from Geq or from Gdif ;
15: ENDIF;
16: UNTIL Path Successor Found = TRUE OR (Geq = {} AND Gdif = {});
17: ENDWHILE;
18: return to RGGA scheduling;

Fig. 4. Path tracing (PT) algorithm

01: initialize Cp(LS) with Cp;
02: REPEAT
03: identify N+(Cp(LS), 1) as promising subset of N (Cp(LS), 1);
04: IF N+(Cp(LS), 1) 6= {} THEN
05: determine Cp(LS) as best chromosome in N+(Cp(LS), 1);
06: ENDIF;
07: UNTIL N+(Cp(LS), 1) = {};
08: IF F (Cp(LS)) > F (Cworst) THEN replace Cworst by Cp(LS) ENDIF;
09: IF F (Cp(LS)) > F (Cbest) THEN set Cbest = Cp(LS) ENDIF;
10: return to PT scheduling;

Fig. 5. Embedded local search (ELS) algorithm (steepest descent)

5 Numerical Tests

The RGGA/ERRGA as depicted in figure 3 was implemented in Fortran 77
as an extension of a standard GA by D.L.Carroll (University of Illinois)3. 90
Chu/Beasley MKP benchmark problems with n = 100 and m ∈ {5, 10, 30},
α ∈ {0.25, 0.50, 0.75} acted as test instances, where n denotes the number of
variables, m the number of constraints and α the MKP specific tightness ratio
[2]. Preliminary investigations were executed and showed that a run-time of
240 seconds on a Pentium III processor (450 MHz) was long enough to cancel

3 http://www.staff.uiuc.edu/∼carroll/ga.html

Path Tracing in Genetic Algorithms 47

out randomizing effects. Moreover, the high convergence rate of RGGA leads to
very good results even for this modest run-time [14]. Altogether 810 test runs
were performed to identify the following optimal design parameter set for the
ERGGA:

D∗
opt = {Pc = 0.9, Pm = 0.01, Ppt = 0.005, Pe = 0, Pels = 0.5} . (6)

Moreover, the next fitness descent strategy proved superior to the steepest de-
scent strategy.

After identification of both D∗
opt and the direction selection principle the

ERGGA was to challenge RGGA in extended tests on 9 test instances. These
comprised all possible m/α combinations and the GA runs terminated after 106

non-duplicate individuals as proposed by Chu/Beasley and Raidl. Columns 4
and 5 of table 2 show the achieved cost function values Z which differ only in
one case. By comparing these results to those of Chu/Beasley (CBGA, column 3)
one observes equivalence in 7 and 8 of 9 instances, respectively. Finally, columns
6 and 7 contain the number of evaluated non-duplicate chromosomes that were
necessary to reach the Z values: the RGGA seems to have some considerable
advantages for higher values of m and α.

Table 2. Performance test results of RGGA and ERGGA

m α cost function value Z # Chromosomes
CBGA RGGA ERGGA RGGA ERGGA

5 0.25 24216 24216 24216 79943 31965
0.50 42545 42545 42545 559963 537109
0.75 61520 61520 61520 22194 48313

10 0.25 21875 21821 21875 14780 386739
0.50 41395 41395 41395 250957 174295
0.75 56377 56377 56377 24488 70963

30 0.25 20754 20754 20754 249596 286284
0.50 41304 41304 41304 142058 189556
0.75 58884 58842 58842 946 3649

In summary, appreciable performance differences between ERGGA and
RGGA could not be identified for what reason the application of ERGGA is
not recommendable for a MKP. Mainly responsable for this result seems to be
the absence of a big valley structure which is assumed to be necessary for a
successful use of the PT concept. The existence or non-existence of a big valley
structure was determined graphically by means of fitness-distance-plots (FDP).
Following Merz and Freisleben [7], the existence of a big valley can be assumed if
the FDP shows an approximate linear connection between Hamming distances
dH(Copt, Ci) (x-axis) and fitness differences ∆F = F (Copt) − F (Ci) (y-axis),
where Copt denotes the (known) global optimum and Ci denotes an arbitrary
local optimum. Figure 6 shows a typical FDP for a MKP and unfortunately in-

48 J. Levenhagen, A. Bortfeldt, and H. Gehring

dicates that MKP do not contain a big valley structure.4 This seems at least to
be true for the tested MKP instances and with respect to the used search space
metric, for which the Hamming distance was chosen.

������������������������
������������������������
������������������������
������������������������

Fitness distance to optimum

20

H
am

m
in

g
di

st
an

ce
 to

 o
pt

im
um

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

20

15

10

5

0
0 500 1000 1500 2000 2500

Fig. 6. Fitness distance plot

6 Conclusions

The numerical results of our particular PT/ELS realization, together with the
graphical analysis, may confirm the assumption that an application of PT/ELS
should be restricted to problem instances which show a big valley structure.
Because a formal characterization of that structure can not be given today, an
empirical identification of problem classes or subclasses with this property should
be considered for future work. We strongly believe that applying a PT/ELS con-
cept to these problems will lead to a considerable GA performance improvement.

The authors wish to thank the three anonymous referees for their helpful comments
and suggestions.

References

1. Raidl, G.R., An Improved Genetic Algorithm for the Multiconstrained 0-1 Knap-
sack Problem, Proceedings of the 5th IEEE International Conference on Evolu-
tionary Computation, pp. 207-211, 1998

2. Chu, P.C. and Beasley, J.E., A Genetic Algorithm for the Multidimensional Knap-
sack Problem, Journal of Heuristics, 4 : pp. 63-86, 1998

4 Copt was known a-priori for the selected instance of figure 6.

Path Tracing in Genetic Algorithms 49

3. Gottlieb, J., On the Effectivity of Evolutionary Algorithms for the Multidimen-
sional Knapsack Problem, in: Fonlupt, C. et.al.(Eds.): Proceedings of Artificial
Evolution, pp. 23-37, Lecture Notes in Computer Science, Vol. 1829, Springer,
2000

4. Glover, F., Scatter Search and Path Relinking, in: Corne, D. et.al.(Eds.): New
Ideas in Optimization, pp. 297-316, McGraw-Hill, 1999

5. Moscato, P., Memetic Algorithms: A Short Introduction, in: Corne, D. et.al.(Eds.):
New Ideas in Optimization, pp. 219-234, McGraw-Hill, 1999

6. Merz, P. und Freisleben, B., Genetic Local Search for the TSP: New Results, Pro-
ceedings of the 1997 IEEE International Conference on Evolutionary Computation,
pp. 159-164, IEEE Press, 1997

7. Merz, P. and Freisleben, B., Fitness Landscapes and Memetic Algorithm Design,
in: Corne, D. et.al.(Eds.): New Ideas in Optimization, pp. 245-260, McGraw-Hill,
1999

8. Reeves, C.R. and Yamada, T., Embedded Path Tracing and Neighbourhood Search
Techniques, in: Miettinen,K. et.al.(Eds.): Evolutionary Algorithms in Engineering
and Computer Science, pp. 95-111, Wiley, 1998

9. Reeves, C.R. and Yamada, T., Goal-Oriented Path Tracing Methods, in: Corne,
D. et.al.(Eds.): New Ideas in Optimization, pp. 341-356, McGraw-Hill, 1999

10. Falkenauer, E., Genetic Algorithms and Grouping Problems, Wiley, 1998
11. Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learn-

ing, Addison-Wesley, 1989
12. Holland, J.H., Adaption in Artificial Systems, The University of Michigan Press,

1975
13. Reeves, C.R. (Ed.), Modern Heuristic Techniques for Combinatorial Problems,

Blackwell Scientific Publications, 1993
14. Levenhagen, J., Ein genetischer Algorithmus mit Pfadverfolgung zur Loesung des

mehrfach restringierten Rucksackproblems, Diploma thesis, University of Hagen,
2000

On the Feasibility Problem of Penalty-Based
Evolutionary Algorithms for Knapsack Problems

Jens Gottlieb

SAP AG
Neurottstr. 16, 69190 Walldorf, Germany

jens.gottlieb@sap.com

Abstract. Constrained optimization problems can be tackled by evolu-
tionary algorithms using penalty functions to guide the search towards
feasibility. The core of such approaches is the design of adequate penalty
functions. All authors, who designed penalties for knapsack problems,
recognized the feasibility problem, i.e. the final population contains un-
feasible solutions only. In contrast to previous work, this paper explains
the origin of the feasibility problem. Using the concept of fitness seg-
ments, a computationally easy analysis of the fitness landscape is sug-
gested. We investigate the effects of the initialization routine, and derive
guidelines that ensure resolving the feasibility problem. A new penalty
function is proposed that reliably leads to a final population containing
feasible solutions, independently of the initialization method employed.

1 Introduction

Penalty-based evolutionary algorithms employ a fitness function

fit(x) = f(x) − penalty(x)

based on the original objective function f , which is assumed to be maximized
here, and an additional penalty term. A solution x that violates some given
constraint is called unfeasible and “punished” by a value penalty(x) > 0, while
a feasible solution x is assigned penalty(x) = 0. Unfeasible solutions can be
discarded from search by large penalties, or they can contribute to the search if
graded penalty terms are used. Although some early guidelines were proposed
by Richardson et al. [1], who suggested using pessimistic estimations of the
distance from feasibility, the actual degree of pessimism which should be used is
still unclear, and penalty-based evolutionary algorithms frequently suffer from
the feasibility problem: they terminate with a completely unfeasible population.

Researchers dealing with penalty-based approaches for knapsack problems
recognized the feasibility problem, in particular for highly constrained problems.
A penalty function measuring the relative degree of the constraint violation was
proposed by Khuri and Batarekh for the unidimensional knapsack problem [2]
and adapted to the multidimensional knapsack problem by Thiel and Voss, who
reported this approach as having problems in finding any feasible solution [3].

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 50–59, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

On the Feasibility Problem of Penalty-Based Evolutionary Algorithms 51

Michalewicz and Arabas employed several penalty functions for the unidimen-
sional knapsack problem, which are based on the amount of constraint violation,
and observed all approaches failing to find any feasible solution for highly re-
strictive instances [4]. This was also recognized by Olsen, who suggested penal-
ties depending on the actual amount of constraint violation but also reported
weak penalties preventing the search from finding any feasible solution for re-
strictive problems [5]. Recently, Hinterding compared some penalties of differ-
ent strength and remarked that only unfeasible solutions were produced for the
smallest strength for the unidimensional knapsack problem considered [6]. Often,
the employed initialization routine produces only unfeasible solutions, which can
prevent an EA from locating the feasible region [3,7]. Therefore the choice of an
appropriate initialization routine is crucial, too. However, well-designed penal-
ties should also be able to guide an unfeasible population towards the feasible
region of the search space.

There are other constraint-handling techniques like repair algorithms or de-
coders. Here we focus on penalty functions only and refer to [8] for an in-depth
comparison between those techniques and the penalty-based approach. Our goal
is to evaluate the sensitivity of penalty functions to the initialization method,
and to derive properties that guarantee solving the feasibility problem.

We consider the multidimensional knapsack problem and its most important
properties in section 2, and present five penalty functions in section 3. A static
analysis of the induced fitness landscapes is given in section 4, and the average
Hamming weight dynamics of evolutionary search are investigated in section 5.
Conclusions are given in section 6.

2 The Multidimensional Knapsack Problem

The multidimensional knapsack problem (MKP) is an NP-complete combinato-
rial optimization problem with a wide area of applications like capital budgeting,
cargo loading and project selection [9,10]. It is stated as

maximize
∑
j∈J

pjxj (1)

subject to
∑
j∈J

rijxj ≤ ci, i ∈ I (2)

xj ∈ {0, 1}, j ∈ J (3)

with I = {1, . . . ,m} and J = {1, . . . , n} denoting the sets of resources and items,
respectively. Each item j has a profit pj > 0 and a resource demand rij ≥ 0 of
resource i, which is limited by its capacity ci > 0. The goal is to determine a set
of items with maximum profit, which does not exceed the resource capacities. In
this paper, we assume rij > 0 for all i and j without loss of generality [8].

The search space S = {0, 1}n is partitioned into the feasible region

F = {x ∈ S |
∑
j∈J

rijxj ≤ ci for all i ∈ I},

52 J. Gottlieb

and the unfeasible region U = S\F . We assume the most natural neighbourhood
for the MKP, which is defined by Hamming distance 1, and define the boundary
of the feasible region as the set of those feasible solutions, for which all neighbours
with higher Hamming weight are unfeasible. The boundary is denoted by B and
it is equivalent to the set of all local optima [8]. Figure 1 illustrates a search
space partitioned into F and U , and the corresponding boundary B. Note that
the degree of feasibility decreases with increasing Hamming weight of the solution
candidates, due to the structure of the constraint.

100

101

111

011

010

000

110

001

F = {x ∈ S | 4x1 + 2x2 + 5x3 ≤ 6}
= {(110), (100), (010), (001), (000)}

U = {(111), (101), (011)}
B = {(110), (001)}

Fig. 1. Example for a unidimensional knapsack problem with S = {0, 1}3

3 Penalty Functions

Penalty functions can be classified by their severity with respect to unfeasible
solutions. While some penalties allow unfeasible solutions to be evaluated as
being superior to some feasible solutions, strict penalties lead to favouring all
feasible solutions to all unfeasible solutions. The most obvious penalty function
to achieve such severity is

pINF(x) = ∞, x ∈ U,

which is sometimes called death penalty because all unfeasible individuals x ∈ U
reveive the worst possible evaluation −∞, drastically restricting their chance for
reproduction. Another variant also severely punishing unfeasible individuals is

pOFF(x) = 1 +
∑
j∈J

pj , x ∈ U,

which is based on an offset term exceeding the sum of all profits. As this value
is larger than the maximum objective value, all feasible individuals achieve a
higher fitness than all unfeasible solutions; this basic idea has been suggested by
Khuri et al. for the subset sum problem [11]. Note that higher offset terms could
also be used, but they yield exactly the same overall performance when rank-
based selection schemes are used. The main difference to pINF is that unfeasible

On the Feasibility Problem of Penalty-Based Evolutionary Algorithms 53

individuals can be distinguished with respect to the fitness function. However,
this distinction is solely based on the objective function, i.e. the amount of
constraint violation is not considered.

While the previous functions severely penalize all unfeasible individuals,
the following penalties allow unfeasible solutions to get a better overall eval-
uation than some feasible solutions. Given the maximum profit coefficient
pmax = max{pj | j ∈ J} and NVC (x) = |{i ∈ I | ∑j∈J rijxj > ci}| as the
number of violated constraints of solution x ∈ S, we consider

pKBH(x) = pmax · NVC (x), x ∈ U ,

which has been proposed by Khuri et al. [7]. The basic idea is to estimate the
distance from feasibility by the number of violated constraints, and to correlate
the penalty to the objective function by the factor pmax. Since many other
authors also used this function [12,13,14,15], it is viewed as standard penalty
function for the MKP.

Defining CV(x, i) = max(0,
∑
j∈J rijxj − ci) as the amount of constraint

violation for constraint i ∈ I and x ∈ S, x is feasible if and only if CV(x, i) = 0
for all constraints i ∈ I. Hoff et al. proposed the function

pHLM(x) =
√∑

i∈I
CV(x, i) , x ∈ U,

based on the sum of all constraint violations [16,17]. Thus, unfeasible individuals
with a higher distance from feasibility are assigned a higher penalty. However,
this function is not correlated to the objective function, which causes problems
as we shall see later.

Assuming rmin = min{rij | i ∈ I, j ∈ J} as the minimum resource consump-
tion, we propose the new function

pCOR(x) =
pmax + 1
rmin

· max{CV(x, i) | i ∈ I}, x ∈ U .

The factor (pmax + 1)/rmin is used to correlate the objective function based on
profits with the resource demands that exceed the capacity constraints. This
factor is based on a pessimistic estimation of the profit that would get lost if
items were removed from the knapsack in order to obtain feasibility. Thus, the
penalty term increase is higher than the objective function increase for moves
away from feasibility.

4 Analysis of the Fitness Landscape

This section analyzes penalty functions concerning the fitness landscapes they
induce. We suggest the concept of fitness segments in section 4.1, which leads to
identifying perfect fitness landscapes in section 4.2 and characteristic properties
of the penalty functions in section 4.3.

54 J. Gottlieb

4.1 Characterizing Fitness Landscapes by Fitness Segments

The search space S = {0, 1}n forms a complete lattice with infimum (0, . . . , 0)
and supremum (1, . . . , 1), which correspond to the solutions with maximum
and minimum feasibility, respectively. Each penalty function induces a fitness
landscape defined by S, the neighbourhood and the fitness function, and the
behaviour of evolutionary search is mainly affected by the structure of this fitness
landscape, if the employed operators induce a neighbourhood similar to the one
we supposed. A thorough analysis of the complete fitness landscape is difficult
due to the huge size of S, hence we suggest focusing on representative parts
only. Rather than sampling some points of the search space in a purely random
fashion, we analyze fitness segments that consist of a specific set of solutions.

A sequence (x0, x1, . . . , xn) of distinct solutions xi ∈ S is called a segment
of S if xi has Hamming weight i for all i, and xi and xi+1 are neighbours for
i ∈ {0, . . . , n − 1}. Obviously, x0 = (0, . . . , 0) and xn = (1, . . . , 1) hold for
each segment, and two successive solutions of a segment are identical except for
one bit. There exist n! segments of the given search space S since each segment
corresponds to a path of length n from the infimum to the supremum of S. Some
index k ∈ {0, . . . , n} exists for each segment, such that the solutions x0, . . . , xk

are feasible, while xk+1, . . . , xn are not. The index k indicates the transition from
feasibility to unfeasibility, which is critical for penalty functions. The segment
(000, 001, 011, 111) in figure 1 has index k = 1.

The fitness values (fit(x0),fit(x1), . . . ,fit(xn)) of a segment (x0, x1, . . . , xn)
form a sequence which is termed fitness segment. Each element of a fitness seg-
ment is identified by the Hamming weight of the corresponding solution. A fitness
segment describes the slope of one slice of the whole (high-dimensional) fitness
landscape. The complete search space being represented by all its segments, the
fitness landscape is characterized by all its fitness segments. The slope of a fitness
segment enables us to draw conclusions about the basic structure of the com-
plete landscape, and can be described by concepts like hills and valleys, which
are intuitively used to characterize 2-dimensional fitness landscapes.

4.2 The Bias Towards the Boundary of the Feasible Region

A reasonable penalty function should be able to guide unfeasible populations
towards feasibility, since the evolutionary search otherwise might converge in
the unfeasible region. Thus, the fitness function must be strictly monotonic de-
creasing in the unfeasible region. Speaking in terms of landscape concepts,

1. there must be a big valley beyond the boundary of the feasible region,
2. this valley must not contain plateaus or peaks which would induce new local

optima in the unfeasible region, and
3. the valley must be descending rather than ascending to prevent the supre-

mum from becoming a new local optimum.

Figure 2 shows a fitness segment of a “perfect” penalty function in an idealized
fashion, where the feasible part of the segment is shaded grey. On the one hand,

On the Feasibility Problem of Penalty-Based Evolutionary Algorithms 55

Fi
tn

es
s

Hamming weight n0

Fig. 2. Idealized fitness segment for a “perfect” penalty function

feasible populations are driven towards the boundary of the feasible region due
to the objective function. On the other hand, the slope of the segment’s unfeasi-
ble part leads unfeasible populations towards feasibility and hence towards the
boundary. We call a penalty function biased towards the boundary of the feasible
region if the slopes of all fitness segments exhibit the same basic tendency as
visualized in figure 2. Such penalty functions do not suffer from any feasibility
problem since unfeasible populations are reliably guided towards the boundary.

4.3 A Comparison of the Penalty Functions

Figure 3 shows representative fitness segments of the first instance with m = 30
and n = 500 from Chu’s benchmark suite1 for the penalty functions introduced
in section 3. A simple technique was used to implement the infinite penalty term
of pINF: we employed the penalized fitness value −1 for unfeasible individuals,
exhibiting an equivalent fitness landscape for rank-based parent selection.

The functions pINF and pOFF induce an extremely wide and deep valley be-
yond the boundary of the feasible region. However, these valleys are problematic
since pOFF introduces the supremum as new local optimum with a very large
basin of attraction, and in case of pINF the valley is in fact a very large plateau
containing many new local optima.

The functions pKBH and pHLM cause a monotonic increase of the fitness
values for sufficiently high Hamming weights and thus introduce the supremum
as new local optimum. While pKBH also introduces new local optima near the
boundary of the feasible region, pHLM induces a fitness landscape with the
supremum as only local optimum. These functions generally do not preserve the
local optimality of the boundary, and they fail to introduce a sufficiently deep
and wide valley to separate the boundary from unfeasibility.

Resembling the perfect slope shown in figure 2, the function pCOR prevents
the supremum from becoming locally optimal and yields a separation of the
boundary from the unfeasible region by a wide and deep valley that is descending.
Thus, pCOR perfectly achieves the desired properties and is therefore expected
to resolve the feasibility problem.
1 http://mscmga.ms.ic.ac.uk/jeb/orlib/mknapinfo.html

56 J. Gottlieb

-300000

-250000

-200000

-150000

-100000

-50000

0

50000

100000

0 100 200 300 400 500

fit
ne

ss

Hamming weight

pINF
pOFF

0

50000

100000

150000

200000

250000

300000

350000

400000

0 100 200 300 400 500

fit
ne

ss

Hamming weight

pHLM
pKBH

-2.5e+08

-2e+08

-1.5e+08

-1e+08

-5e+07

0

5e+07

0 100 200 300 400 500

fit
ne

ss

Hamming weight

pCOR

Fig. 3. Slopes of representative fitness segments for the penalty functions

5 Analysis of Average Hamming Weight Dynamics

While the previous section provides a static analysis of fitness landscapes, this
section empirically confirms that the structure of fitness segments reliably pre-
dicts the actual dynamics of evolutionary algorithms with standard operators.
We consider an EA with bit string representation, population size 100, uniform
crossover applied with probability pc = 0.7, standard bit mutation (flipping
each bit with probability pm = 1/n), parent selection via tournaments of size
2, steady-state replacement (deleting the worst) and duplicate elimination. The
EA generates 1 000 000 non-duplicate solutions and its initialization method is
parameterized by b ∈ [0, 1] such that the expected Hamming weight of an ini-
tialized solution is b · n. Varying the parameter b, we can analyze the effects of
initialization and check whether the EA is sensitive to the initial population.

The actual neighbourhood structure induced by the EA’s variation operators
differs from the neighbourhood we used in the previous sections. We perceive the
mutation operator’s neighbourhood – i.e. the set of solutions that are reachable
by one mutation – as basic neighbourhood, which is frequently enlarged by the
use of crossover. The mutation operator can generate any solution in the search
space, but in expectation it changes one bit and its neighbourhood therefore
resembles the natural neighbourhood of Hamming distance 1. Thus, it is reason-

On the Feasibility Problem of Penalty-Based Evolutionary Algorithms 57

able to rely on the approximation of the variation operators’ neighbourhood by
the neighbourhood of Hamming distance 1.

The population’s average Hamming weight describes its location in the search
space, and hence an evolutionary search process can be perceived as a trajec-
tory of the average Hamming weights associated to the population sequence. For
the considered initialization routine, the first population is located at Hamming
weight level b ·n. Figure 4 shows the dynamics during the first 10 000 generations
for the functions pINF, pOFF, pHLM and pCOR, the initialization parameters
b ∈ {0.05, 0.20, 0.35, 0.50, 0.65, 0.80, 0.95} and the MKP instance considered in
section 4.3: it consists of n = 500 items and its boundary is located approxi-
mately at Hamming weight level 120.

In the case of pINF and pOFF the population is reliably guided towards
the boundary of the feasible region, if the initial population contains feasible
solutions. However, pINF causes a random search at Hamming weight level b · n
if the initial population is completely unfeasible and too far away from the
boundary. This is due to the large plateau induced by pINF. The function pOFF
causes convergence towards the supremum for sufficiently high values of b, i.e. the
population is guided away from feasibility. These results suggest using pINF and
pOFF with an initialization parameter b which ensures that the initial population
contains at least one feasible solution.

0

50

100

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000 10000

av
er

ag
e

H
am

m
in

g
w

ei
gh

t

generation

pINF

0

50

100

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000 10000

av
er

ag
e

H
am

m
in

g
w

ei
gh

t

generation

pOFF

b=0.95
b=0.80
b=0.65
b=0.50
b=0.35
b=0.20
b=0.05

0

50

100

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000 10000

av
er

ag
e

H
am

m
in

g
w

ei
gh

t

generation

pHLM

b=0.95
b=0.80
b=0.65
b=0.50
b=0.35
b=0.20
b=0.05

0

50

100

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000 10000

av
er

ag
e

H
am

m
in

g
w

ei
gh

t

generation

pCOR

b=0.95
b=0.80
b=0.65
b=0.50
b=0.35
b=0.20
b=0.05

Fig. 4. Average Hamming weight dynamics for selected penalties and parameters b

58 J. Gottlieb

The function pHLM illustrates the feasibility problem in an impressive man-
ner since the population is always guided towards maximum unfeasibility, in-
dependently of the initial population’s average Hamming weight. Thus, unlike
for pINF and pOFF, even the choice of appropriate initialization methods does
not overcome the feasibility problem. Therefore we recommend not to use this
function in the knapsack domain. Although the fitness landscape induced by
pKBH is somehow more advantageous than pHLM, it also leads to convergence
in the unfeasible region in most cases since its fitness landscape contains new
local optima in the unfeasible region [8]. Thus, its use should also be avoided.

The function pCOR achieves the perfect behaviour: any population, be it
feasible or unfeasible, is reliably guided towards the boundary of the feasible
region because all local optima are located there. This function is insensitive to
the initial population, making it a very robust choice conerning the feasibility
issue.

6 Conclusion

The feasibility problem is a serious issue in penalty-based evolutionary algo-
rithms since it prevents effective search, due to convergence in the unfeasible
region of the search space. This problem was recognized and investigated em-
pirically by several authors, but previous work was mainly concerned about the
outcome of the search, i.e. the final population.

In this paper we considered the multidimensional knapsack problem and five
penalty functions with different characteristic properties, originating from differ-
ent design principles like dominance of feasibility or degree of unfeasibility. We
presented a static analysis of the fitness landscapes induced by these penalties.
Our analysis is based on fitness segments, which can be determined easily and al-
low to draw meaningful conclusions about the whole fitness landscape. Using the
notion of fitness segments, certain properties of penalty functions were derived
that guarantee to solve the feasibility problem. Empirical experiments concern-
ing the average Hamming weight dynamics of the penalty functions confirmed
our hypothesis that a wide, deep, and descending valley in the fitness landscape
should separate the boundary of the feasible region from unfeasibility.

Our results imply guidelines for successful penalty-based evolutionary search
applied to knapsack problems: the feasibility problem is resolved if (i) the penalty
function is biased towards the boundary of the feasible region, or (ii) the initial
population contains at least one feasible solution and unfeasible solutions are
assigned a lower fitness than all feasible solutions. This guideline is not only
valid for knapsack problems, but also for all covering and packing problems [8]
since their local optima lie in the boundary of the feasible region, too. Thus, the
basic results also apply for many other well-known problems like set covering,
subset sum, independent set, set packing and various knapsack problems.

Acknowledgement. The author would like to thank the referees for their help-
ful comments.

On the Feasibility Problem of Penalty-Based Evolutionary Algorithms 59

References

1. J. T. Richardson, M.R. Palmer, G. Liepins, and M. Hilliard. Some Guidelines for
Genetic Algorithms with Penalty Functions. In Proc. 3rd International Conference
on Genetic Algorithms, 191 - 197, Morgan Kaufmann, 1989

2. S. Khuri and A. Batarekh. Heuristics for the Integer Knapsack Problem. In Proc.
10th International Computer Science Conference, 161 - 172, Santiago, Chile, 1990

3. J. Thiel and S. Voss. Some Experiences on Solving Multiconstraint Zero-One Knap-
sack Problems with Genetic Algorithms. INFOR, Volume 32, No. 4, 226 - 242, 1994

4. Z. Michalewicz and J. Arabas. Genetic Algorithms for the 0/1 Knapsack Problem.
In Proc. 8th International Symposium on Methodologies for Intelligent Systems,
134 - 143, Springer, 1994

5. A. L. Olsen. Penalty functions and the knapsack problem. In Proc. 1st IEEE Con-
ference on Evolutionary Computation, 554 - 558, 1994

6. R. Hinterding. Representation, Constraint Satisfaction and the Knapsack Problem.
In Proc. Congress on Evolutionary Computation, 1286 - 1292, Washington DC,
1999

7. S. Khuri, T. Bäck, and J. Heitkötter. The Zero/One Multiple Knapsack Problem
and Genetic Algorithms. In Proc. ACM Symposium on Applied Computation, 188
- 193, ACM Press, 1994

8. J. Gottlieb. Evolutionary Algorithms for Constrained Optimization Problems. Dis-
sertation, Technical University of Clausthal, 1999. Shaker, Aachen, 2000

9. P.C. Chu and J. E. Beasley. A Genetic Algorithm for the Multidimensional Knap-
sack Problem. Journal of Heuristics, Volume 4, No. 1, 63 - 86, 1998

10. S. Martello and P. Toth. Knapsack Problems. John Wiley & Sons, 1990
11. S. Khuri, T. Bäck, and J. Heitkötter. An Evolutionary Approach to Combinatorial

Optimization Problems. In Proc. 22nd Annual ACM Computer Science Conference,
66 - 73, ACM Press, New York, 1994

12. F. Corno, M. Sonza Reorda, and G. Squillero. The Selfish Gene Algorithm: A New
Evolutionary Optimization Strategy. In Proc. 13th Annual ACM Symposium on
Applied Computing. 1998

13. H. A. Mayer. ptGAs - Genetic Algorithms Evolving Noncoding Segments by Means
of Promoter/Terminator Sequences. Evolutionary Computation, Volume 6, No. 4,
361 – 386, 1998

14. G. Rudolph and J. Sprave. A Cellular Genetic Algorithm with Self-Adjusting Ac-
ceptance Threshold. In Proc. 1st IEE/IEEE International Conference on Genetic
Algorithms in Engineering Systems: Innovations and Applications, 365 - 372, IEE,
London, 1995

15. G. Rudolph and J. Sprave. Significance of Locality and Selection Pressure in the
Grand Deluge Evolutionary Algorithm. In Proc. 4th Conference on Parallel Prob-
lem Solving from Nature, 686 - 695, Springer, 1996

16. A. Hoff, A. Løkketangen, and I. Mittet. Genetic Algorithms for 0/1 Multidimen-
sional Knapsack Problems. In Proc. Norsk Informatikk Konferanse, 1996

17. A. Løkketangen. A Comparison of a Genetic Algorithm and a Tabu Search Method
for 0/1 Multidimensional Knapsack Problems. In Proc. Nordic Operations Research
Conference, 1995

Coloured Ant System and Local Search to
Design Local Telecommunication Networks

Roberto Cordone and Francesco Maffioli

DEI - Politecnico di Milano
{roberto.cordone,francesco.maffioli}@polimi.it

Abstract. This work combines local search with a variant of the Ant
System recently proposed for partitioning problems with cardinality con-
straints. The Coloured Ant System replaces the classical concept of trail
with p trails of different “colours”, representing the assignment of an
element to one of the classes in the partition. We apply the method with
promising results to the design of local telecommunication networks. The
combination of the Coloured Ant System with local search yields much
better results than the two approaches alone.

1 Introduction

The design of local telecommunication networks (e. g. cable television companies
providing internet access [1]) often requires to link demand nodes to a wide area
network through a number of concentrator devices taking over the traffic flow.
The capacity of the concentrators is limited and the demands form tree-shaped
subnetworks, as a higher connectivity is unjustified at this level. The Weight
Constrained Graph Tree Partition Problem (WC-GTPP) models the situation
by an undirected graph G (V, E) of n vertices and m edges. Given a cost function
c : E → IN on the edges and a weight function w : V → IN on the vertices,
determine a spanning forest F (V, X) of p trees Tr (Ur, Xr), such that the weight
of each tree falls in a given range [W−; W+] and F has minimum cost.

This paper adapts the Ant System to the WC-GTPP and combines it to
local search. Instead of a single undifferentiated trail, the ants release trails of p
different colours, according to the tree each vertex is assigned to. Hence the name
of Coloured Ant System (CAS) [2]. The algorithm relaxes the weight bound,
penalizing its violations with a factor tuned by feedback. The CAS interacts
with Swinging Forest, a local search heuristic based on operations such as vertex
exchanges, tree splittings and tree removals. At each iteration, the CAS submits
the best current solution to local search before updating the trails. The two
approaches take advantage of each other: the CAS provides a smart initialization
to local search; local search provides a smart trail update to the CAS.

Sect. 2 briefly surveys the literature on local network design problems, and
gives some references on the Ant System and its variants. Sect. 3 describes the
CAS algorithm. Sect. 4 describes Swinging Forest and its interactions with the
CAS. The last section presents some computational results and conclusions.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 60–69, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Design Local Telecommunication Networks 61

2 Survey

The field of local telecommunication networks (servers, cable TV companies,
etc. . .) poses a number of practical problems in which secondary devices must
be connected to a given number of primary ones, minimizing the total connection
cost and keeping a balance between the traffic of the disjoint subnetworks. Sim-
ilar trade-offs between cost and balance occur in electric or radio broadcasting
networks, but also in electoral districting and Cluster Analysis.

Though fairly general, the WC-GTPP is a good model for these cases. It is
strongly NP-hard, by direct reduction from SAT, and in general not approx-
imable [3], though a (2p − 1) algorithm exists if the number of vertices in each
tree is given and the triangle inequality holds [4]. Similar problems have been
deeply studied. In the Capacitated Minimum Spanning Tree problem (CMST)
all secondary devices are linked to a single primary one, with an upper bound on
the traffic in each branch [5]. The lower weight constrained minimum spanning
forest problem bounds from below the weight of the trees and does not fix their
number. These problems are strongly NP-hard, but approximable [6,7].

The Ant System has been first proposed for the Travelling Salesman Prob-
lem [8], spreading to other fields in Combinatorial Optimization, such as Graph
Colouring [9] and the Quadratic Assignment Problem [10]. Several variants pro-
pose effective ways to update the trail function during the execution: the Max-
Min Ant System limits it into a given interval [11], the Ant-Q approach updates
it by reinforcement learning mechanisms [12], the Ant Colony System by moving
averages [13]. The probability distribution of choices can be based on the rank
of the alternatives, instead of their absolute value [14]. In the field of routing
problems, the Ant System combined with local search has brought to strong
improvements upon the two approaches applied singularly [15].

3 Coloured Ant System

The Ant System involves a population of agents (ants), who build in parallel
greedy solutions to a problem. Their behaviour is not trivially greedy: they
partly take random choices biased by a trail function, which is shaped by the
results of previous runs. To reformulate the natural analogy for our problem,
an agent is a caste of ants divided into p colonies. Each colony builds a hive
on a different vertex and takes possession of a connected subgraph from it. The
colony patrols a network of edges, whose cost evaluates the necessary effort, to
control food sources located on the vertices, whose amount is measured by the
weights. The global effort must be minimum and the amount of food owned by
each colony neither too small nor too large. Each colony marks the vertices with
a trail of a typical “colour”. Season after season, they retire into the hives and
resume colonizing the graph, driven by the costs, the weights and the residual
trails. When the ants find better solutions, they resettle their hives accordingly.
Several independent castes operate on the graph, sharing the p hives and the
trail information. Ants of different colonies can occupy the same vertex, if they
belong to different castes; otherwise, they cannot.

62 R. Cordone and F. Maffioli

Algorithm 1 starts by selecting p hives. Then, it repeats a main loop for
Imax iterations or Tmax seconds since the beginning, or Ibest iterations since the
discovery of the best known solution. Each time, the agents build S solutions,
annexing the vertices to the hives one by one. Solutions violating the weight
bound are admitted, but their cost is increased by a penalization factor π. As
the basic step assigns a vertex v to a tree Tr, the trails are released on the vertices
and their colours refer to the trees. The algorithm updates the trail function τrv
in multiple points, both strengthening and weakening it.

Algorithm 1. CAS(G, c, w, W, p)
{v1, . . . , vp} := StartingHives(G, c, p); { Choose p starting hives }
τrv := τ0 ∀r, ∀v; { Distribute p uniform trails }

i := 1; i∗ := 1; c∗ := +∞;
While i ≤ Imax and ElapsedTime() ≤ Tmax and i ≤ i∗ + Ibest do

{ Build S solutions in parallel }
U

(s)
r := {vr} ∀r, ∀s; { The ants retire }

While ∃s :
(
V \ ∪rU (s)

r

)
6= ∅ do { While unassigned vertices exist. . . }

For s := 1 to S do
(ṽ, r̃) := BestAnnexion(G, c, w, W, p, π, U

(s)
r); { . . . take a choice. . . }

U
(s)
r̃ := U

(s)
r̃ ∪ {ṽ}; { . . . perform it. . . }

τr̃ṽ := (1 − ρ)τr̃ṽ + ρτ0; { . . . and deter repetitions }
EndFor

EndWhile

{ Determine the best current solution }
F := BestSolution(G, c, w, W, p, π, U

(s)
r);

τrv := (1 − ρ)τrv + ρ/cFπF ∀r, ∀v ∈ U
(s̃)
r ; { Intensify the trails }

{ Update the best known solution and the hives }
If cF < c∗ then c∗ := cF ; i∗ := i; vr := RootVertex (Ur) ∀r;
UpdatePenalization(π);
i := i + 1;

EndWhile;

3.1 The Greedy Heuristic

The basic greedy heuristic adapts Prim’s algorithm for the Minimum Spanning
Forest problem [16]: find the unassigned vertex closest to a tree and assign it,
repeatedly, until the solution spans the whole graph. Besides the edge costs, the
algorithm takes into account the violations of the weight bound and the trails.
Instead of minimizing the connection cost c̄rv between vertex v and colony r

c̄rv = min
u∈Ur

cuv (1)

Design Local Telecommunication Networks 63

it maximizes a request factor frv

frv =
τrv

c̄rvπrv
(2)

where πrv is a penalization factor and τrv is the trail function.
The heaviest tree which could be thus obtained spans the whole graph minus

the p − 1 lightest vertices. Let wM be its weight; wm = minv∈V wv is the weight
of the lightest tree achievable. Therefore, the penalization factor:

πrv = 1 + π max
(

wUr + wv − W+

wM − W+ ,
W− − wUr − wv

W− − wm
, 0

)
(3)

ranges from 1 for a feasible assignment to 1 + π for the most unbalanced.
Each time, the algorithm chooses at random whether to obey a

– deterministic strategy : perform the assignment with the highest value of frv
– stochastic strategy : choose at random vertex v and tree Tr with a probability

proportional to frv: prv = frv/
∑p
s=1

∑
u∈V fsu

The former is adopted with probability q (deterministic factor), the latter with
probability 1−q. Higher values of q favour choices with stronger request factors.

3.2 The Penalization Factor

Most of the time we find out that, if the optimal solution is far from the frontier
of the feasible space, the greedy heuristic finds it easily. However, in the most
interesting cases the optimal solution is close to unfeasibility and the penalization
factor becomes relevant. We use the following scheme, which seems reasonable:
when the current S solutions are prevailingly feasible, π decreases to drive the
search to the unfeasible region; when they are unfeasible, π increases. If Sf
current solutions are feasible,

π := π 2(S−2Sf)/S . (4)

3.3 The Trail Function

The trail function saves information from previous runs in order to repeat the
good choices and avoid the wrong ones. Its effective management can be in-
terpreted in terms of the diversification and intensification principles. On one
hand, it is profitable to avoid sticking in already explored regions. On the other
hand, it may be profitable to explore more thoroughly the regions close to good
solutions, hoping to find better ones by slight changes. A correct balance of these
complementary strategies is a key issue to create an efficient heuristic.

At the beginning, the ants release a uniform small trail τ0 of each colour on
each vertex, as a sort of “ground value”. While the literature derives τ0 from the
cost of a heuristic solution [13], we employ the cost of the minimum spanning
forest, cMSF, which usually has the same order of magnitude:

τ0 =
1

ncMSF
. (5)

64 R. Cordone and F. Maffioli

Diversifying the Trail Function. During the greedy heuristic, after an agent
assigns vertex v to tree r, it draws the associated trail closer to the ground level:

τrv = (1 − ρ) τrv + ρτ0 . (6)

The other agents consider this assignment less attractive and prefer different
solutions. Equation (6) describes the “evaporation” of the trail: the oblivion
factor ρ tunes the strength of greediness versus memory.

Intensifying the Trail Function. At the end of the greedy heuristic, the best
performing agent increases the trails corresponding to its solution F̃ . This favours
the same choices in the following iterations, leading to similar solutions. The
better is F̃ , the stronger is the effect:

τrv = (1 − ρ) τrv + ρ
1

cF̃πF̃
. (7)

3.4 The Root Choice

The position of the roots influences remarkably the final result. At first, we
choose them so as to cover the graph uniformly. Given a seed root, the second
root is the farthest vertex in the graph, the third is the vertex with the highest
total distance from the first two, and so on. Then, alternatively, we apply the
greedy heuristic with no random choices and a uniform trail, and we move the
roots to the centroids of the trees obtained. The process ends when the roots
stabilize or repeat cyclically, and it is performed n times, using each vertex as
the seed. The best root assignment overall initializes the CAS. Every time the
best known solution changes, the centroids of its trees become the new roots.

4 The Swinging Forest Procedure

Local search is based on the concept of neighbourhood, a function associating
to each feasible solution F a subset N (F) of “neighbour solutions”. Commonly,
this is the set of solutions obtained applying to F a given family of manipulations
(moves). Local search procedures start from a current solution, assume one of
its neighbours as the incumbent solution, and replace the former with it.

Algorithm 2 outlines the behaviour of Swinging Forest. First, the Exchange
procedure improves the starting solution F moving vertices from tree to tree,
one by one or in pairs. This is the merging of two related neighbourhoods: N1(F)
includes the feasible forests whose vertices belong, all but one, to the same trees
as in F ; N2(F) includes those whose vertices belong, all but two, to the same
trees. We adopt a steepest descent strategy, choosing the best solution in the
whole neighbourhood as the incumbent. The procedure ends when no neighbour
solution is better than the current one. When the weight bound severely limits
these moves, the approach is not very effective.

Design Local Telecommunication Networks 65

Then, Swinging Forest splits one tree and reoptimizes the solution on and on,
until the number of trees pF reaches pM. The aim is to redistribute the vertices
in spite of the weight bound, thanks to the slack capacity of the new trees. Then,
the algorithm tries to remove each tree displacing its vertices into the other ones.
When it has processed all trees, Exchange reoptimizes the solution. This phase
ends when the number of trees reaches pm. Then, the algorithm splits some trees
to retrieve p. If the cost has decreased, a new period starts. If it has not or it is
no longer possible to obtain p trees, the algorithm terminates.

Algorithm 2. SwingingForest(G, c, w, W, p, F)
c∗ := ∞;
While pF = p and cF < c∗ do

F := Exchange(G, c, w, W, F); { Steepest descent }
If cF < c∗ then F ∗ := F ; c∗ := c;

While pF < pM do { Increase the number of trees }
F := TreeSplitting(G, c, w, W, F);
F := Exchange(G, c, w, W, F);

EndFor;

Stop := False;
While pF > pm and Stop = False do { Reduce the number of trees }

F ′ := TreeRemoval(G, c, w, W, F);
If pF ′ = pF and cF ′ ≥ cF

then Stop := True;
else F := Exchange(G, c, w, W, F ′);

EndFor;

While pF < p do { Retrieve p trees }
F := TreeSplitting(G, c, w, W, F);
F := Exchange(G, c, w, W, F);

EndFor;
EndWhile;
Return F ∗;

Vertex Exchanges. An exhaustive search in N1(F) ∪ N2(F) takes
O

(
n2p2γ(m, n)

)
time, where γ(m, n) is the time to evaluate the minimum span-

ning forest after a move. For the sake of efficiency, we update the spanning forest
as in [17], instead of recomputing it from scratch. Moreover, a move is often avail-
able along a sequence of steps. Keeping a list of the best feasible moves on each
couple or triplet of trees, one can perform the best move in the list, cancel those
involving the trees modified and evaluate them again. The other moves need not
be updated.

Tree Splitting. The algorithm increases the number of trees in the current forest
by removing the most expensive edge. This splits a tree in two, and at least
one of the resulting subtrees (possibly both) has a large amount of weight slack.
Thus, the new neighbourhood is larger.

66 R. Cordone and F. Maffioli

Tree Removal. The procedure lists the vertices of a tree, from the leaves up
to the root, as this seems the most natural way to “prune” a tree. It performs
the best feasible transfer of the first vertex, if any exists. Then, it considers
the second vertex, and so on. In the end, if the tree is empty or the solution
has improved, the new solution replaces the current one. Otherwise, the original
solution is retrieved. To make the removal easier, the trees are processed in
increasing order of cardinality and, if ties occur, of weight.

4.1 The Coloured Ant System and Swinging Forest

Local search is effective in finding good solutions, the Ant System in managing
intensification and diversification: we believe that they can gain much from each
other. Our algorithm applies local search to the best solution found at each
iteration of the CAS before using it to update the trails. This provides a smarter
intensification of the trail, which can drive the CAS better. Conversely, the best
solution found by the CAS is a smarter starting point for Swinging Forest.
To limit the computational burden, we simply explore the N1 or the N1 ∪ N2
neighbourhood at each step, and apply Swinging Forest only in the end, on the
best solution overall.

5 Computational Results

We led an experimental campaign on the CAS and Swinging Forest, both as
stand-alone algorithms and combined. They were run on a Pentium II 450 MHz
with a Linux operating system. Benchmark instances for the WC-GTPP were
not available in the literature: we built them by adapting the CMST instances of
the OR-Library [18]. For each original instance, we set two values for the number
of trees p, so as to obtain tightly and loosely constrained instances. The TC and
TE problems have 41 or 81 vertices, homogeneous weights and Euclidean costs.
Three upper bounds limit the weight of each tree: W+ = 3, 5 and 10 for n = 41,
W+ = 5, 10 and 20 for n = 81. The CM problems do not satisfy the triangle
inequality and have non uniform weights. We consider two problem sizes: n = 50
and n = 100. There are three weight upper bounds: W+ = 200, 400 and 800.
Each combination of family, size, weight bound and number of trees corresponds
to 5 instances, which leads to a total of 180.

5.1 Parameter Settings

In our experiments, the CAS always runs n times, since the maximum number
of iterations Imax is set to n, the maximum number of non improving iterations
Ibest and the maximum time Tmax to infinite. The number of agents S is set to
n. The penalization coefficient is at first π0 = 100 , but in few steps it shifts to
the correct range, usually stabilizing on a floating behaviour rather than a fixed
value. In the end, the minimum and maximum number of trees used by Swinging
Forest are set, respectively, to pm = bp/1.1c and pM = d1.1pe.

Design Local Telecommunication Networks 67

Table 1. Results of the CAS with different parameter settings.

ρ = 0.2 ρ = 0.3 ρ = 0.4
Class q Gap (max.) Gap (max.) Gap (max.)

TC40 0.25 8.2% 25.9% 8.1% 25.9% 8.7% 25.9%
0.5 8.5% 27.4% 8.3% 27.4% 9.1% 27.4%

TC80 0.25 4.0% 13.8% 3.8% 13.8% 4.1% 13.8%
0.5 3.5% 12.9% 3.3% 12.9% 3.7% 12.9%

TE40 0.25 9.9% 27.7% 9.6% 27.7% 10.6% 27.7%
0.5 9.3% 25.6% 9.6% 25.6% 10.4% 25.6%

TE80 0.25 8.9% 61.3% 8.8% 54.8% 10.9% 56.4%
0.5 7.9% 41.3% 7.6% 42.4% 9.4% 47.3%

CM50 0.25 30.4% 194.5% 32.3% 159.6% 31.8% 172.2%
0.5 31.7% 148.9% 29.9% 140.0% 38.8% 230.8%

CM100 0.25 37.8% 102.4% 37.1% 104.0% 41.4% 87.1%
0.5 34.2% 79.0% 34.3% 91.9% 38.4% 92.7%

Total 0.25 16.5% 194.5% 16.6% 159.6% 17.9% 172.2%
0.5 15.8% 148.9% 15.5% 140.0% 18.3% 230.8%

5.2 Experience on the CAS Parameters

Table 1 sums up our experience on the deterministic factor q and the oblivion
factor ρ. After experimenting with various settings, we consider two values for
q: 0.5 (half of the time the choice is taken at random proportionally to the
request factor, the other half it is greedy) and 0.25 (randomness prevails). As
for ρ, we compare a longer (ρ = 0.2) a medium (ρ = 0.3) and a shorter memory
(ρ = 0.4). The first column reports the problem classes. For each one, the results
are structured into two rows (corresponding to q = 0.25 and q = 0.5) and
three columns (ρ = 0.2, ρ = 0.3 and ρ = 0.4). We report both the average
and the maximum gap of the solution with respect to the minimum spanning
forest lower bound. The setting with q = 0.5 and ρ = 0.3 performs consistently
better and appears to be more stable. This is confirmed by the number of best
results obtained: q = 0.25 determines 61, 63 and 55 best solutions out of 180,
respectively for ρ = 0.2, 0.3 and 0.4; q = 0.5 determines 78, 116 and 70. It is
rather likely that, when ρ = 0.2 bad starting solutions influence too strongly the
algorithm. Roughly speaking, this influence falls under 5% after 14 diversifying
updates, since (1 − ρ)14 ≈ 0.047 (see (6)). When ρ = 0.3, 9 updates are enough.

5.3 A Comparison between Algorithms

Table 2 compares the results of the algorithms described, namely the greedy
heuristic run deterministically with an infinite penalization factor, the CAS with
q = 0.5 and ρ = 0.3, Swinging Forest initialized with the five best solutions
provided by the greedy heuristic (SF(5)) and the CAS followed by Swinging
Forest applied on the best known solution (CAS + SF). Each column reports
the average and the maximum gap and the execution time Ttot in seconds. For

68 R. Cordone and F. Maffioli

Table 2. The combination of CAS and Swinging Forest is better than either method.

Greedy CAS SF(5) CAS+SF
Class Gap (max.) Ttot Gap (max.) Ttot Gap (max.) Ttot Gap (max.) Ttot

TC40 11.5% 34.8% 0.1 8.3% 27.4% 3.1 6.1% 17.8% 14.0 4.0% 12.6% 6.1
TC80 4.3% 11.7% 0.8 3.3% 12.9% 69.4 1.6% 9.5% 116.5 1.5% 5.0% 105.3
TE40 11.9% 31.9% 0.1 9.6% 25.6% 3.1 6.7% 18.5% 15.5 4.0% 12.0% 6.6
TE80 10.3% 28.0% 0.7 7.6% 42.4% 71.1 3.7% 15.3% 282.6 3.0% 11.9% 123.9
CM50 20.0% 171.6% 0.2 29.9% 140.0% 7.1 16.5% 73.6% 59.2 5.1% 15.7% 22.9
CM100 39.4% 72.4% 3.0 34.3% 91.9% 224.7 14.7% 29.8% 1208.3 13.3% 28.5% 477.6
Total 16.2% 171.6% 0.8 15.5% 140.0% 63.1 8.2% 73.6% 282.7 5.2% 28.5% 123.7

Table 3. The interaction between the CAS and Swinging Forest.

CAS+SF CAS(N1)+SF CAS(N2)+SF
Class Gap (max.) Ttot Gap (max.) Ttot Gap (max.) Ttot

TC40 4.0% 12.6% 6.1 3.9% 12.6% 6.2 2.8% 7.4% 42.9
TC80 1.5% 5.0% 105.3 1.4% 5.0% 106.3 1.0% 4.3% 786.87
TE40 4.0% 12.0% 6.6 3.6% 10.0% 6.9 2.7% 6.8% 43.8
TE80 3.0% 11.9% 123.9 2.8% 7.7% 127.8 2.2% 10.6% 995.6
CM50 5.1% 15.7% 22.9 6.0% 19.2% 21.0 4.5% 11.8% 115.2
CM100 13.3% 28.5% 477.6 15.5% 26.5% 461.4 10.6% 21.8% 2502.9
Total 5.2% 28.5% 123.7 5.5% 26.5% 121.6 3.9% 21.8% 747.9

the CAS, the time required to find the best solution is often much lower, since
the stopping conditions have not yet been optimized. The first three algorithms
do not dominate each other. The greedy heuristic is very fast, but unstable: in
7 cases out of 180 it could not find a feasible solution (the better result on class
CM50 is deceiving). If restarted, Swinging Forest performs better than the CAS,
but in a much longer time. By contrast, their combination gives the best results,
and the most stable, in much lower time. We may conclude that the CAS is at
least an effective initialization procedure.

5.4 Interaction between CAS and Swinging Forest

Table 3 considers a more strict combination of the CAS with local search. Al-
gorithm CAS+SF simply applies Swinging Forest to the best solution found by
the CAS. Algorithms CAS(N1)+SF and CAS(N2)+SF also improve the best
solution found at each iteration of the CAS by a steepest descent exploration
of, respectively, N1 and N1 ∪ N2. Exploring N1 seems to bring little advantage,
and even some loss on the CM50 and CM100 classes . By contrast, the explo-
ration of N1 ∪N2 remarkably improves the quality of the results, as well as their
robustness. The computational time, though much longer, is comparable to a
multiple start (column SF(5) in Table 2). We may conclude that the CAS and
local search gain much indeed by a strict interaction.

Design Local Telecommunication Networks 69

References

1. R. Patterson, E. Rolland, and H. Pirkul. A memory adaptive reasoning technique
for solving the capacitated minimum spanning tree problem. Working paper, Uni-
versity of California, Riverside, September 4th, 1998.

2. R. Cordone and F. Maffioli. A coloured ant system approach to graph tree partition.
In Proceedings of the ANTS’ 2000 Conference, Brussels, Belgium, September, 2000.

3. R. Cordone and F. Maffioli. On graph tree partition problems. In Proceedings of
EURO XVII, Budapest, Hungary, July 16-19th, 2000.

4. N. Guttmann-Beck and R. Hassin. Approximation algorithms for minimum tree
partition. Discrete Applied Mathematics, 87(1–3):117–137, October 1st, 1998.

5. A. Amberg, W. Domschke, and S. Voß. Capacitated minimum spanning trees: Algo-
rithms using intelligent search. Combinatorial Optimization: Theory and Practice,
1:9–39, 1996.

6. K. Altinkemer and B. Gavish. Heuristics with constant error guarantees for the
design of tree networks. Management Science, 32:331—341, 1988.

7. C. Imielińska, B. Kalantari, and L. Khachiyan. A greedy heuristic for a minimum
weight forest problem. Operations Research Letters, 14:65–71, September 1993.

8. M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a
colony of cooperating agents. IEEE Transactions on Systems, Man, and Cyber-
netics Part B: Cybernetics, 26(1):29–41, 1996.

9. D. Costa and A. Hertz. Ants can colour graphs. Journal of Operational Research
Society, 48:295–305, 1997.

10. V. Maniezzo and A. Colorni. The ant system applied to the quadratic assignment
problem. IEEE Transactions on Knowledge and Data Engineering, 1999.

11. T. Stützle and H. Hoos. The MAX–MIN Ant System and local search for
the traveling salesman problem. In T. Bäck, Z. Michalewicz, and X. Yao, edi-
tors, Proceedings of The IEEE Conference on Evolutionary Computation, IEEE
World Congress on Computational Intelligence, pages 309–314, Piscataway, NJ,
1997. IEEE Press.

12. M. Dorigo and L. M. Gambardella. A study of some properties of Ant-Q. Lecture
Notes in Computer Science, 1141:656–665, 1996.

13. M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1):53–66, April 1997.

14. B. Bullnheimer, R. F. Hartl, and C. Strauss. A new rank based version of the ant
system: A computational study. Central European Journal for Operations Research
and Economics, 7(1):25–38, 1999.

15. L. M. Gambardella, E. Taillard, and G. Agazzi. Ant colonies for vehicle routing
problems. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimiza-
tion. McGraw–Hill, 1999.

16. R. C. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36:1389, 1957.

17. M. Gendreau, J.-F. Larochelle, and B. Sansò. A tabu search heuristic for the
Steiner tree problem. Networks, 34(2):162–172, September 1999.

18. J. E. Beasley. OR–Library. http://mscmga.ms.ic.ac.uk/info.html, 1999.

http:// mscmga.ms.ic.ac.uk/ info.html

Cooperative Ant Colonies for Optimizing
Resource Allocation in Transportation

Karl Doerner, Richard F. Hartl, and Marc Reimann

Institute of Management Science, University of Vienna, Brünnerstrasse 72,
A-1210 Vienna, Austria

{karl.doerner, richard.hartl, marc.reimann}@univie.ac.at
http://www.bwl.univie.ac.at/bwl/prod/index.html

Abstract. In this paper we propose an ACO approach, where two
colonies of ants aim to optimize total costs in a transportation net-
work. This main objective consists of two sub goals, namely fleet size
minimization and minimization of the vehicle movement costs, which
are conflicting for some regions of the solution space. Thus, our two ant
colonies optimize one of these sub-goals each and communicate informa-
tion concerning solution quality. Our results show the potential of the
proposed method.

1 Introduction

In the last decade, a new meta-heuristic called Ant Colony Optimization (ACO)
has attracted increasing attention, as a tool to solve various hard combinatorial
optimization problems (cf. e.g. [1], [2], [3], [4], [5]). It is based on research done in
the early nineties by Dorigo et al. (see e. g. [6], [7], [8]) on the Ant System, which
was inspired by the behavior of real ant colonies searching for food. Information
concerning the quality of food sources is communicated between the members of
the colony via an aromatic essence called pheromone. Over time this information
will lead to the reinforcement of some paths, which lead to rich food sources,
while other paths will not be used anymore.

In the context of combinatorial optimization problems this mechanism is im-
plemented as an adaptive memory which, together with a local heuristic function
called visibility, guides the search of the artificial ants through the solution space.
Thus, the artificial ants base their decisions on their own rule of thumb and on
the experience of the colony as a whole. The objective values correspond to the
quality of the discovered food. A convergence proof for a generalized Ant System
Algorithm is provided in [9].

In order to be able to successfully implement such an ACO algorithm for a
given combinatorial optimization problem, problem specific knowledge is neces-
sary to identify an appropriate rule of thumb to guide the search of the ants to
promising regions of the search space. However, for most problems more than
one good heuristic exists, and the quality of each one generally depends on the
current problem constellation. Furthermore, for problems with multiple goals
available heuristics which seek to optimize the objective function with respect

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 70–79, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Cooperative Ant Colonies 71

to one goal can perform rather poor with respect to some other goals. Thus, such
problems are normally solved using either a lexicographic approach or an objec-
tive function, which sums up the values associated with each goal. The former
approach is based on a ranking of the goals with respect to their importance, in
the latter approach each goal can be assigned a weight before the sum is taken.

The aim of this paper is to overcome these problems and develop a method
which finds comprehensive solutions for problems with multiple objectives. We
propose an algorithm, where two colonies of ants aim to optimize total costs
in a transportation network. These costs consist of fixed costs associated with
the fleet size and variable vehicle movement costs. In general, minimal fleet
sizes will not cause minimal vehicle movement costs, these two goals are rather
conflicting. Thus, our two ant colonies optimize one goal each and communicate
information about good solutions in order to enhance the general solution quality.
However, due to the size of the costs the main goal is to minimize the fleet size
required. Thus, in our approach we have a master population which optimizes
the fleet size. This ’master’ population is supported by a ’slave’ population which
optimizes empty vehicle movements and communicates outstanding solutions to
the ’master’ population. A similar approach for a related problem, the Vehicle
Routing Problem with Time Windows, was proposed in [10]. In that approach
one colony optimizes fleet size, while the other one minimizes vehicle movements.
However, there the populations communicate only if one population improves the
global best solution. Thus, both colonies consider fleet size as the main goal. On
the contrary, in our approach, the ’slave’ population does not consider fleet size,
but rather aims to truly minimize the empty vehicle movements.

The remainder of this paper is organized as follows. In section 2 we describe
the problem we consider. Our new approach for handling multiple objectives is
proposed in section 3. In section 4 we present our numerical results. We close in
section 5 with some final remarks and an outlook on future research.

2 Description of the Problem

In this paper we aim to solve a problem, where full truckloads have to be trans-
ported between a number of locations in a network. Each location acts as a depot
for the fleet of homogeneous trucks, available to perform the service. Due to the
fact that we consider only full truckloads each truck goes directly from the pickup
location to the delivery location of a shipment. Upon delivery it is available to
perform another task. However, each truck has to return to its home depot after
two periods. This is due to legal restrictions. The planning horizon, i.e. the time
for which shipment information is available, is eight periods. Thus, each truck
can be used repeatedly within the planning horizon. Finally, the shipments can
not be delivered at any time, but only during pre-specified time windows.

In practice, logistics service providers are generally faced with such a prob-
lem. They have to satisfy customer orders, which require the delivery of goods
between pickup and delivery locations. In general, if these orders are of small
size and distances are large, they are not transported directly from their source

72 K. Doerner, R.F. Hartl, and M. Reimann

to their destination but via the locations of the service provider. Such a situation
is depicted in Figure 1. An order which has to be delivered from customer a to
customer b is first shipped to the distribution center i associated with customer
a. There, together with other orders requiring transportation to the same region,
it is consolidated to a full truckload and delivered to the receiving distribution
center j, from where it is finally delivered to customer b. While the local trans-
portation is generally performed with small trucks, such a problem is treated in
[11], the long distance movements between distribution centers are performed by
larger trucks. The problem considered in our paper is depicted with bold lines
in Figure 1.

Fig. 1. Structure of the distribution network

It is obvious that the utilization of these large trucks is very important for the
service provider. Thus, empty vehicle movements have to be minimized. Apart
from that, the necessary fleet size should be as small as possible to keep the fixed
costs low. Therefore, the overall objective is to minimize total costs, consisting of
fixed costs associated with the utilized vehicle fleet and variable costs associated
with the total distance traveled by all the trucks. Thus, we have to minimize
fleet size and empty vehicle movements simultaneously. Note, that these two
goals may not be equally important. In a situation, where a fleet of vehicles and
a number of drivers are available fleet size may be less important, especially if
unused trucks or drivers could not be utilized for other services. However, in our
case we look at a situation, where utilization of trucks or drivers for alternate
services is possible, and thus fleet size minimization is the main goal.

As stated above, minimizing empty vehicle and minimizing fleet size may be
antagonistic. For example, empty vehicle movements can be kept small if trucks
wait at their locations for nearby pickups. However, these waiting times have a
negative impact on vehicle utilization. This in turn might increase the fleet size
necessary to satisfy all transportation requests. Given this tradeoff between the
goals we will now propose our new approach developed for this multi-objective
problem.

Cooperative Ant Colonies 73

3 Cooperative Ant Colonies to Handle Multiple
Objectives

In our algorithm two objectives are optimized simultaneously by coordinating the
activities of two ant colonies. The ants of the larger master population optimize
the main objective function. The ants of the smaller slave population optimize
a minor goal and ’inject’ their knowledge into the pheromone information of
the main population. The two ant colonies are coordinated by the procedure
CooperativeACO.

Table 1. The CooperativeACO procedure

procedure CooperativeACO
for i := 1 to max Iterations

ACO (ηmaster; Γmaster; Λmaster);
solution vectors slave pop:=
ACO (ηslave; Γ slave; Λslave);
PheromoneInjection to the pheromone information of the master population

The procedure CooperativeACO, described in Table 1 initializes the two ant
colonies (master population and slave population), handles the communication
of the two populations via one global pheromone information and controls the
termination of the algorithm. In detail, for a number of max Iterations the pro-
cedure ACO is executed for the ’master’ population as well as the ’slave’ popu-
lation. Both algorithms are called with the parameter settings for the priority
rule (ηmaster, ηslave), population size (Γmaster, Γ slave), and the number of best
ants (Λmaster, Λslave) for the pheromone update. After the run of the two ACO
Procedures the PheromoneInjection for the master population is executed by
using the results (solution vectors slave pop), produced by the ACO procedure
with the parameter settings for the ’slave’ population. The resulting pheromone
information is replicated in the local pheromone information of the ’master’
population.

Let us now turn to a detailed description of the ACO procedure (subsection
3.1), where we briefly describe the two basic ACO phases, namely the con-
struction of a feasible solution and the trail update for the global pheromone
information (in section 3.2).

3.1 The Ant Colony Algorithm

The master and the slave population use the same ACO algorithm to construct
feasible solutions. Starting at time t = 0 a truck is sequentially filled with orders
until the end of the planning horizon T is reached, or no more order assignment
is feasible. At this point another vehicle is brought into use, t is set to t = 0 and
the order assignment is continued. This procedure is repeated until all orders
are assigned.

74 K. Doerner, R.F. Hartl, and M. Reimann

For the selection of orders that have not yet been assigned to trucks, two
aspects are taken into account: how promising the choice of that order is in
general, and how good the choice of that order was in previous iterations of
the algorithm. The first information is the visibility, the second is stored in the
pheromone information.

The proposed ant system can be described by the algorithm given in Table 2.

Table 2. The ACO procedure

procedure ACO (η; Γ ; Λ)
Initialization of the ACO;
set a number of ants on each depot;
for Ant := 1 to Γ

while not all orders are assigned
initialize a new truck;
t = 0;
select a home base for the truck;
while ∃ ηij(t) > 0 ∀i, j ∈ J

select an order using formula (3);
update t;

evaluate the objective function;
for λ := 1 to Λ

improve the solution using the post optimization procedure
evaluate the objective function;

update local pheromone information;
return solution vectors;

In the initialization phase, Γ ants are generated and each depot is assigned
the same number of ants. Then the two basic phases - construction of tours and
trail update - are executed for a given number of iterations. To improve the
solution quality a post optimization procedure will be applied, which seeks to
improve a solution by finding the optimal depot for each truck given the orders
assigned. For each truck, all possible depot assignments are considered and the
one yielding least costs is chosen. Note however, that the sequence of the orders
assigned to each vehicle must not be changed.

Visibility. Let J denote the set of orders and D denote the set of depots.
The visibility information is stored in a matrix η, each element in the matrix
is denoted by ηij(t), where ηij(t) is positive, if and only if the assignment of
order j after order i is feasible. An assignment of order j is feasible, if the order
can be scheduled on the current vehicle without violation of its time window.
Hence, it is clear that η depends on the time. Note that in each iteration only
the row associated with the order assigned in the previous iteration has to be
evaluated. The actual value of the visibility of order j depends on the priority
rule incorporated in the algorithm. Based on this information we can define the
set Ωi(t) = {j ∈ J : j is an order feasible to assign}.

Cooperative Ant Colonies 75

It is obvious that the choice of the priority rule substantially influences the
solution quality. In our problem at hand, we want to minimize total costs, that
means a minimization of both empty vehicle movements, as well as number
of trucks required. Therefore, the master population of the Cooperative ACO
uses a priority rule, which leads to good solutions with respect to total costs.
This priority rule takes into consideration the minimization of the empty vehicle
movements only insufficiently. Thus, we introduce a slave population, which
uses a priority rule suitable to minimize this goal. The relevant information
discovered by the ants of the slave population is inserted in the global pheromone
information and can be used by the ants of the master population.

Visibility for the master population. The priority rule for the master pop-
ulation is:

ηmaster
ij (t) =

{
e−4·(EDDj+2·EPSTj(i,t)) if j ∈ Ωi(t)

0 otherwise
∀j ∈ J, (1)

This priority rule aims to maximize truck utilization by avoiding waiting
times. It takes into account the due dates (EDD), as well as the earliest possible
pickup times (EPST) of the orders. While the EDD measure exactly represents
the due dates, the EPST measure takes into account waiting times and con-
necting empty vehicle movements. A more detailed description of the priority
rule can be found in [12].

Visibility for the slave population. The priority rule for the slave population
is:

ηslave
ij (t) =

{
e−16·DIST (i,j) if j ∈ Ωi(t)

0 otherwise
∀j ∈ J. (2)

This priority rule is solely based on the distance traveled to get from the
delivery location of the last customer assigned (i) to the pickup location of
customer j, DIST (i, j). It is obvious, that this priority rule is well suited for the
minimization of empty vehicle movements.

Decision rule. Given the visibility and pheromone information, a feasible order
j is selected to be visited immediately after order or depot i according to a
random-proportional rule that can be stated as follows:

Pξ
ij(t) =

[τξ
ij

]α[ηξ
ij

(t)]β∑
h∈Ωi(t)

[τξ
ih

]α[ηξ
ih

(t)]β
if j ∈ Ωi(t)

0 otherwise,

∀j ∈ J, ξ ∈ {master, slave}. (3)

This probability distribution is biased by the parameters α and β that de-
termine the relative influence of the trails and the visibility, respectively. τij ,
represents the current pheromone information, i.e. the value τij represents the
pheromone information of assigning order j immediately after order i.

76 K. Doerner, R.F. Hartl, and M. Reimann

3.2 Pheromone Information

Pheromone Update. After the two ant populations have constructed a feasible
solution, the global pheromone trails are updated. We use a pheromone update
procedure, where only a number of the best ants, ranked according to solution
quality, contribute to the pheromone trails. Such a procedure was proposed in
[1]. The update rule is as follows:

τ ξ
ij = ρ · τ ξ

ij +
Λξ∑

λ=1

∆τ ξ,λ
ij , where ξ ∈ {master, slave} ∀i, j ∈ J, (4)

where ρ is the trail persistence (with 0 ≤ ρ ≤ 1). Only the Λmaster best ants
of the master population and the Λslave best ants of the slave population update
the pheromone information. If an order j was performed immediately after an
order i in the solution of the λ-th best ant of Λmaster or of Λslave the pheromone
trail is increased by a quantity ∆τλ

ij . This update quantity can be represented
as

∆τ ξ,λ
ij =

1 − λ−1
Λξ if 1 ≤ λ ≤ Λξ, where ξ ∈ {master, slave}

0 otherwise
∀i, j ∈ J. (5)

Pheromone Injection. After both ACO procedures have been executed the
pheromone injection is performed in order to communicate good solutions from
the slave to the master population. Formally this can be written as

τmaster
ij = τmaster

ij +
Λslave∑
λ=1

∆τ slave,λ
ij . (6)

4 Numerical Analysis

In this section we will present the results of our numerical analysis. We
generated a set of test problems with a network of 8 distribution centers, 512
transportation orders and a planning horizon of 8 periods. Given these settings,
the problems differ with respect to the average time window lengths associated
with the orders. These average time window lengths were varied between 1 and
8, 1 meaning that every order has to be delivered within one period, while 8
means that no time window restrictions have to be respected. The global ob-
jective, which is also the objective function for the ’master’ population is given by

TC = 20 · FS + 1 · MC,

where TC denotes the total costs, FS is the fleet size and MC denotes the
vehicle movement costs. An interpretation of the weights used in this objective
function can be found in [12]. The objective function for the ’slave’ population
is given by

V C = 1 · MC,

Cooperative Ant Colonies 77

where V C denotes the variable vehicle movement costs. In this case the popu-
lation does not take the fleet size into account when evaluating solutions. The
following parameter setting was chosen for the Ant System:

α = 1, β = 1, ρ = 0.5, τ0 = 0.1, Λmaster = 8, Λslave = 1, Γmaster = 128,
Γ slave = 32 and maxIterations = 30.

Let us now turn to the analysis of our cooperative ant colonies. Note, that the
results presented in this section are based on averages over 40 runs for each
problem. In order to show the effects of the use of the memory in general, and
information sharing in particular we compare three different cases.

– Case 1: 4800 randomized greedy solutions
– Case 2: 1 master population of 160 ants, no slave population
– Case 3: Cooperative ant colonies: 1 master population with 128 ants, 1 slave

population with 32 ants, slave population reports good solutions to master
population

Case 1 represents a guided stochastic search where the solutions are built
using only the heuristic information given in 1. The solutions are completely
independent of each other as no memory is utilized. Case 2 represents a basic
ACO algorithm where one population of ants searches the solution space. Each
ant in the colony utilizes the same heuristic information, which in our case
is the one presented for the master population in the last section. The ants
communicate via the pheromone information. Finally, Case 3 represents our new
approach which is based on a cooperative system of two ant colonies as presented
in the last section. In Table 3 these three cases are compared with respect to
empty vehicle movements and fleet sizes. By comparing Cases 2 and 3 with Case
1 it can be clearly seen, that the use of a memory leads to significantly better
results than a simple guided stochastic search.

Let us now turn to the much more interesting question whether information
sharing between populations is useful. The results shown in the table suggest
that our Cooperative Ant Colony approach outperforms the basic Ant System.
Except for one case (the problem with an average time window length of 4 peri-
ods) our new approach always finds lower total costs than the more traditional
Ant System. If we split these costs up, we can analyze these results with respect
to fleet sizes and empty vehicle movements. Let us first consider empty vehi-
cle movements. Table 3 shows, that our new approach always finds less empty
vehicle movements. The average improvement in empty vehicle movements is
2.55%. Thus, there is always a positive influence of information sharing. If we
take a look at the fleet sizes, we see that apart from one problem (the prob-
lem with an average time window length of 4 periods) this improvement of the
vehicle movements is achieved without detrimental effects on the fleet size. On
the contrary, for three problems, those with average time windows of 1, 6 and
7 periods respectively, our new approach even improves the necessary fleet size.
Furthermore, for two problems, namely the problems with time window lengths
of 1 and 7 periods respectively, the best results found with our new approach

78 K. Doerner, R.F. Hartl, and M. Reimann

utilize one truck less than the best solutions associated with the basic Ant Sys-
tem. Furthermore, the variability in the results of our new approach is generally
smaller than the variability in the results of the basic Ant approach.

Note, that while the improvements seem to be rather small, the presented
results are based on first simulations. Thus, we strongly expect that parameter
fine tuning or slight modifications could possibly lead to an increase in these
improvements.

Table 3. Solution comparison between several advanced Ant System algorithms

Length of Case 1 Case 2 Case 3
Time

Windows a b c a b c a b c
1 809.389 62.093 29.95 750.658 42.362 28 748.775 41.479 27.95
2 742.504 53.708 27.025 680.264 31.968 25 679.969 31.673 25
3 777.839 56.044 28.675 701.506 33.210 26 700.657 32.361 26
4 744.139 55.844 27 672.297 32.001 24.6 674.806 30.510 24.8
5 719.449 51.153 26 632.908 24.612 23 632.306 24.010 23
6 707.477 51.181 25.4 619.145 24.349 22.325 616.455 23.659 22.225
7 698.046 49.250 25.025 609.003 20.707 22 607.961 20.165 21.975
8 695.278 47.483 24.975 586.872 18.576 21 586.442 18.146 21

a: Total costs b: Empty vehicle movements c: Fleet size

5 Conclusions and Future Research

In this paper we have proposed an ACO approach, where two ant colonies coop-
eratively solve a multi-objective transportation problem. The objective function
was to minimize total costs, consisting of fixed costs for the utilization of the
fleet and variable costs for the transportation movements. In our algorithm a
large population of ants solves the problem with respect to the fleet size costs,
as these costs are the major component in the objective function. This large
population is supported by a small population, which aims to minimize total
vehicle movement costs and communicates good solutions to the larger master
population.

Our results can be viewed as a proof of concept for the proposed method. We
showed, that the communication of the two ant colonies improved the solution
quality. While these improvements are not very large, they highlight the potential
of communication between colonies with different problem solving approaches.

Future research will deal with improvements of this concept, as well as other
communication mechanisms which enhance the performance of agent based
optimization algorithms.

Acknowledgments. The authors are grateful for financial support from the
Austrian Science Foundation (FWF) under grant SFB #010 ’Adaptive Informa-
tion Systems and Modeling in Economics and Management Science’ and from
the Oesterreichische Nationalbank (OENB) under grant #8630.

Cooperative Ant Colonies 79

References

1. Bullnheimer, B., Hartl, R. F. and Strauss, Ch.: An improved ant system algorithm
for the vehicle routing problem. Annals of Operations Research 89 (1999) 319–328

2. Costa, D. and Hertz, A.: Ants can colour graphs. Journal of the Operational Re-
search Society 48(3) (1997) 295–305

3. Dorigo, M. and Gambardella, L. M.: Ant Colony System: A cooperative learning
approach to the Travelling Salesman Problem. IEEE Transactions on Evolutionary
Computation 1(1) (1997) 53–66

4. Dorigo, M., Di Caro, G. and Gambardella, L. M.: Ant Algorithms for Discrete
Optimization. Artificial Life 5(2) (1999) 137-172

5. Stützle, T. and Dorigo, M.: ACO Algorithms for the Quadratic Assignment Prob-
lem. In: Corne, D., Dorigo, M. and Glover, F. (Eds.): New Ideas in Optimization.
Mc Graw-Hill, London (1999)

6. Colorni, A., Dorigo, M. and Maniezzo, V.: Distributed Optimization by Ant
Colonies. In: Varela, F. and Bourgine, P. (Eds.): Proc. Europ. Conf. Artificial
Life. Elsevier, Amsterdam (1991)

7. Dorigo, M.: Optimization, Learning and Natural Algorithms. Doctoral Disserta-
tion. Politecnico di Milano, Italy (1992)

8. Dorigo, M., Maniezzo, V. and Colorni, A.: Ant System: Optimization by a Colony of
Cooperating Agents. IEEE Transactions on Systems, Man and Cybernetics 26(1)
(1996) 29–41

9. Gutjahr, W. J.: A graph-based Ant System and its convergence. Future Generation
Computing Systems. 16 (2000) 873–888

10. Gambardella, L. M., Taillard, E. and Agazzi, G.: MACS-VRPTW: A Multiple
Ant Colony System for Vehicle Routing Problems with Time Windows. In: Corne,
D., Dorigo, M. and Glover, F. (Eds.): New Ideas in Optimization. McGraw-Hill,
London (1999)

11. Irnich, St.: A Multi-Depot Pickup and Delivery Problem with a Single Hub and
Heterogeneous Vehicles. European Journal of Operational Research 122(2) (2000)
310-328

12. Doerner, K. F., Gronalt, M., Hartl, R.F., and Reimann, M.: Optimizing Pickup and
Delivery Operations in a Hub Network with Ant Systems. POM Working Paper
07/2000

An ANTS Algorithm for Optimizing the
Materialization of Fragmented Views in Data

Warehouses: Preliminary Results

Vittorio Maniezzo1, Antonella Carbonaro1,
Matteo Golfarelli2, and Stefano Rizzi2

1 Department of Computer Science, University of Bologna, Italy
{maniezzo, carbonar}@csr.unibo.it
2 DEIS, University of Bologna, Italy
{mgolfarelli, srizzi}@deis.unibo.it

Abstract. The materialization of fragmented views in data warehouses
has the objective of improving the system response time for a given work-
load. It represents a combinatorial optimization problem arising in the
logical design of data warehouses which has so far received little attention
from the optimization community. This paper describes the application
of a metaheuristic approach, namely the ANTS approach, to this prob-
lem. In particular, we propose an integer programming formulation of the
problem, derive an efficient lower bound and embed it in an ANTS al-
gorithm. Preliminary computational results, obtained on the well-known
TPC-D benchmark, are presented.

1 Introduction

Data warehouses are enjoying increasing market success being foremost systems
for companies willing to improve the support given to decision processes and
data analysis procedures. A data warehouse enables the executives to retrieve
summary data, derived by “cleaning” and integrating those present in opera-
tional information systems; primary issues are flexible query interface and fast
query response.

The design of a data warehouse starts with the identification of relevant data
in the company information system; these data must be integrated, reorganized
in a multidimensional fashion and possibly aggregated in order to be of effective
use. After that, conceptual, logical and physical design phases are encompassed.
The problem addressed in this paper belongs to logical design and has the ob-
jective of minimizing the query response time by reducing the number of disk
pages to be accessed. This may be obtained by defining appropriate tables of ag-
gregated data (views) and by including in them only the data which are actually
requested by some query.

Storing aggregated data obviously leads to redundancy, thus generating a
trade-off between effectiveness and amount of memory to be allocated. The al-
gorithm presented in this paper directly addresses the optimization of this trade-
off, when working on real-world large-scale data repositories. To the best of our

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 80–89, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Preliminary Results 81

knowledge, no algorithmic solution has been presented so far in the literature for
the problem of interest, which goes under different names, such as the problem of
materializing fragmented views, vertical fragmentation problem or vertical par-
titioning problem. The problem has been described in [1], where no optimization
algorithm is proposed. In [2], a related problem is described, aimed at building
data indices to enhance performance in parallel implementations of data ware-
houses. In [3] the problem is formalized and a branch-and-bound approach is
devised.

This paper is structured as follows. In Section 2 we introduce the necessary
background on data warehouses with reference to logical design. In Section 3 we
define the vertical fragmentation problem (VFP) and propose a mathematical
formalization of VFP and a possible linear relaxation of the formulation lead-
ing to an effective polynomial-time lower bound. Section 4 reviews the ANTS
approach and describes the adaptation of ANTS to the VFP, while Section 5
presents preliminary computational results obtained on the TPC-D benchmark.
Finally, Section 6 concludes the paper.

2 Background

The description of a data warehouse must start from the adoption of a suitable
data modeling language. The most widely accepted one is the multidimensional
modeling technique [4], which denotes data by means of an n-dimensional (hy-
per)cube, where each dimension corresponds to a characteristic of the data.
Each element of the cube is usually characterized by quantitative attributes,
called measures, which are computed from the operational information system.
Furthermore, each dimension is related to a set of attributes defining a hierarchy
of aggregation levels. Elements of the cube can then be aggregated along these
hierarchies, in order to retrieve summary values for measures.

For example, a 3-dimensional cube with dimensions Store, Product and Date
might represent the sales in a chain store; the measures could be Quantity and
Revenue. In this case, for each product, each element of the cube would measure
the quantity sold in one store in one day and the corresponding revenue. An
interesting aggregation could be that computing the total monthly revenue for
each category of products.

The design of a data warehouse goes thorough successive phases [5], among
which are conceptual design, logical design and physical design. The objective
of logical design, relevant for this paper, is the minimization of query response
time. This is obtained by pre-defining a set of queries, called workload, that
the system is likely to have to answer more often. This is possible on the one
hand, because the user typically knows in advance which kind of data analysis
will be carried out more often for decisional or statistical purposes, and on the
other hand, because a substantial amount of queries are aimed at extracting
summary data to fill standard reports. Actually, taking into account all possible
queries is computationally infeasible, but it is possible to identify a reduced set
of significant and frequent queries which are considered to be representative of
the actual workload.

82 V. Maniezzo et al.

More formally, a cube f is a 4-tuple < Patt(f),Meas(f), Attr(f), R >,
where:

– Patt(f) is a set of dimensions;
– Meas(f) is a set of measures;
– Attr(f) is a set of attributes (being the dimensions particular attributes, we

have Patt(f) ⊆ Attr(f));
– R is a set of functional dependencies ai → aj defined between pairs of

attributes in Attr(f), where ai → aj denotes both the case in which ai
directly determines aj and the case in which ai transitively determines aj .

Obviously every attribute which is not a dimension itself must be derivable
from a dimension, that is ∀aj ∈ Attr(f) \ Patt(f) (∃ai ∈ Patt(f); ai → aj).

In the TPC-D benchmark [6], which consists of a database of orders issued to
a company, one of the cubes of interest represents order line items; it is named
LineItem and is defined by:

Patt(LineItem) = {Part, Supplier, Order, ShipDate, ShipMode, ReturnFlag,
ReceiptDate, CommitDate, Status},

Meas(LineItem) = {UnitPrice, Qty, ExtPrice, Discount,DiscPrice, Charge, Tax}
and by attributes with specific functional dependencies.

Given a cube f , an aggregation pattern (or simply a pattern) on f is a set
p, p ⊆ Attr(f), such that no functional dependency exists between any pair of
attributes in p: ∀ai ∈ p(6 ∃aj ∈ p; ai → aj).

With reference to the LineItem cube, examples of patterns are Patt(f),
{Part, OMonth, SNation}, {Brand, Type}, {}.

Let pi and pj be two patterns (pi 6= pj); pi is coarser than pj (pi < pj)
if every element in pi is either also in pj or is functionally dependent on some
element in pj . For example, {Brand,CRegion} < {Brand,Customer,Supplier}.

A query q on a cube f is characterized by the pattern Patt(q) on which
data must be aggregated and by the measures Meas(q) required in output. Part
of the queries the user formulates may require comparing measures taken from
distinct cubes; in the OLAP terminology, these are called drill-across queries.
Intuitively, a drill-across query can be formulated on cubes sharing one or more
attributes. Consider for instance the PartSupplier cube characterized by:

Patt(PartSupplier) = {Part, Supplier, Date},
Meas(PartSupplier) = {AvailQty, SupplyCost}

A possible drill-across query is the one comparing the total available quantity
and the total quantity sold for each part, characterized by Patt(q) = {Part},
Meas(q) = {AvailQty,Qty}.

Given a cube f , each pattern on f determines a possible view to be mate-
rialized. Given a workload expressed as a set of queries, we will call candidate
views those being potentially useful to reduce the workload execution cost [7].
Let Cand(f) be the set of the candidate views for cube f ; each v ∈ Cand(f) is
defined by its pattern Patt(v). For each cube f , the view at pattern Patt(f) is
always a candidate. We will denote with P the set of patterns of all the candidate
views on all the cubes involved in the workload.

Preliminary Results 83

3 The Vertical Fragmentation Problem

In presence of a memory constraint, which requires to use a maximum memory
size, only a subset of the candidate views can be actually materialized. Thus,
several techniques have been proposed to select the subset to be materialized in
order to optimize the response to the workload (e.g, [8], [9]). All the approaches
in the literature store, for each view v ∈ Cand(f), all the measures in Meas(f).
In this paper, we evaluate how the solution can be further optimized by materi-
alizing views in fragments including measures requested together by at least one
query. In fact, some queries on f may require a subset of Meas(f); thus, it may
be worth materializing fragments including only a subset of Meas(f) (partition-
ing). On the other hand, the access costs for drill-across queries may be decreased
by materializing fragments which include measures taken from different cubes
(unification).

With the term fragmentation we denote both partitioning and unification
of views. The approach we propose in this paper is aimed at determining an
optimal set of fragments to materialize from the candidate views.

A fragment v is useful to solve query q iff Patt(q) ≤ Patt(v) and Meas(q) ∩
Meas(v) 6= ∅. If several fragments are necessary to retrieve all the measures in
Meas(q), they must be aggregated on Patt(q) and then joined.

In order to specify objective and constraints of fragmentation, some further
notation must be introduced.

Given a cube f and a workload Q, it is possible to partition the measures
Meas(f) into subsets (minterms) such that all the measures in a minterm are
requested together by at least one query in Q and do not appear separately in
any other query in Q. We call terms the sets of measures obtained as the union of
any combination of minterms, even from different cubes (of course, all minterms
are also terms). We denote with T the set of all terms.

The fragmentation problem can now be modeled over a fragmentation array
Ξ = [xijk], which is a tridimensional array of 0-1 binary variables whose dimen-
sions correspond to the queries qi ∈ Q, to the patterns pj ∈ P and to the terms
tk ∈ T , respectively. Each cell of the array corresponds to a fragment candidate
to materialization; setting xijk = 1 means stating that query qi will be answered
accessing (also) the fragment defined by the measures in tk and pattern pj .

A value assignment for variables xijk is feasible if:

1. for every query, each measure required is obtained by one and only one
fragment;

2. for every pattern, each measure is contained in one and only one fragment.

The objective function to minimize is based on the number of disk pages to
access in order to satisfy the workload.

3.1 Mathematical Formulation

Problem VFP can be formulated as follows. Let Q be the index set of the queries
in the workload and P the index set of the patterns in P . For every query i ∈ Q,
Pi denotes the subset of P containing the indices of all patterns pj which are

84 V. Maniezzo et al.

useful to solve query qi (Patt(qi) ≤ pj) and for which pj = Patt(v), where v is
a candidate view for at least a cube f involved in query i, i.e., v ∈ Cand(f).

The index set T contains the indices of the terms in T ; we will further denote
by Ti the subset of indices of the terms which contains at least one measure in
Meas(qi) (i ∈ Q).

Problem VFP asks to minimize the workload execution cost, subject to a
number of constraints. The cost is computed as the sum of the costs cijk of
obtaining, for each query i ∈ Q, the relevant term k ∈ Ti from pattern j ∈ Pi.

Let xijk be a 0-1 variable which is equal to 1 if and only if query i is executed
on pattern j to get the term k. Let yjk be a 0-1 variable which is equal to 1 if
and only if the pattern j is used to get the term k, in which case an amount bjk
of disk space out of the maximum available space amount B is needed. Problem
VFP is then as follows.

(V FP) z(V FP) = Min
∑
i∈Q

∑
j∈Pi

∑
k∈Ti

cijkxijk (1)

s.t.
∑
j∈Pi

∑
k∈Ti

xijk = 1 i ∈ Q (2)

∑
k∈T

yjk ≤ 1 j ∈ P (3)

xijk ≤ yjk i ∈ Q, j ∈ P, k ∈ Ti (4)∑
j∈P
k∈T

bjkyjk ≤ B (5)

xijk ∈ {0, 1} i ∈ Q, j ∈ P, k ∈ T (6)

yjk ∈ {0, 1} j ∈ P, k ∈ T (7)

Equations (2) impose that each measure specified in a query must be obtained
by one and only one pattern (thus, implicitly, that each query in the workload
must be satisfied); inequalities (3) require that, in each pattern, a measure can
belong to only one term; inequalities (4) link the x and y variables and inequality
(5) is the memory knapsack constraint. Finally, constraints (6) and (7) are the
integrality constraints.

By a linear relaxation of integrality constraints we get problem LVFP whose
optimal solution value z(LV FP) constitutes a lower bound to z(V FP).

Remark . Consider a problem VFP’ which is obtained from VFP by fixing to
1 some xijk variable. Since fixing a xijk entails fixing to one the corresponding
yjk variable due to constraints (4), and since fixing to 1 a xijk entails fixing
to 0 all variables appearing with it in the relevant constraints (2), it follows
that VFP’ is a subproblem of VFP having less variables (all the fixed ones can
be disposed of) and less constraints (all those defined only over the expunged
variables). Moreover, the value of B in constraint (5) is decreased by the amount
corresponding to the sum of the bjk of the yjk variables fixed to 1. The partial

Preliminary Results 85

solution PS will have a cost z(PS) due to the fixed xijk variables. A lower bound
to the cost of the best solution S containing PS is obviously z′(S) = z(PS) +
z(V FP ′). It is easy to notice that z(V FP ′) can be approximated from below by
adding the optimal values of the dual variables associated to the constraints of
problem LVFP maintained in problem VFP’.

4 The ANTS Metaheuristic

ANTS [10] is a technique to be framed within the Ant Colony Optimization
(ACO) class, whose first member called Ant System was initially proposed by
Colorni, Dorigo and Maniezzo [11]. The main underlying idea of all ACO al-
gorithms is that of parallelizing search over several constructive computational
threads, all based on a dynamic memory structure incorporating information on
the effectiveness of previously obtained results and in which the behavior of each
single agent is inspired by the behavior of real ants.

The collective behavior emerging from the interaction of the different search
threads has proved effective in solving combinatorial optimization problems.

An ant is defined to be a simple computational agent, which iteratively con-
structs a solution for the problem to solve. Partial problem solutions are seen as
states; each ant moves from a state ι to another one ψ, corresponding to a more
complete partial solution. At each step σ, each ant k computes a set Aσk(ι) of
feasible expansions to its current state, and moves to one of these according to
a probability distribution specified as follows.

For ant k, the probability pkιψ of moving from state ι to state ψ depends on
the combination of two values:

1. the attractiveness ηιψ of the move, as computed by some heuristic indicating
the a priori desirability of that move;

2. the trail level τιψ of the move, indicating how proficient it has been in the
past to make that particular move: it represents therefore an a posteriori
indication of the desirability of that move.

In ANTS, the attractiveness of a move is estimated by means of lower bounds
(upper bounds in case of maximization problems) to the cost of the completion of
a partial solution. In fact, if a state ι corresponds to a partial problem solution it
is possible to compute a lower bound to the cost of a complete solution containing
ι. Therefore, for each feasible move (ιψ), it is possible to compute the lower bound
to the cost of a complete solution containing ψ: the lower the bound the better
the move. The use of LP bounds is a very effective and straightforward general
policy, whenever tight such bounds have been identified for the problem to solve.

Trails are updated when all ants have completed a solution, increasing or
decreasing the level of trails corresponding to moves that were part of ”good”
or ”bad” solutions, respectively.

The specific formula for defining the probability distribution of moving from
a state to another one makes use of a set tabuk which indicates a problem-
dependent set of infeasible moves for ant k. Different authors use different for-
mulae, but according to the ANTS approach [10] probabilities are computed

86 V. Maniezzo et al.

as follows: pkiψ is equal to 0 for all moves which are infeasible (i.e., they are in
the tabu list), otherwise it is computed by means of formula (8), where α is a
user-defined parameter (0 ≤ α ≤ 1).

pkιψ =
α · τιψ + (1 − α) · ηιψ

Σ(ιν)/∈tabuk
(α · τιν + (1 − α) · ηιν) (8)

Parameter α defines the relative importance of trail with respect to attractive-
ness. After each iteration t of the algorithm, that is when all ants have completed
a solution, trails are updated following formula (9).

τιψ(t) = τιψ(t− 1) +∆τιψ (9)

where ∆τiψ represents the sum of the contributions of all ants that used move
(ιψ) to construct their solution. The ants’ contributions are proportional to the
quality of the achieved solutions , i.e., the better an ant solution, the higher will
be the trail contribution added to the moves it used.

In ANTS, the trail updating procedure evaluates each solution against the
last k ones globally constructed by ANTS. As soon as k solutions are available,
their moving average z is computed; each new solution zcurr is compared with
z (and then used to compute the new moving average value). If zcurr is lower
than z, the trail level of the last solution’s moves is increased, otherwise it is
decreased. Formula (10) specifies how this is implemented:

∆τιψ = τ0 · (1 − zcurr − LB

z − LB
) (10)

where z is the average of the last k solutions and LB is a lower bound to the
optimal problem solution cost.

Based on the described elements, the ANTS metaheuristic is the following.
The metaheuristic just introduced must be specified to make it an algorithm,

that is a heuristic procedure for problem VFP. The only element to define is the
lower bound to use as an estimate of the attractiveness of a move.

The lower bound used was the linear time approximation of the dual solution
introduced in remark 1. That is, at every step we compute the cost of the partial
solution so far constructed and we remove from the mathematical representation
of the problem all constraints of type (2) and (4) which are saturated by the
incumbent solution and all variables which cannot belong to any feasible solution
due to those already fixed. The lower bound is obtained as the sum of all dual
variables associated with the remaining constraints, with the values computed
in the optimal solution of the linear relaxation of the whole problem.

5 Computational Results

The ANTS algorithm described in Section 4 has been coded in Microsoft Visual
C++ and run on a Pentium III, 733 MHz machine working under Windows 98.
As a linear programming solver, in order to compute the lower bounds we used
CPLEX 6.6. The test set has been obtained from the TPC-D benchmark [6],

Preliminary Results 87

ANTS algorithm

1. (Initialization)
Compute a (linear) lower bound LB to the problem to solve.
Initialize τιψ, ∀(ι, ψ) .

2. (Construction)
For each ant k do

repeat
compute ηιψ, ∀(ι, ψ), as a lower bound to the cost of a complete
solution containing ψ.
choose the state to move to, with probability given by (8).
append the chosen move to the k-th ant’s set tabuk.

until ant k has completed its solution.
end for.

3. (Trail update)
For each ant move (ιψ) do

compute ∆τιψ.
update the trail matrix by means of (9) and (10).

end for.

4. (Terminating condition)
If not(end-test) go to step 2.

Fig. 1. Pseudo code for the ANTS algorithm

which is a standard in the data warehousing field. The benchmark is defined
on a 1 Gb sized database composed by 3 star schemes and contains data about
items sold by a company. Since the standard TPC-D contains only 17 queries,
to generate more challenging instances we added 13 queries structurally similar
to the already present ones, as already proposed in [3]. The set of candidate
views is obtained by means of the approach proposed in [7]. ANTS allowed us
to select the subset of the fragments to be materialized, optimizing the query
response time by reducing the number of disk pages to be accessed under the
given memory constraint. In order to evaluate the algorithm effectiveness, we
have defined a number of instances, all derived from the TPC-D by randomly
selecting a progressively greater subset of the 40 queries.

Experimental runs are still under way. Table 1 shows the preliminary results
obtained so far. The table columns show:
− the problem name (prob), where the number indicates how many queries were
used to build the instance;
− the number of constraints (m);
− the number of variables (n);
− the number of constraints which can be removed by a specific preprocessing
routine (reduct);
− the lower bound z(LV FP) (lvfp);
− the cpu time to compute z(LV FP) (t lvfp);

88 V. Maniezzo et al.

− the percentual deviation from z(LV FP) of the upper bound (zub);
− the cpu time to compute the ANTS upper bound (t zub).

Problems VFP3 and VFP5 are small-sized problems that we used to fine
tune the algorithm elements. For all other problem dimensions we present three
instances, which were obtained by randomly selecting the specified number of
queries out of the possible 40. Notice the high variability of difficulty deriving
from different query sets.

On the small instances, ANTS was able to identify the optimal solution, as
testified by the fact that the lower bound has a cost equal to that of the best
solution found by ANTS. On bigger instances, the distance between z(LVFP)
and the best solution cost found by ANTS increases with the problem size: on
those instances more CPU time than the 30 minutes allowed in this test is needed
to get good quality results.

Table 1. ANTS results on the set of VFP test problems

prob m n reduct lvfp t lvfp zub t zub
VFP3 94 76 20 50475.0 0.05 0.00 7.34
VFP5 729 704 34 281816.2 0.22 2.18 1138.22
VFP10A 4780 5338 245 65190.0 0.66 0.00 568.37
VFP10B 360 358 5 33976.0 0.06 0.00 1367.23
VFP10C 592 512 97 116463.0 0.11 0.00 4.23
VFP15A 4962 5528 242 67971.0 0.82 0.12 1046.24
VFP15B 2365 2544 108 132775.7 0.39 0.72 384.38
VFP15C 6410 7118 317 286063.2 4.67 2.03 183.59
VFP20A 9466 10397 405 128094.4 10.77 3.28 428.39
VFP20B 7745 8285 326 165426.2 2.41 5.92 1634.53
VFP20C 36854 40108 1358 186915.7 100.46 10.77 823.48
VFP25A 25855 28121 874 173367.4 10.99 6.57 1772.16
VFP25B 8182 8766 314 169133.6 2.47 19.27 1003.80
VFP25C 57964 62733 1965 145471.3 254.90 33.98 204.55
VFP30A 44758 48133 1339 237247.4 118.36 22.00 1538.23
VFP30B 62973 67484 1735 208801.4 343.29 35.76 704.86
VFP30C 75489 81026 2206 178171.3 625.93 43.88 839.11

6 Conclusions

In this paper we presented a preliminary report about the use of a state-of-the-art
metaheuristic approach for optimizing the materialization of fragmented views in
data warehouses. We have shown how the problem is amenable to mathematical
programming formalization and how efficient lower bounds can be derived.

The lower bound has been embedded in an ANTS framework, obtaining a
heuristic approach for solving the materialization (or vertical fragmentation)
problem. Preliminary computational results on standard problem test sets from
the literature confirm that the proposed approach is promising.

Preliminary Results 89

However, further work need to be accomplished. Specifically, implementation
details, such as the use of efficient data structures and the definition of a well-
tuned local optimization procedure, still have to be defined and possible different
mathematical formulations should be studied.

References

1. D. Munneke, K. Wahlstrom, and M. Mohania. Fragmentation of multidimensional
databases. In Proc. 10th Australasian Database Conf., pages 153-64, 1999.

2. A. Datta, B. Moon, and H. Thomas. A case for parallelism in data warehousing
and OLAP. In Proc. IEEE First Int. Workshop on Data Warehouse Design and
OLAP Technology, 1998.

3. M. Golfarelli, D. Maio, and Rizzi S. Applying vertical fragmentation techniques in
logical design of multidimensional databases. In Proceedings of 2nd International
Conference on Data Warehousing and Knowledge Discovery (DaWaK 2000), pages
11-23, 2000.

4. R. Kimball. The data warehouse toolkit. John Wiley & Sons, 1996.
5. M. Golfarelli and S. Rizzi. Designing the data warehouse: key steps and crucial

issues. J. of Computer Science and Information Management, 2(3), 1999.
6. F. Raab, editor. TPC Benchmark(tm) D (Decision Support), Proposed Revision

1.0. Transaction Processing Performance Council, San Jose, 1995.
7. E. Baralis, S. Paraboschi, and E. Teniente. Materialized view selection in multidi-

mensional database. In Proc. 23rd VLDB, pages 156-65, 1997.
8. V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing Data Cubes Effi-

ciently. In Proc. ACM Sigmod Conf., 1996.
9. J. Yang, K. Karlaplem, and Q. Li. Algorithms for Materialized View Design in

Data Warehousing Environments. In Proc. 23rd VLDB, pages 136-45, 1997.
10. V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for

the quadratic assignment problem. INFORMS J. on Computing, 11(4):358-69,
1999.

11. A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant colonies.
In Proc. ECAL’91, European Conference on Artificial Life. Elsevier, 1991.

A Genetic Algorithm for the Group–Technology
Problem

Ingo Meents

IBM Deutschland Speichersysteme GmbH
Hechtsheimer Strasse 2, 55131 Mainz, Germany

meents@de.ibm.com

Abstract. The design and production planning of cellular manufactur-
ing systems requires the decomposition of a company’s manufacturing
assets into cells. The set of machines has to be partitioned into machine-
groups and the products have to be partitioned into part-families. Find-
ing the machine-groups and their corresponding part-families leads to the
combinatorial problem of simultaneously partitioning those two sets with
respect to technological requirements represented by the part-machine
incidence matrix. This article presents a new solution approach based
on a grouping genetic algorithm enhanced by a heuristic motivated by
cluster analysis methods.

1 Introduction

The basic idea of group technology (GT) is to decompose a manufacturing sys-
tem into smaller subsystems. The subject of the analysis are machines, products
(parts), and the part-machine incidence, i.e. the allocation of products to ma-
chines. The decomposition process creates subsets of machines (machine-groups)
each of which is responsible for the production of a certain subset (part-family)
of the products. A machine-group and its corresponding part-family are grouped
together in a cell. The problem is to find the cells of a manufacturing system so
that the dependencies between different cells are as small as possible.

The implementation of cellular manufacturing systems is supposed to avoid
some of the disadvantages of job shop and continuous flow production systems.
If a cell contains all machines needed for the production of its part-family, only
the raw materials and finished goods have to be transported into or from the
cell, respectively. Thus there is less traffic with easier routings on the shop floor
in contrast to job shop systems. In comparison with continuous flow lines cellular
production systems offer more flexibility and are more likely to compensate dis-
turbances in the production process. In general, cellular manufacturing systems
are supposed to offer advantages with respect to lead time, costs, and quality.

Section 2 of the article presents a mathematical formulation of the GT prob-
lem followed by a short literature review with special emphasis on modern ap-
proaches. A new genetic algorithm (GA) and an associated local search heuristic
are presented in Sect. 3. The GA allows to partition the sets of machines and
products simultaneously and is able to find the inherent number of cells. A per-
formance analysis of the GA is given in Sect. 4.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 90–99, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A Genetic Algorithm for the Group–Technology Problem 91

2 Problem Formulation

The relationship between the machines and products is modeled by the binary
machine–part incidence matrix A. Let m be the number of machines, n the num-
ber of products, M = {1, . . . , m} the index set of the machines, N = {1, . . . , n}
the index set of the products, and IB = {0, 1} the set of boolean values. Then
the entries of the incidence matrix A = (ai,j)i∈M,j∈N ∈ IBm×n are defined as
aij = 1 if machine i processes product j and aij = 0 otherwise. If the machines
and products are numbered arbitrarily, the machine-groups and part-families
are not directly visible as shown by the sample matrix1 A in (1). A shows that
machine 1 processes parts 2, 4, and 5, machine 2 processes parts 1 and 3, etc.

p1 p2 p3 p4 p5

A =

1 1 1
1 1

1 1
1 1

m1
m2
m3
m4

p1 p3 p2 p4 p5

A′ =

1 1
1 1

1 1 1
1 1

m2
m4
m1
m3

(1)

Under certain conditions the rows and columns of the matrix can be permuted
so that cells become visible. These permutations do not change the incidences
described by the matrix A if the machine and part indices are permuted together
with their rows and columns. Matrix A′ in (1) visualizes the blocks almost com-
pletely filled with ones along the main diagonal of the matrix. The machine-
groups G1={m2, m4} and G2={m1, m3} and the part families F1={p1, p3} and
F2={p2, p4, p5} form the cells C1={G1, F1} and C2={G2, F2}.

In general, matrices do not always allow to permute their columns to form
disjunct blocks along the main diagonal. For example, if matrix A′ in (1) had
another entry indicating that product p5 has also to be processed on machine m2,
product p5 would belong to machine-groups G1 and G2. Product p5 is the critical
part and is called bottleneck part. Machines m2 and m1 are called bottleneck
machines as they are needed by a part belonging to more than one cell.

The GT problem requires partitioning two sets of machines and products
under the restriction that the number of the partitions in both sets have to be
equal and that the inter-cell dependencies are minimized. Note that for every
pair of partitions of machines and parts a permuted matrix can be derived so
that the cells represented by the partitions are arranged along the main diagonal
of the matrix.

The first ideas in the area of GT were presented by Burbidge in the early
1970s. Since then various solution approaches including cluster analysis, sorting
algorithms, graph theory, and mathematical programming have been presented.
[1] offers a survey on different solution techniques. More recent work on the ap-
plication of stochastic search algorithms can be found in [2] (simulated anneal-
ing) and [3,4,5,6] (genetic algorithms). [7] provides a review on modern solution

1 For clarity, the entries with aij = 0 are shown as blanks.

92 I. Meents

techniques. An in-depth discussion with special emphasis on genetic algorithms
for the GT problem is [8]. [9] covers simple2 partitioning problems; one of the
industrial application examples deals with part-families.

3 Solution Approach Using a Genetic Algorithm

Genetic algorithms are heuristic search methods based on the evolutionary prin-
ciple of the ”survival of the fittest”. A population of chromosomes (solutions)
evolves over time by repeated phases of variation (recombination, mutation, in-
version), evaluation, and selection (usually biased towards those chromosomes
with higher fitness) [10].

In order to solve the GT problem by a GA the goal function, a coding for
the chromosomes, and the corresponding genetic operators have to be defined
among others. Two requirements are important: Firstly, the GA finds the inher-
ent number of cells, i.e. the number of cells is variable. Secondly, the machines
and parts are to be partitioned simultaneously.

Moreover, problem-independent techniques like selection procedures and ter-
mination criteria have to be specified.

3.1 Goal Function

In order to evaluate different chromosomes of a population a measure is needed
that is at least partially ordered. Many papers on GT use a measure called
grouping efficiency, for example [11]. Defining3

α = number of block elements with aij = 0
β = number of block elements with aij = 1
γ = number of non-block elements with aij = 0
δ = number of non-block elements with aij = 1

the measure that has to be minimized is calculated by

η = q
α

α + β
+ (1 − q)

δ

γ + δ
, where 0 ≤ q ≤ 1 . (2)

Thus η reflects the homogenity of the cells, i.e. it decreases with a decreasing
number of zeroes inside the blocks along the main diagonal and with a decreasing
number of ones outside those blocks. The weight factor q determines whether
the utilization within the cell or the avoidance of bottlenecks is more important.
Small values of q lead to few large inhomogeneous blocks whereas values close
to 1 lead to many small homogeneous blocks. From the definition follows that
0 ≤ η ≤ 1, but normally the grouping efficiency has an upper bound strictly less
than 1. This upper bound is dependent on the incidence matrix.
2 The term simple refers to partitioning problems with one set of objects (which still

are NP-hard) in contrast to the two sets of the GT problem.
3 Note that α and β as well as γ and δ are swapped in contrast to the original definition

in order to get a minimization problem.

A Genetic Algorithm for the Group–Technology Problem 93

The sample matrix A′ in (1) yields α = 1, β = 9, γ = 10, δ = 0 and by setting
q = 0.5 the grouping efficiency sums up to η = 0.05. To get strictly positive goal
function values in a larger range of values η′ = 1000 · (1 + η) is used for the GA.

3.2 Chromosome Representation

One of the main topics in the design of a GA for a problem is a suitable encod-
ing of a problem solution in a chromosome. Different possibilities of coding a
solution to the GT problem are group-number encoding, permutation lists with
delimiters, and permutation lists without delimiters but with a greedy decoding
heuristic and the grouping GA. For an in-depth discussion of these representa-
tions for simple partitioning problems see [10], and the extensions for the GT
problem can be found in [8].

The coding for the GT problem can be derived from the codings for simple
partitioning problems. However, special requirements for the GT problem — the
simultaneous partitioning of two object sets and the variable number of partitions
— have to be accounted for. Combining all machines and parts into one large
set leads to problems if a group is assigned some machines but no products. This
case arises especially if both the difference between m and n and the number
of groups k are large. In this case the block diagonal matrix is degenerate, see
matrix A1 in (3). Moreover, some solutions may contain machines that do not
have an associated product within a block (or the other way round). In this case
aij = 0 for a row i or a column j, e. g. matrices A2 and A3 in (3).

A1 =

1 1
1 1
1 0
0 0

1
0

. . .

1
. . .

, A2 =

. . .
1 0 1
0 0 0
1 1 1

. . .

, A3 =

. . .
1 0 1
1 0 0
1 0 1

. . .

. (3)

Degenerate solutions like these can be handled by typical methods applied in
constraint optimization with genetic algorithms, for example

– rejection of bad chromosomes and repetitive application of the genetic oper-
ators until a non-degenerate chromosome is found

– penalty terms in the goal function of the genetic search
– genetic operators and/or repair algorithms maintaining feasibility.

The number of degenerate solutions is dependent on the problem parameters
m, n and the inherent number of cells k. In unfavorable circumstances the number
of degenerate solutions is quite large so that the few non-degenerate solutions
will dominate the population and finally lead to premature convergence. For the
same reason the repetitive recombination — until non-degenerate solutions are
found — is too expensive. The algorithm presented here is supposed to search
the space of feasible solutions excluding degenerate solutions. This is achieved
by the special operators described in Sect. 3.3.

94 I. Meents

The straight-forward encoding for simple partitioning problems is group num-
ber encoding (GNE). The chromosomes are vectors of length n where n denotes
the number of objects to group. Each element takes an integer value from the
range 1, . . . , k. The j-th element of the vector c, cj ∈ {1, . . . , k}, shows that
object j belongs to group Kcj

, i.e.
[
c1 c2 . . . cn

] ⇔ Oi ∈ Kci
∀i = 1, . . . , n .

For example, the chromosome C1 =
[
1 2 2 3 3 1

]
represents the partition P =

{{O1, O6}, {O2, O3}, {O4, O5}}.
In order to partition machines and products simultaneously both sets of

objects have to be added to the chromosome. The problems left are to assure
that the same number of groups is formed for both parts and that degenerate
solutions are avoided.

The main problem of GNE with 1 or 2-point-crossover is that the partitions
can be destroyed arbitrarily by the genetic operators. The approach described in
[12] allows for complete partitions getting inherited by following the idea that the
building blocks of a grouping GA are the groups themselves and not just single
objects. The genetic operators work on the groups instead of on the objects.

For the grouping GA a chromosome consists of two parts, the object-part and
the group-part. The object-part is the group-number-encoding of the objects.
The group-part of the chromosome contains the identifiers of the groups used in
the object-part. For partitions with a varying number of groups the group-part
is of variable length. The genetic operators work on the group-part, whereas the
object-part is adjusted as needed to keep track of the objects’ group membership.

In addition to the partitioning algorithms described in [12] the GT prob-
lem requires the partition of two different sets of objects, thus the chromosome
contains two fixed-length parts and a variable-length part. The chromosome

C = [
machines︷ ︸︸ ︷

1 2 1 3 3 2 :
products︷ ︸︸ ︷

3 3 1 2 3 3 1 1 2︸ ︷︷ ︸
object–part

:: 1 2 3︸︷︷︸
group–part

]

represents a partition with the three groups 1, 2, 3 shown in the group part.
The object–part is interpreted according to the group–number–encoding: Oi be-
longs to partition (C)i = ci. By using the same numbers in the group and
product-part, machine-groups and product-families are assigned automatically
to each other so that the production cells can be derived directly from the
chromosome. Thus the chromosome C represents the three production cells
{m1, m3, p3, p7, p8}, {m2, m6, p4, p9}, and {m4, m5, p1, p2, p5, p6}.

3.3 Genetic Operators

Crossover. The crossover operator for the GT problem is based on the ideas
described in [12]. The two chromosomes P1 and P2 are crossed to produce the
offspring C1 and C2.

A Genetic Algorithm for the Group–Technology Problem 95

Firstly, two crossing sites r1 6= r2 are chosen in the group-part of the chro-
mosome, i.e. r1, r2 ∈ {0, . . . ,min{lG1 , lG2}} where lGi denotes the length of the
group-part of Pi. For example, let r1 = 0 and r2 = 2

P1 =
[
1 2 1 3 3 2 : 3 3 1 2 3 3 1 1 2 :: | 1 2 | 3

]
P2 =

[
0 1 0 3 1 3 : 0 1 0 2 3 1 1 0 2 :: | 0 1 | 2 3

]
.

Secondly, the group-part of P1 is copied into the group-part of C1. Then the
group-part of P2 between r1 and r2, is inserted in the group-part of C1 after
position r2.4

Thirdly, the object-part of C1 is constructed on the basis of the alleles of P1
and P2: First of all, the group-numbers of the inserted group-part are assigned
to the objects as in P2. If there are any unassigned objects left they get the
group numbers as assigned in P1. This leads to the chromosome

C1 =
[
0 1 0 3 1 2 : 0 1 0 2 3 1 1 0 2 :: 1 2 0 1 3

]
.

Underlined alleles of C1 are taken from P1, the others from P2. The construction
of the object-part of C1 encounters the following cases:

1. A group g of P1 is overwritten completely. In this case group g has to be
removed from the group-part of C1 (group 1 in the example).

2. A group g of P1 is not modified. In this case nothing has to be done.
3. A group g contains only machines but no products. This is a degenerate

solution, the machines of group g are assigned randomly to other groups.
4. A group contains only products but no machines. This is also a degenerate

solution that has to be repaired by assigning its products to other groups.
5. A group g of P1 has lost some of their machines and/or products. In this

case the group either remains part of the solution with probability p or is
destroyed completely with probability (1 − p) where p is the ratio of the
groups’ original and current sizes,

p =
number of machines and products of group g in P1

number of machines and products of group g in C1
.

The second offspring C2 is constructed in the same way, with the roles of
P1 und P2 swapped. Without the corrections in step 5 the crossover operator
tends to generate too many degenerate solutions and the number of classes in
the offspring increases in comparison with its parents.

Mutation. The three mutation operators work on the group part. Again, the
object-part is adjusted as needed. Each operator might generate degenerate so-
lutions that can be corrected by the same mechanism applied after the crossover
operator.
4 Note that the groups 1 from P1 and 1 from P2 are considered to be different groups.

96 I. Meents

The Mutation Distribute operator selects one of the groups in the group part
at random and assigns each of its objects to a new group. As an assignment to
the selected group is allowed, the operator either reduces the number of groups
by one or keeps it constant, consider group 3, for example:[

1 2 1 3 3 2 : 3 3 1 2 3 3 1 1 2 :: 1 2 3
] → [

1 2 1 3 2 2 : 1 3 1 2 2 3 1 1 2 :: 1 2 3
]

.

The Mutation Combine operator randomly selects two different groups g1
and g2 and combines them into one by substitution of all alleles g1 by g2 and
removal of g1 from the group-part. This reduces the number of groups by one.
For example, the groups 1 and 2 are combined:[

1 2 1 3 3 2 : 3 3 1 2 3 3 1 1 2 :: 1 2 3
] → [

2 2 2 3 3 2 : 3 3 2 2 3 3 2 2 2 :: 2 3
]

.

The Mutation Divide operator introduces a new group to the chromosome
by selecting a group at random and moving each of its objects to the new group
with a probability of p = 1/2. In the example, group 3 is divided:[

1 2 1 3 3 2 : 3 3 1 2 3 3 1 1 2 :: 1 2 3
] → [

1 2 1 3 4 2 : 3 3 1 2 4 4 1 1 2 :: 1 2 3 4
]
.

Inversion. The inversion operator is supposed to shorten good schemas so that
they do not get disrupted by genetic recombination and thus can be inherited
completely. Inversion selects a part of the group-part and inverses the order of
its groups, as shown in the following example:[

1 2 4 4 3 3 1 2 1 1 : 1 2 3 4
]

−→
[
1 2 4 4 3 3 1 2 1 1 : 3 2 1 4

]
.

The object-part of a chromosome remains unchanged.

3.4 Heuristic

A mechanism to improve the performance of a GA is to include further heuristics
for local search. This section presents a heuristic motivated by cluster analysis
techniques for the GT problem.

Hierarchical cluster analysis methods are based on similarity coefficients that
allow to construct dendrograms showing which objects to cluster. Many cluster
analysis approaches to the GT problem apply the Jacard-Similarity-Coefficient
[13]. The similarity sij of machines i and j is calculated as

sij =
∑n
k=1(aik ∧ ajk)∑n
k=1(aik ∨ ajk)

i, j = 1, . . . , n . (4)

The numerator in (4) is the number of products to be manufactured on ma-
chines i and j. The denominator is the number of products to be processed on
machines i or j. For any i and j holds that sij ∈ [0, 1]. Moreover, sij > 0,
unless aik = ajk = 0 for all k = 1, . . . , n. In this case the matrix has got
two rows with zeros only. But machines without any incidence can be ig-
nored. For the GA presented in this article two matrices of Jacard-Similarity-
Coefficients are calculated, one for machines and — by analogy — one for prod-
ucts, SM = (sMij), i, j = 1, . . . , m and SP = (sPij), i, j = 1, . . . , n, respectively.

A Genetic Algorithm for the Group–Technology Problem 97

Any time a machine i has to be assigned to a new group during the optimiza-
tion, the group of a randomly selected machine j ∈ Si is taken, where

Si =
{
j|sMij ≥ sMik ∀k = 1, . . . , m, i 6= j

}
. (5)

Si is the set of machines most similar to machine i with respect to the similarity
coefficient. In the same way, parts can be assigned to the group of the part most
similar to it. If maxj=1,...,n sij = 0 for a machine i, then there are no machines
similar to machine i and machine i is assigned randomly to a group.

Cases 3, 4, and 5 of the crossover operation and all of the mutation opera-
tors require random assignments of objects to groups. Instead of these random
assignments the heuristic can be used.

This heuristic only allows to assign machines to machines or products to
products. A heuristic that assigns machines to products is more difficult. A
simple approach could assign a product only to a group where it is processed or
to the group in which it has the most process steps. But as this is dependent on
a special partition of the machines, it requires a re-calculation for any solution
thus introducing a new quite expensive step. In contrast, the similarity matrices
are static and need only be calculated once in the initialization phase of the GA.
More complex heuristics could try an assignment of machines to products. But
this is exactly the problem the GA is supposed to solve.

4 Results

A large number of experiments showed how to set the parameters to achieve
the best GA performance on several test problems taken from literature. The
GA applied is the modified GA [10] with a population size of n + m (number
of machines + number of products), a selection rate of 2

3 (m + n), and elitist
strategy. The crossing rate is set to 0.6 and the mutation rates for the mutation
operators distribute, combine, and divide are 0.14, 0.04, and 0.04, respectively.
Linear scaling is applied with a factor of 1.9. For each problem 20 optimization
runs are started. The coefficient of the goal function is set to q = 0.25. The GA is
stopped at a maximum of 2000 iterations or earlier if 300 successive generations
do not find any improvements. The groups of the initial population are randomly
assigned, degenerate solutions are repaired as needed.

The six test problems and the partitions for the reference solutions are taken
from [14,15,16,16,15,17], respectively. It is a selection of small and large matrices
that have a more or less perfect block diagonal form. Table 1 shows the results.
The columns are the number of the test problem, the problem size m + n, the
value of the best known solution, the minimum, average, and maximum mini-
mum of the 20 runs, the average deviation from the best known solution, the
average number of generations, the number of runs the optimum was found, the
total time, and the average time to convergence, i.e. the average of the total
time subtracted by the time for 300 generations to check for convergence. The
experiments were carried out on a Pentium 90 personal computer. According to
the table the GA with the heuristic performs very well.

98 I. Meents

The average deviations from the optimum show that the GA finds good
solutions for all of the six problems. For two problems (4,5) the optimum solution
is found in every single run and for problems (2,3) better solutions are found5.

Table 1. Selected numerical results

Size Ref. Min. min Av. min Max. min Av. dev. Av. #gen # opt. Ti. tot. Ti. con.
1 140 1027.7 1027.24 1032.11 1050.84 0,424 471,95 10 88:08 1:36
2 59 1133.22 1121,33 1127,17 1130,92 -0,538 560,6 20 27:46 0:39
3 55 1062.86 1061.4 1062.78 1062.86 -0,007 357,1 20 13:08 0:07
4 28 1062,50 1062,50 1062,50 1062,50 0 325,1 20 2:10 0:01
5 25 1020,00 1020,00 1020,00 1020,00 0 319.05 20 1:47 0:00.3
6 16 1146.88 1146,88 1148,97 1151,53 0,18 358,7 11 0:42 0:00.3

Problem 1 has the maximum difference between the minimum and the max-
imum minimum, but the average minimum is quite close to the minimum mini-
mum. This shows that runs not finding optimal solutions are not too far off.

The average number of generations increases with the problem size except
for problem 6. This is due to the higher grouping efficiency, i.e. the cells are less
heterogeneous and thus more difficult to find. Note that although problem 1 has
minimum grouping efficiency, it leads to the worst (in comparison) GA perfor-
mance, probably due to the large problem size. For small problems optimum
solutions are found within the the first generations.

5 Conclusion

This article presented a new GA algorithm for the GT problem and an associated
local search heuristic. Both the sets of machines and products are partitioned
simultaneously and the algorithm allows to find the inherent number of cells.
Experiments proved a good performance on a number of problems taken from
GT literature. The performance is dependent on the structure of the incidence
matrix. The less homogeneous the blocks are, the less often the GA is able to
find the optimum. But, nevertheless, the optimum was found, just the number
of times finding it decreased.

The solution presented showed to be suitable for the design of cellular man-
ufacturing systems on the basis of grouping efficiency. Future research will con-
centrate on more complex goal functions and constraints that reflect other im-
portant characteristics of manufacturing systems like varying product mixes and
demands over different periods, processing times and sequences, the variation of
utilizations within the cells, and distances on the shop floor. As this mainly in-
fluences the goal function, the extended grouping GA with its special operators
is expected solve these problems satisfactorily as well.

Acknowledgements. The author likes to thank Prof. Th. Hanschke, Technical
University of Clausthal, Dr. J. Gottlieb, SAP AG, and the anonymous referees
for their suggestions to improve the first version of the paper.
5 Note that the optimum solution is dependent on the factor q in the goal function.

A Genetic Algorithm for the Group–Technology Problem 99

References

1. S. S. Heragu. Group technology and cellular manufacturing. IEEE Transactions
on Systems, Man, and Cybernetics, 24(2):203–215, February 1994.

2. W. H. Chen and B. Srivastava. Simulated annealing procedures for forming
machine cells in group technology. European Journal of Operational Reasearch,
74:100–111, 1994.

3. Y. Gupta, M. Gupta, A. Kumar, and C. Sundaram. A genetic algorithm-based
approach to cell composition and layout design problems. International Journal of
Production Research, 34(2):447–482, 1996.

4. J.A. Joines, C.T. Culbreth, and R.E. King. Manufacturing cell design: an integer
programming model employing genetic algorithms. IIE Transactions, 28(1), 1996.

5. V. Venugopal and T. T. Narendran. A genetic algorithm approach to the machine-
component grouping problem with multiple objectives. Computers and Industrial
Engineering, 22(4):469–480, 1992.

6. C. Zaho and Z. Wu. A genetic algorithm for manufacturing cell formation with
multiple routes and multiple objectives. International Journal of Production Re-
search, 38(2):385–395, 2000.

7. S. A. Mansouri, S. M. Moattar Husseini, and S. T. Newman. A review of mod-
ern approaches to multi-criteria cell design. International Journal of Production
Research, 38(5):1201–1218, 2000.

8. I. Meents. Genetic algorithms for the group technology problem. Master’s thesis,
Technical University of Clausthal, 1997. (in German).

9. E. Falkenauer. Genetic Algorithms and Grouping Problems. John Wiley & Sons
Ltd., Baffins Lane, Chichester, West Sussex PO19 1UD, England, 1998.

10. Z. Michalewicz. Genetic Algorithms + Data Structures = evolution programs.
Springer, Berlin, Heidelberg, New York, 3. edition, 1996.

11. M. P. Chandrasekharan and R. Rajagopalan. An ideal seed non–hierarchical clus-
tering algorithm for cellular manufacturing. International Journal of Production
Research, 24(2):451–464, 1986.

12. E. Falkenauer. A new representation and operator for genetic algorithms applied
to grouping problems. Evolutionary Computation, 2(2):123–144, 1994.

13. S. M. Taboun, S. Sankaran, and S. Bhole. Comparison and evaluation of similarity
measures in group technology. Computers and Ind. Eng., 20(3):343–353, 1991.

14. M. P. Chandrasekharan and R. Rajagopalan. ZODIAC - An algorithm for concur-
rent formation of part-families and machine-cells. International Journal of Pro-
duction Research, 25(6):835–85, 1987.

15. A. Ballakur and H. J. Steudel. A within-cell utilization based heuristic for designing
cellular manufacturing systems. International Journal of Production Research,
25(5):639–665, 1987.

16. M. P. Chandrasekharan and R. Rajagopalan. MODROC: An extension of rank or-
der clustering for group technology. International Journal of Production Research,
24(5):1221–1233, 1986.

17. W. S. Chow and O. Hawaleshka. An efficient algorithm for solving the machine
chaining problem in cellular manufacturing. Computers and Industrial Engineer-
ing, 22(1):95–100, 1992.

Generation of Optimal Unit Distance Codes for
Rotary Encoders through Simulated Evolution

Stefano Gregori1, Roberto Rossi1, Guido Torelli1, and Valentino Liberali2

1 Università degli Studi di Pavia, Dipartimento di Elettronica
Via Ferrata 1, 27100 Pavia, Italy

s.gregori@ele.unipv.it, r.rossi@ele.unipv.it, g.torelli@ele.unipv.it
2 Università degli Studi di Milano

Dipartimento di Tecnologie dell’Informazione
Via Bramante 65, 26013 Crema, Italy

vliberali@crema.unimi.it

Abstract. An evolutionary algorithm is used to generate unit distance
codes for absolute rotary encoders. The target is to obtain a code suit-
able for disk size reduction, or for resolution increase, thus overcoming
the limitations of conventional Gray codes. Obtained results show that
simulated evolution can produce codes suitable for this purpose.

1 Introduction

Evolutionary algorithms, built on the key concept of Darwinian evolution [1], are
a broad class of optimization methods which could provide innovative solutions
to problems heigh computational complexity [2], when exhaustive approaches
become unfeasible.

In this paper, simulated evolution is used to generate unit distance codes
for rotary encoders having better properties than the conventional Gray code.
As shown in Sect. 2, the widely used Gray code limits the size reduction of the
rotating part and the maximum achievable resolution. To overcome this con-
straint, the evolutionary algorithm described in Sect. 3 has been implemented.
The obtained results, shown in Sect. 4, demonstrate that the evolutionary ap-
proach can provide a suitable solution, being able to manage computationally
complex problems in a limited amount of time.

2 The Rotary Encoder System

2.1 Mechanical Assembly

An absolute rotary encoder is an angular position transducer, generally used
to monitor the rotation of mechanical parts [3]. It is made up of a glass disk,
referred to as code disk, with a suitable number of concentric traces, each hav-
ing alternated opaque and transparent zones, whose patterns allow the absolute
angular position of the disk to be determined. All traces are illuminated by a

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 100–109, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Rotary Encoders through Simulated Evolution 101

shaft

������
��������

disc

LED

�
�
�
�

S1 S2 Sn. . .

collimating slit

photodetectors

optical power
distribution

traces

Fig. 1. Mechanical assembly of an absolute rotary encoder.

light-emitting diode (LED) from one side of the disk. The light beam is mod-
ulated by the traces and, after passing through the collimating slit (a narrow
radial slit which limits the width of the light beam), is collected by a photode-
tector array on the opposite side of the disk (one photodetector is associated
to each trace). Each photodetector generates an electric signal, which is then
amplified and converted into a digital waveform. The set of digital waveforms
coming from the photodetector array contains the disk angular position infor-
mation. The number of coding bits (n), which gives the encoder resolution, is
equal to the number of disk traces, whose pattern, read by the photodetector
array, identifies, univocally, the angular position of the disk.

Figure 1 shows the mechanical assembly of an absolute rotary encoder. It is
apparent that the impinging optical power is not the same for all the elements
of the photodetector array. The light power in the radial direction can be ap-
proximated as a Gaussian distribution, with the maximum corresponding to the
central photodetector. Furthermore, the signals produced by different photode-
tectors are affected by substantial variations of the photogenerated current due
to the type and ageing of the LED and temperature drifts. Moreover, due to
causes such as the geometry of the disk traces, of the photodetectors, and of
the collimating slit, when the disk rotates, the current signal provided by each
photodetector turns out to have a trapezoidal shape.

In modern encoders specific electronic readout channels are designed with
the aim to provide thermal stabilization and prevent performance degradation
[4]. Moreover, a calibration procedure is required to achieve adequate alignment
of the LED, the disk code, and the photodetectors. Digital calibration circuits
allow a reduction in calibration time. However, due to the increasing demand
for small-dimension high-resolution encoders, the alignment procedure is still
critical, especially for encoders with a large number of traces.

2.2 Codes for Absolute Rotary Encoders

In practice, the use of the natural binary code to define the pattern of opaque
and transparent zones on the traces of the code disk, entails problems such as

102 S. Gregori et al.

00
00

00

00
00

01
00

00
11

00
00

10

001101

001111

Fig. 2. Example of a code disk with Gray code. The disk has six traces, which are
read by the photodetector array from the innermost to the outermost one in the radial
direction. In all read words, an opaque (black) zone corresponds to a bit ‘0’ and a
transparent (white) zone corresponds to a bit ‘1’.

spurious transients in correspondence of the positions of the code disk where
more than one bit has to switch at the same time. Indeed, in real systems these
bits will not switch at the same time, thus causing a readout error during the
transitions. For example, when passing from the codeword 011111 (decimal 31) to
the codeword 100000 (decimal 32), six bits should change over at the same time.
In the case of non-perfect alignment, the six bits do not switch simultaneously,
thus causing a readout error during the transition.

To avoid spurious reading during transitions, unit distance codes are used for
the code disks. In these codes, words associated with adjacent angular positions
differ by only one bit: therefore, a single bit has to be switched during any
transition. The most widely used unit distance code in encoder disks is the
conventional Gray code (Fig. 2).

2.3 Design Constraints

The minimum angular step measured with an n-bit encoder is given by α =
2π/2n. To obtain high accuracy, it is necessary to use code disks with a high
number of traces (n). On the other hand, technical specifications force the man-
ufacturer to make the code disk radius small, so as to limit the size and the
weight of the system as well as the moment of inertia added by the encoder to
the coupled drive shaft.

In the case of a Gray coded disk, the main design constraint regards the
length of the opaque and transparent zones of the outermost trace. Indeed, this
length should be larger than the width of the collimating slit, so as to allow the
photodetector to be fully illuminated when a transparent zone passes above it
or completely darkened when an opaque zone passes above it.

Any opaque and transparent zone in the outermost trace when using a Gray
code corresponds to a sequence ‘00’ and ‘11’, respectively, along the trace itself.

Rotary Encoders through Simulated Evolution 103

optical
power

position on the
photodetector array

1 2 3 4 5 6 7 8 9 10 11 12 13

optical signal received by
the 12th photodetector

during rotation

optical signal received by
the 13th photodetector

during rotation

Fig. 3. Typical measured example of optical power distribution over the photodetector
array. The optical power reduction in the outermost trace (number 13) derives from
the use of a collimating slit narrower than the opaque and transparent zones of the
outermost trace.

The corresponding angle is βG = 2α, that is two times the minimum angular step,
because the sequence contains two equal bits (‘00’ or ‘11’). Since the length of
any opaque or transparent zone must be larger than the width of the collimating
slit c, the following relation must hold

2 sin
(

βG

2

)
rn ∼= βG rn ≥ c (1)

where rn is the radius of the outermost trace. Therefore, the constraint on the
outermost trace radius is given by

rn ≥ c

βG
=

c

2α
= c

2n

4π
(2)

Considering c fixed, to increase the number of bits by one entails to double
the radius of the outermost trace, which is, in practice, the radius of the whole
code disk. For this reason, when it is important to reduce the dimensions of
the encoder, the radius of the outermost trace is generally chosen so that the
corresponding photodetector is never fully illuminated nor fully darkened, thus
worsening the reading conditions of the ensuing signal.

An example of this situation is a commercial 13-bit encoder, whose disk code
has a radius of 21 mm. In this case, the length of the opaque and transparent
zones of the outermost trace is 2π · 21/212 mm = 31 µm, that is smaller than
the width of the collimating slit (45 µm). Fig. 3 shows the optical power distri-
bution over the photodetector array. As the light source is placed on the axis
corresponding to the central photodetector (number 7), this receives the maxi-
mum optical power, while the outermost photodetector (number 13) receives the
minimum optical power, which is further reduced due to the small dimensions
of the transparent zones of the corresponding trace. The signal produced by this
photodetector is more difficult to be correctly read because the photodetector is
never fully illuminated nor fully darkened.

104 S. Gregori et al.

2.4 Non-conventional Codes

A way to overcome the above constraint set by the conventional Gray code, is to
build non-conventional unit distance codes that allow us to have longer opaque
and transparent zones along the outermost trace (the length of the zones in
the inner traces must be obviously kept not smaller than the outermost trace, in
terms of angular width). This is possible by increasing the length of the sequences
of consecutive ‘0’s and of ‘1’s, respectively, along the outermost trace. In this
way, it is possible to increase the number of traces with no need for increasing
the disk radius, or, alternatively, to reduce the radius for any given condition of
photodetector array dimensions and illumination.

If q is the minimum length of a sequence along the traces in a unit distance
code, the corresponding angle is βE = qα, while in a Gray code it is βG = 2α (as
q = 2). Assuming the photodetector array length is ∆r = rn−r1, if the minimum-
length sequences are contained in m traces (with m ≤ n) the constraint on the
radius of the outermost trace is

rn ≥ c

qα
+

m− 1
n− 1

∆r (3)

In a Gray code, this constraint is stated in equation (2). In this case, the new
code is better than the Gray code if the following condition is verified:

m− 1
n− 1

∆r <
c

α

(
1
2
− 1

q

)
(4)

When reducing the disk radius, a further limit on the minimum radius has to
be considered in order to avoid readout errors. This limit depends on the error
margin in transforming the trapezoidal waveform given by the photodetector
into a digital signal. This limit can be expressed as

arcsin
(

c

r1

VEM

VSA

)
< α (5)

where VSA is the peak-to-peak signal amplitude, VEM is the error margin and r1
is the radius of the innermost trace.

Provided that this condition is satisfied, the only drawback of non-
conventional codes is the need for a decoding logic to obtain the natural binary
code. However, this task does not introduce any significant delay in processing,
and can be easily carried out with a lookup table.

3 The Evolutionary Algorithm

The search for an optimal non-conventional code becomes very difficult as the
number of traces n increases. To overcome this limitation, an evolutionary algo-
rithm has been implemented to find unit distance codes. The proposed algorithm
uses variable population size, generation by mutation, and rank-based selection;
its main aspects are described in the following subsections.

Rotary Encoders through Simulated Evolution 105

a0
b0

a1
b1

a0
b0

a1

b1
c1

c0

MUTATION TYPE 1 MUTATION TYPE 2

a0
b0

a1

c1 b1

c0

MUTATION TYPE 3

Fig. 4. The three possible mutations of a code: (1) reversal of a portion of the code; (2)
extraction and insertion in a different position; (3) extraction, reversal and insertion
in a different position.

3.1 Encoding

The genetic encoding is simply the sequence of the 2n words which represent all
the sectors of the disk (each sector is the radial portion of the disk having the
minimum measurable angular width α). For an encoder, a “valid” code must
satisfy the following conditions:

1. completeness: the code must be complete, i.e. it must contain all the 2n

words, without repeating any of them;
2. unit distance: two adjacent words must differ by the value of one and only

one bit;
3. cyclicity: the last word must have unit distance from the first one.

Condition 3 (cyclicity) is required for a rotary encoder only; in the case of a
linear position encoder, this condition is not necessary.

3.2 Mutation

In order to satisfy all the constraints enumerated in the previous subsection,
new codes are generated by mutation only. Mutation consists in generating a
new code (the child) from a previous one (the parent) by means of one of the
following operations:

1. reversing the order of a portion of the genetic code;
2. extracting a portion of the genetic code and inserting it in a different position;
3. extracting a portion of the genetic code and inserting it in a different position

after reversal.

The three mutation operators are sketched in Fig. 4. After generation, both
the parent and the child are included in the new population.

The cut points (indicated as a0-b0, a1-c0, and b1-c1 in Fig. 4) are chosen so
that the resulting code still satisfies the three conditions stated above (complete-
ness, unit distance, and cyclicity). The search for the good cut points is carried
out in an exaustive way on all the positions of the considered code.

106 S. Gregori et al.

None of the three above mutation rules is guaranteed to work for any possible
unit distance code. To maximize the probability of success of such an operation,
this step is carried out as follows. One of the three allowed types of mutation
is randomly selected and applied to the code. If it is possible, then a child is
obtained and added to the population. Otherwise, one of the two remaining
mutation strategies is randomly chosen and tried. If still no result is possible,
the last mutation rule is performed.

3.3 Fitness

The fitness function is a measure of the minimum sequence length. To distinguish
between different codes with the same minimum length q, an additional term has
been added, to favour codes with a lower number of minimum length sequences.

The fitness f is defined as:

f = q +
1
2
− Nq

2n
(6)

where Nq is the number of q-length sequences.
The conventional Gray code has a fitness fG = 2.

3.4 Selection

The population is seeded with a single individual: the Gray code described in
Sect. 2.

New codes are generated by randomly picking existing codes and applying one
of the three allowed mutation types according to the strategy described above.
A linear rank-based selection is performed when the population size exceeds a
predefined value Nmax. Selection is carried out by assigning a survival probability
to each code in the population. The best code is assigned a probability of 1, while
all the others are given lower probabilities according to their rank in such a way
that, on average, the best N individuals are most likely to survive. The maximum
population size has been set to Nmax = 2N .

From our experiments, we noticed that a population size N in the range
from 50 to 100 maintains a good genetic variability without slowing down the
algorithm excessively.

4 Experiments and Results

4.1 Results

The algorithm described in the previous section has been used to search unit
distance codes for an encoder disk with 6, 7, and 8 bits.

Fig. 5 shows the fitness evolution as a function of the number of individuals
generated. It is worth remarking that, from (6), the integer part of the fitness

Rotary Encoders through Simulated Evolution 107

2,00

2,25

2,50

2,75

3,00

3,25

3,50

3,75

4,00

4,25

4,50

4,75

1 10 100 1.000 10.000 100.000 1.000.000 10.000.000 100.000.000

individuals

f i
tn
e
s
s

8 bit 7 bit 6 bit

Fig. 5. Evolution of the fitness for three disk codes with 6, 7, and 8 bits, respectively.

corresponds to the minimum sequence length, and the sharp steps in the curves
indicate that the minimum length has been improved.

It is also observed that the algorithm produces similar behaviours of the
fitness for the three values considered (n = 6, 7, and 8), despite the exponential
increase of the number of codewords.

An example of this kind of code, obtained using an evolutionary algorithm,
is illustrated in Fig. 6. While in the conventional Gray code the sequences of
consecutive ‘0’s or ‘1’s along the traces have a minimum length of 2, in the non-
conventional code the minimum length is 4. In this case, the angle corresponding
to the minimum sequence is doubled: for the Gray code βG = 2α, while for the
non-conventional unit distance code βE = 4α.

However, while for the Gray code the constraint is on the radius of the
outermost trace, for this new code the constraint is on the radius of the most
internal trace containing a minimum-length sequence (in this case, the second
innermost trace). Assuming the photodetector array length is ∆r = r6 − r1,
according to (3), the constraint on the radius of the outermost trace is

r6 > c
26

8π
+

4
5
∆r (7)

For any given unity distance code, a code with the same minimum length and
a higher number of bits can be easily obtained using the basic building procedure
for conventional Gray codes. This consists in copying the considered code with
2n words, flipping it and adding a row containing a sequence of 2n ‘0’ and 2n ‘1’
as shown in Fig. 7.

For example, starting from the 6-bit code in Fig. 6, a 13-bit code with mini-
mum length 4 can be obtained. The code disk obtainable with this unit distance
code can be designed with the radius of the innermost trace r1 = 6.05 mm and
the radius of the outermost trace r2 = 13.25 mm, while for the 13-bit Gray
coded disk rG1 = 13.3 mm and rG2 = 20.5 mm, in both cases assuming to have
the same array length ∆r = 7.2 mm and the same width of the collimating slit
c = 45 µm.

108 S. Gregori et al.

01
11

00

01
01

00
11

01
00

11
01

01

001010

001000

Fig. 6. Example of unit distance code obtained with an evolutionary algorithm. The
code disk on the left is a 6-trace disk with the same radius of the Gray disk in Fig. 2;
the code disk on the right has the same code, but its radius is reduced so as to have
minimum opaque or transparent zones length equal to that of the Gray encoded disk
in Fig. 2.

Y Y Y X X X X X X X X X X X X Y
Y Y X X X X X X X X X X X X Y Y
Y X X X X X X X X X X X X Y Y Y
X X X X X X X X X X X X Y Y Y Y

Y X X X X X X X X X X X X Y Y Y
Y Y X X X X X X X X X X X X Y Y
Y Y Y X X X X X X X X X X X X Y
Y Y Y Y X X X X X X X X X X X X

Y Y Y X X X X X X X X X X X X Y
Y Y X X X X X X X X X X X X Y Y
Y X X X X X X X X X X X X Y Y Y
X X X X X X X X X X X X Y Y Y Y

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 7. Procedure generate a unity distance code with n+ 1 bits starting from a unity
distance code with n bits.

4.2 Discussion

The obtained results have been compared with the results obtained with a local
search heuristic method. In this case we used a fixed population with a single
individual. This individual generate a child through mutation, who generates a
grandchild, who generates a great-grandchild. Selection is then applied to choose
the individual with the best fitness and discard the other three. With this method
neither with 6, 7 or 8 bit codes we were able to get codes with minimum length
4, within 108 generations.

Fig. 8 shows the fitness evolution as a function of the number of individuals
generated using a local search heuristic method compared with the one generated
with the evolutionary algorithm previously described. From this figure, we con-
clude that the evolutionary algorithm is capable to perform better exploration of
the design space, since it has a better chance to escape from local maxima of the
fitness function, while the heuristic search has an intrinsically limited capacity
of avoiding local maxima.

Rotary Encoders through Simulated Evolution 109

2,00

2,50

3,00

3,50

4,00

4,50

1 10 100 1.000 10.000 100.000 1.000.000 10.000.000

individuals

b
e
s
t

fi
tn

e
s
s

evolutionary algorithm heuristic search

Fig. 8. Evolution of the fitness for two disk codes with 6 bits using heuristic search
and evolutionary algorithm.

5 Conclusion

This paper has described an evolutionary approach to the generation of optimal
unit distance codes for rotary encoders. Results demonstrate that unit distance
codes better than the conventional Gray code can be obtained through simulated
evolution. The increase of the minimum sequence length can be exploited either
to reduce the encoder size (maintaining the same resolution), or to increase
resolution (with the same disk size).

Acknowledgments. The authors would like to thank the reviewers for their
very useful comments and suggestions.

References

1. C. Darwin. On the Origin of Species by Means of Natural Selection. John Murray,
London, UK, 1859.

2. T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press,
Oxford, UK, 1996.

3. R. Ohba. Intelligent Sensor Technology. John Wiley & Sons, Chichester, UK, 1992.
4. D. Maschera, A. Simoni, L. Gonzo, M. Gottardi, S. Gregori, V. Liberali, and

G. Torelli, “CMOS front-end for optical rotary encoders”, Proc. 7th Int. Conf. on
Electronics, Circuits, and Systems, Kaslik, Lebanon, Dec. 2000, pp. 891-894.

On the Efficient Construction of Rectangular
Grids from Given Data Points

Jan Poland, Kosmas Knödler, and Andreas Zell

Universität Tübingen, WSI-RA, Sand 1, D - 72076 Tübingen, Germany
poland@informatik.uni-tuebingen.de,

http://www-ra.informatik.uni-tuebingen.de

Abstract. Many combinatorial optimization problems provide their
data in an input space with a given dimension. Genetic algorithms for
those problems can benefit by using this natural dimension for the en-
coding of the individuals rather than a traditional one-dimensional bit
string. This is true in particular if each data point of the problem corre-
sponds to a bit or a group of bits of the chromosome. We develop different
methods for constructing a rectangular grid of near-optimal dimension
for given data points, providing a natural encoding of the individuals.
Our algorithms are tested with some large TSP instances.

1 Introduction

Many combinatorial optimization problems provide their data in an input space
with a given dimension d. For example, the classical traveling salesman problem
(TSP) consists of n points in the two-dimensional plane. An efficient representa-
tion of a tour for solving the TSP with a genetic algorithm is the adjacency coding
(see [1], [2] or [3]): A tour is defined by its adjacency matrix or, equivalently, by
a list containing the successor for each city. This locus-based representation has
shown to be much more appropriate for use with genetic algorithms than a time-
based representation containing a permutation of the cities. It is characterized
by the fact that each city corresponds to a certain part of the chromosome.

When using a locus-based representation together with a standard N -point
crossover operator that does not permute the chromosomes, the arrangement
of the points in the representation is important. For example in the case of the
TSP, arranging the cities in the order given by a rough approximation of the TSP
results in a better performance of the genetic algorithm than using an arbitrary
arrangement, as shown in [1]. This is due to the fact that the crossover operator
can exploit neighbourhood relations of the preordered cities.

However, since the original problem is two-dimensional, a two-dimensional
representation as suggested by Bui and Moon ([4]) would be more natural. They
present a d-dimensional N -point crossover operator that applies to d-dimensional
grids instead of one-dimensional strings. If this idea is employed for the TSP with
a locus-based representation, the cities have to be allocated to the grid points.
This is a preliminary task that has to be completed before the start of the genetic

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 110–120, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

On the Efficient Construction of Rectangular Grids 111

algorithm and should not consume too much time. On the other hand, a good
arrangement may increase the performance of the genetic algorithm.

Clearly, the grid encoding is not the only possibility for a d-dimensional
representation, one could, for example, try a graph-based encoding. But the grid
encoding has the advantage of a very simple and efficient crossover procedure
and is therefore very convenient for a genetic algorithm that uses crossover as
an important operator.

Hence, the problem considered here can be defined as follows. Given are n
data points (x1, . . . , xn) in the d-dimensional space. Find an appropriate grid size
(g1, . . . , gd) and an unambiguous (injective) allocation ı : {1 . . . n} 7→ {1 . . . g1}⊗
{1 . . . g2}⊗ . . .⊗{1 . . . gd}, such that the allocation is good in the following sense:
Points that are close to each other should be mapped to neighbouring grid points,
while distant points should be mapped to distant nodes in the grid. Thus, the
transformation to the grid throws away as little neighbourhood information as
possible, and one can hope that a genetic algorithm is able to use this information
for faster convergence. Note that the injectivity of ı implies g1 ·g2 ·. . .·gd ≥ n. On
the other hand, this product should be as small as possible, since each unused grid
point means unused space in the chromosomes and therefore poorer performance
of the genetic algorithm.

In [5], B. Moon and C. Kim study a similar problem, the two-dimensional
embedding of graphs. Their assumptions are weaker, since they exploit only the
adjacency information (i.e. distance in the TSP case). In the contrary, we will
exploit the locus information.

2 Calculating the Grid Size

We start with a brief discussion of different approaches. Basically, there are two
possible ways: One can either fix the grid size before allocating the points, or
one can determine the grid size while arranging the points. Suppose we want
to do the latter. An algorithm could perform a depth first search, in analogy
to the graph embedding algorithm in [5]. In each step, the grid is extended by
an additional point. But the decision where to extend the grid and in which
direction is difficult in general, since it depends crucially on points that are not
yet processed. Furthermore, if n < g1 · g2 · . . . · gd, then unused grid points have
to be inserted at some places. Suboptimal decisions that result in an ineffective
allocation are almost certain, which carries the need for repairing algorithms.
Hence, constructing the grid without previously fixing the grid size can become
very expensive, in particular for large data sets (for example n ≈ 1000).

For a concrete example, consider the points displayed in Fig. 1 (a). A step
by step arrangement may lead to the situation shown in Fig. 1 (b). It would
be relatively easy to repair this arrangement by inserting two empty positions,
thus arriving at Fig. 1 (c). In contrast, all modifications that could result in the
optimal allocation Fig. 1 (d) are quite expensive. Another situation: If point 6 is
placed to the right of point 5 instead of below, the result is Fig. 1 (e) or, if point

112 J. Poland, K. Knödler, and A. Zell

1

2

3

4

5

6

7

8 (a) (b) (c)

(d) (e) (f) 0 1

0

1

z
1
(1) z

2
(1) z

3
(1) z

4
(1) z

5
(1) z

6
(1) z

7
(1) z

8
(1)

z
1
(2)

z
2
(2)

z
3
(2)

z
4
(2)

z
5
(2)

z
6
(2)

z
7
(2)

z
8
(2)

Fig. 1. (a) Eight data points, (b) - (f)
their allocation to different grids, (d) is
optimal

Fig. 2. The points have been normal-
ized and projected to the coordinate
axis

7 is choosen to be below point 5, Fig. 1 (f). Note that for the last arrangement
four additional empty positions have to be inserted, which is not optimal at all.

In general, we are interested in a reasonable minimum of grid points. This
ensures a minimum of unused space for the individuals, while Fig. 1 suggests that
the neighbourhood relation is fairly well preserved by different arrangements
(each of the arrangements (c) through (f) would pass this criterion). Therefore,
we pursue the other way and fix the grid size before allocating the points.

We assume that the data points cover a region that has approximately the
shape of a d-dimensional hypercube with balanced aspect ratio, i.e. that the data
set is not poorly scaled. Otherwise, the scaling information should be exploited
for calculating the grid size.

Consider again Fig. 1 (a). We are looking for a method that calculates the
grid size for this set of points. A 2 × 4 grid would be optimal, as we can see in
the figure, a 3 × 3 grid would be tolerable, too.

To this aim, we first normalize the points to [0, 1]d and name the resulting
points (y1, y2, . . . , yn). Then we project the points to each of the d coordinate
axis, obtaining d vectors of length n {(y1, . . . , yn)(k), k = 1 . . . d}, see Fig. 2.
Sorting (y1, . . . , yn)(k) for each k ∈ {1 . . . d} separately in ascending order yields
(z1, . . . , zn)(k), k ∈ {1 . . . d}, having z

(k)
1 = 0 and z

(k)
n = 1 for each k. We define

rk =
1∑n−1

j=1 (z(k)
j+1 − z

(k)
j)2

+ 1 for each k ∈ {1 . . . d}.

This number rk estimates the requested number of points for each dimension k.
To motivate this statement, consider more closely the projections onto the

x-axis in Fig. 2. We have eight different points z
(1)
1 , . . . , z

(1)
8 , but they are not

equidistantly distributed. Instead, z
(1)
1 , z

(1)
2 and z

(1)
3 form a cluster, and the same

is true for z
(1)
5 , z

(1)
6 and z

(1)
7 . Thus one should expect r1 = 4 rather than r1 = 8.

On the Efficient Construction of Rectangular Grids 113

Consider n sorted points z1, . . . , zn ∈ [0, 1] with z1 = 0 and zn = 1. Suppose
that each zj is one of the m ≤ n points { i

m−1 : 0 ≤ i ≤ m − 1}, which
are equidistantly located. If m < n, then at least two points coincide. Let X
be a random variable with uniform distribution on [0, 1] and define δ(ξ) as the
distance of ξ to the closest point zj :

δ(ξ) = min
1≤j≤n

|zj − ξ| for ξ ∈ [0, 1].

Then the expectation of δ(X) can be computed:

E(δ(X)) =
∫ 1

0
δ(ξ)dξ =

n−1∑
j=1

∫ zj+1

zj

min
i∈{j,j+1}

|zi − ξ| dξ

=
n−1∑
j=1

1
4
(zj+1 − zj)2 =

m−1∑
j=1

1
4(m − 1)2

=
1

4(m − 1)
.

Thus, we can reconstruct the number of distinct points m by means of E(δ(X)):

m =
1

4 · E(δ(X))
+ 1 =

1∑n−1
j=1 (zj+1 − zj)2

+ 1.

This is the formula stated above. Note that this expression is continuous in each
zj , so if you take a point zj that coincides with its successor and move it a little
to the left, the left-hand side changes only a little, too. Hence a cluster that is
for example formed by z

(k)
1 , z

(k)
2 and z

(k)
3 in Fig. 2 yields almost the same value

as a cluster of three coinciding points. This property enables the formula to be
a good estimate for the number of different points. In our example (Fig. 2) the
calculations yield r1 = 4.1045 and r2 = 7.0624.

Now one notes that the product of the requested grid sizes is in general
much larger than n: We have r1 · r2 = 28.9880 and n = 8 in our example. A
simple reflexion explains this fact: If n points are equidistantly placed on the line
through (0, 0) and (1, 1), the result will be r1 = n and r2 = n, hence r1 · r2 = n2.

At this stage, we recall our assumption that the data set is not poorly scaled.
Thus, each dimension can be treated in the same way, and we set

sk = rk · d

√
n

r1 · r2 · . . . · rd
for each k ∈ {1, . . . , d}

and obtain the desired grid size for each dimension having s1 · s2 · . . . · sd = n,
while the relations are preserved.

Unfortunately, s1, . . . , sd are no integer numbers yet. We could obtain integers
by setting gk = dske. But since we are interested in a grid as small as possible,
this is not a good choice. Thus, we simply try each reasonable combination
g1, . . . , gd. Since the dimension d is normally quite small, this is no drawback for
the performance. For large d (about d ≥ 15), a different method has to be used
instead.

114 J. Poland, K. Knödler, and A. Zell

In order to select the best grid size, we define

q1 = max
1≤k≤d

| log(
gk

sk
)| and q2 = log(

g1 · . . . · gd

n
).

The ratio q1 can be considered as the bias of the desired size relations, while q2
is the factor by which the grid is too large. We define the optimal grid size as the
vector (g1, . . . , gd) for which max{q1, q2} attains its minimum while g1·. . .·gd ≥ n.
The number of grid points g1 · . . . · gd will be denoted by ngrid in the sequel. In
our example (Fig. 2), the algorithm found the 2 × 4 grid to be optimal.

We point out that this method for calculating the grid size is most appropriate
when the projections to the coordinate axis form significant clusters, otherwise
the algorithm will produce a nearly quadratic grid. This is a desirable behaviour
for data sets that are reasonably scaled and oriented. If the orientation is not
appropriate, i.e. not roughly parallel to the coordinate axis, a transformation
using the eigenvectors of the covariance matrix (see Section 4) can fix that prob-
lem. The algorithm is not appropriate for exploiting the scaling information of a
poorly scaled data set, but this is normally a simple task which can be done by
multiplying the requested grid sizes rk with the corresponding scaling factors.

3 Allocation of the Points

Once the grid size has been computed, the allocation of the points is performed
by a simple heuristic, similar to the heuristic that is often used for the TSP. We
define the ngrid grid points γ1, . . . , γngrid

as an arbitrary enumeration of the set{(
1
2

+
i1 − 1

g1
, . . . ,

1
2

+
id − 1

gd

)
: 1 ≤ i1 ≤ g1, . . . , 1 ≤ id ≤ gd

}
.

Then, we start with a random allocation of the points, see Fig. 3 (a). Each step
of the heuristic selects randomly two edges, i.e. two existing connections between
a point and a grid point, and exchanges the allocation if this reduces the sum
of the distances. Instead of two edges, the heuristic can select one edge and one
unused grid point (they exist if ngrid > n) and exchange the allocation if the
distance is reduced. The heuristic aborts after 5000 · ngrid steps maximum. Fig.
3 illustrates the function of the heuristic in our example. Note that the result
(Fig. 3 (b)) is the optimal arrangement (Fig. 1 (d)).

Instead of the distances, the heuristic can also minimize the square distances.
This results in a slightly different behaviour and is a little faster, since no square
root has to be computed. If the standard grid defined above does not yield
satisfactory results, a different grid as described in the next section can improve
the performance.

4 Data Preprocessing and Self Organizing Maps

If the shape that is covered by the data points (xj) differs from a (scaled) hyper-
cube, both the calculation of the grid size and the heuristic that uses a rectangu-
lar grid (γi) may yield poor results. In many cases, a simple rotation of the data

On the Efficient Construction of Rectangular Grids 115

(a) (b)
0

1

0

1
0

1

u
2

u
3

u
1

Fig. 3. Allocation of the points to the
grid: (a) random initialization, (b) final
result of the heuristic

Fig. 4. A data set in R
3 and the coordi-

nate system formed by the eigenvectors
of the covariance matrix

is sufficient to fix this problem. To this aim, we apply a very efficient statistical
method that makes use of the covariance matrix of the data. Let x̄ = 1

n

∑n
j=1 xj

and X =
(
(x1 − x̄) . . . (xn − x̄)

)
. Since XX ′ is symmetric, its eigenvectors

u1, . . . , ud form an orthogonal basis. We set U = (u1 . . . ud) and yj = U ′xj for
each 1 ≤ j ≤ n. This transformation yields a data set that is oriented mainly
parallel to the coordinate axis (Fig. 4).

If the data set has a more complex shape e.g with a curvature, the use of
a Self Organizing Map (SOM) may be appropriate. This is a class of Neural
Networks introduced by Kohonen, see [6] or [7] for details. Self Organizing Maps
provide a powerful tool for classifying large sets of points in the d-dimensional
space with regard to neighbourhood relations.

We take a rectangular SOM with a highly unbalanced aspect ratio and only
few codebook vectors. Thus, the SOM can reproduce the curvature of the data,
when it is trained with the points (xj), see Fig. 5 (a). In the resulting map, we can
define a coordinate system for each codebook vector (in the figure, this is shown
for the third point from the left). With this information, we can ”straighten”
the SOM and obtain a transformation to a nearly rectangular grid, while the
neighbourhood relations are preserved.

A grid defined by a SOM can be also very appropriate as a base for the
heuristic, instead of the standard grid. For this aim, we build a SOM of size
g1 × . . . × gd and train it with the data points (xj), see Fig. 5 (b). The resulting
codebook vectors define the grid (γi), which is rectangular and contains the
neighbourhood information, but is adapted to the data shape. For such a grid,
the heuristic that minimizes the square distances has shown to be best suitable.

5 Practical Tests

The single steps have been described by now. The complete algorithm for con-
structing a rectangular grid from given data points can be summarized as follows.

116 J. Poland, K. Knödler, and A. Zell

(b)(a)

(a) (b)

(c) (d)

Fig. 5. Different applications of a
SOM: (a) a SOM for data preprocess-
ing, (b) the SOM defines the grid

Fig. 6. The test data sets, each defines
1000 cities for a TSP

Algorithm

1. Data preprocessing. Choose either no preprocessing, rotation according to
the eigenvectors of the covariance matrix, or transformation using a SOM.

2. Grid size calculation.
3. Grid definition. Use either a standard grid or define the grid by a SOM.
4. Choice of the heuristic. Choose the sum of the distances or the sum of the

square distances to be minimized.

The algorithm is implemented in the MATLAB environment. This implies
that the performance is lower than, for example, C-code would be. This is toler-
able since there are no time-consuming loops, except for the heuristic, which is
therefore directly coded in C. For the SOM features, we use the SOM toolbox,
see [8]. The genetic algorithm is the MATLAB implementation presented in [9].

For testing our algorithm, we used four rather large traveling salesman in-
stances with 1000 cities each. The cities are shown in Fig 6. The first data set (a)
simply consists of randomly placed points. The second (b) is defined by randomly
placed points aligned to a grid. The third data set (c) is the second transformed
to a sigmoid curve, and the last (d) is the first transformed to a half circle.

To estimate the performance of the grid allocations, there is a direct and an
indirect way. The former consists in defining a measure for the preservation of
neighbourhood relations under the grid transformation. To this aim, consider
the distance matrix Dx defined by Dx

ij = ‖xi − xj‖ (1 ≤ i, j ≤ n) and the dis-
tance matrix Dγ that contains the distances after transformation to a standard
rectangular grid. Dx is normalized such that

∑
i Dij = 1 for each j. Moreover,

we define a weight matrix W to be inverse proportional to the square of the
distances and normalized: Wij = c · (Dx

ij)
−2 for i 6= j and Wij = 0 for i = j and∑

i Wij = 1 for each j. Then, a measure Mj for the preservation of neighbour-
hood relations for one point xj is defined as the weighted mean of all distance
differences that arise from the grid transformation. Thereby the grid distances

On the Efficient Construction of Rectangular Grids 117

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

(a)

(b)

(c)

(d)

average weighted distance difference M

da
ta

 s
et

none, std, 1
eigvec, std, 1
eigvec, std, 2
eigvec, SOM, 2
SOM, std, 1
SOM, std, 2

 0 0.002 0.004 0.006 0.008 0.01

(a)

(b)

(c)

(d)

log
2
(average relative performance)

da
ta

 s
et

1−dim "smart"
none, std, 1
eigvec, std, 1
eigvec, std, 2
eigvec, SOM, 2
SOM, std, 1
SOM, std, 2

Fig. 7. Direct performance compari-
son: A lower value means less differ-
ences and thus a better performance

Fig. 8. Indirect performance compar-
ison: A higher value means a shorter
tour and therefore a better perfor-
mance

must be scaled in order to achieve the best fit to the distances. As an explicit
formula, this gives

Mj = min
s∈R+

n∑
i=1

Wij · |Dx
ij − s · Dγ

ij | ∀ 1 ≤ j ≤ n.

The measure M for the overall preservation of the neighbourhood relations is
defined as the mean of all Mj .

Fig. 7 shows this evaluation of the grid transformation for the four test data
sets and several allocation strategies with different preprocessing, grid definition
and heuristic. Each combination corresponds to a color in the figure which is
explained in the legend by a comma separated list: The first entry is the pre-
processing method (none, eigenvectors or SOM), the second the grid definition
(standard or SOM) and the third is the heuristic (1 for absolute distances and
2 for square distances). We observe that the evaluation for the grid allocation
varies not very much, except for a larger value for the SOM preprocessing for
the first two data sets. This is not unexpected since these data sets cover al-
ready a quadratic area, thus a rectangular SOM is likely to generate a worse
arrangement.

The indirect evaluation of a grid arrangement is given in terms of the short-
est city tour computed by a genetic algorithm using the grid arrangement for
encoding. As a mutation operator, we employ the well known TSP-heuristic (see
e.g. [10]) that randomly performs edge exchange and single point insertion. We
use the same combinations for preprocessing, grid definition and heuristic as
above. In addition, for reference purpose, we try a ”smart” one-dimensional ar-
rangement according to a run of the TSP-heuristic as suggested in [1] as well as
an arbitrary one-dimensional arrangement. For each setting, 20 GA runs have
been performed, from which we take the averages. The following GA settings

118 J. Poland, K. Knödler, and A. Zell

Fig. 9. Grid defined by a SOM
with eigenvector preprocessing and
quadratic heuristic for data set (d)

Fig. 10. The optimal path found with
the coding shown in Fig. 9

were used: population size µ = 40, number of generations tmax = 100, nonlin-
ear ranking selection (q = 7), crossover and mutation probablity pcross = 0.5
and pmut = 0.1. Fig. 8 shows the resulting indirect performances relative to
the average performance of the arbitrary one-dimensional arrangement. We use
logarithmic (base 2) scale, where a positive value means a shorter average tour
length.

The performance differences are minimal (less than 1%), but reproducible.
The two-dimensional arrangement is always better than both the arbitrary and
the smart one-dimensional arrangement. These relations remain valid also in
earlier generations of the GA run, e.g. after t = 30, 50, or 80 generations. Thus,
our coding implies a faster GA convergence. It is interesting to observe that
the smart one-dimensional arrangement is sometimes worse than the reference.
Further, there is no outstanding correlation between the direct and the indirect
performance.

Fig. 9 and Fig. 10 show examples of a grid gained with a SOM and the
resulting optimal path for the last test data set.

The time complexity of each of the steps is clearly linear in the number of
points n. In the practical experiments with n = 1000 cities, the time for the first
step ranges from 0 (no preprocessing) over 0.01 sec (eigenvector transformation)
up to 0.8 sec (SOM). The second step (calculation of the grid size) needs about
0.01 sec. The standard grid definition takes no measurable time, while the SOM
grid calculation costs 99 sec. This is due to the fact that a large amount of code-
book vectors have to be trained. Nevertheless, even this is not much compared
to the running time of the genetic algorithm which is in this case about 48 min.
The last step, the heuristic, takes 2.3 sec for minimizing the distance sum and
1.1 sec for minimizing the square distance sum. In any case, the overall algorithm
takes little time in relation to the following genetic algorithm.

On the Efficient Construction of Rectangular Grids 119

6 Conclusions

The presented methods allow the efficient arrangement of a given set of data
points in a rectangular grid under preservation of the neighbourhood relations.
This can increase the performance of genetic algorithms using a locus-based
representation, when each data point corresponds to a part of the chromosome.

The algorithms developed in this paper can be applied also in completely
different situations. For example, to define the grid size of a SOM, the ideas
from Section 2 can be used.

The natural encoding results in a small performance improvement for the
TSP. Tested with other problems, the improvements gained by a d-dimensional
encoding were similarly measurable, but small. On the other hand, there is no
obvious relation between the direct performance measure (neighbourhood preser-
vation) and the genetic performance. These facts raise some questions: Is there a
direct performance measure that is correlated to the indirect performance? Are
there (d-dimensional) encoding schemes that yield more improvement? What are
characteristics of an optimal encoding scheme for a locus-based representation?

Acknowledgments. We thank Alexander Mitterer, Thomas Fleischhauer and
Frank Zuber-Goos for helpful discussions. This research has been supported by
the BMBF (grant no. 01 IB 805 A/1).

References

1. T. N. Bui and B. R. Moon. A new genetic approach for the traveling salesman
problem. In International Conference on Evolutionary Computation, pages 7–12,
1994.

2. J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht. Genetic algorithms
for the travelling salesman problem. In Proceedings of the first International Con-
ference on Genetic Algorithms and Application, pages 160–168, 1985.

3. A. Homaifar, S. Guan, and G. E. Liepins. A new approach on the traveling sales-
man problem by genetic algorithms. In 5th International Conference on Genetic
Algorithms, pages 460–466, 1993.

4. T. N. Bui and B. R. Moon. On multidimensional encoding/crossover. In 6th
International Conference on Genetic Algorithms, pages 49–56, 1995.

5. B. R. Moon and C. K. Kim. A two-dimensional embedding of graphs for genetic
algorithms. In 7th International Conference on Genetic Algorithms, pages 204–211,
1997.

6. T. Kohonen. Self-Organization and Associative Memory. Springer-Verlag, 3rd
edition, 1989.

7. A. Zell. Simulation neuronaler Netze. Addison-Wesley, Bonn, 1994.
8. J Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas. SOM Toolbox for

Matlab 5. Technical Report A57, Helsinki University of Technology,
http://www.cis.hut.fi/projects/somtoolbox/, April 2000.

9. J. Poland and K. Knödler et al. A genetic algorithm with variable alphabet coding
for a new NP-complete problem from application. Preprint, 2000.

10. K. Knödler, J. Poland, A. Mitterer, and A. Zell. Optimizing data measurements
at test beds using multi-step genetic algorithms. Preprint, 2000.

An Evolutionary Annealing Approach to Graph
Coloring

Dimitris A. Fotakis1, Spiridon D. Likothanassis1, and Stamatis K. Stefanakos2

1 Computer Engineering & Informatics Department,
University of Patras, 26500 Greece
{fotakis, likothan}@cti.gr

2 Department of Computer Science, ETH Zurich,
CH-8092, Zurich, Switzerland

stefanak@iiic.ethz.ch

Abstract. This paper presents a new heuristic algorithm for the graph
coloring problem based on a combination of genetic algorithms and sim-
ulated annealing. Our algorithm exploits a novel crossover operator for
graph coloring. Moreover, we investigate various ways in which simulated
annealing can be used to enhance the performance of an evolutionary al-
gorithm. Experiments performed on various collections of instances have
justified the potential of this approach. We also discuss some possible
enhancements and directions for further research.

1 Introduction

In this work, we consider one of the most extensively studied NP-hard problems,
the graph coloring problem (GCP). In the GCP, one wishes to color the vertices
of a given graph with a minimum number of colors, such that no two adjacent
vertices receive the same color. A coloring which uses k colors is called a k-
coloring and can be regarded as the partition of the vertices of the graph to
distinct color classes. The minimum number of colors (or the minimum color
classes) needed to color a specific graph G, is called the chromatic number χ(G).
Given a specific coloring, if two adjacent vertices have the same color we say
that these vertices are in conflict and call the connecting edge between them, a
conflicting edge. For an excellent bibliographic survey on the GCP, see [1].

Given the NP-hardness of the GCP, it is natural to use heuristic methods in
order to tackle it. The simplest heuristics work on a given permutation of the
vertices and color each one sequentially, with the minimal possible color. Other
heuristics, like RLF [2] and Dsatur [3], try to generate the permutation of the
vertices dynamically, as they proceed with the coloring.

In the case where a better solution is needed, more time-consuming methods
have to be applied. Simulated Annealing (SA) [4] and Tabu Search (TS) [5] have
been applied successfully to the GCP [6,7,8,9]. The basic idea behind TS and
SA is to allow some uphill moves during the search process, hoping that the
algorithm will be able to escape local minima.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 120–129, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

An Evolutionary Annealing Approach to Graph Coloring 121

The first extensive study of the application of Genetic Algorithms (GAs)
[10] to the GCP was made by Fleurent and Ferland [11]1. Their work showed
that GAs that use standard crossover operators are not able to compete on the
GCP with heuristic algorithms based on TS and SA. On the other hand by
maintaining a population of possible solutions and using a meaningful problem-
specific crossover, together with a powerful local search method they were able
to improve on the solutions obtained by local search, both in terms of solution
quality and time. Since then, considerable work has been done in applying hybrid
algorithms (i.e. algorithms combining two heuristics in order to improve the
efficiency of both elements of the algorithm) to the GCP. Most of the proposed
algorithms [13,14,15] use either TS or a simple steepest descent algorithm as the
local search ingredient and utilize a specialized crossover in order to get the best
results.

To the best of our knowledge, Simulated Annealing has never been used in
a hybrid Genetic Algorithm for the GCP. A hybrid scheme like that seems very
promising: by maintaining a population of solutions we can investigate a large
part of the search space and move within promising areas of it by the use of
suitable genetic operators. On the other hand SA gives us the opportunity to
exploit (improve) quickly any good solutions that we might come up with and
also serves as a fine mutation operator in order to move to new solutions and
therefore keep the population diversity in high levels. In this paper we present
a new hybrid genetic algorithm for the GCP which uses simulated annealing in
order to enhance the search process and also a new crossover specialized for the
graph coloring problem called Maximum Independent Set Crossover (MISC).

In the next section we present the generic form of our evolutionary annealing
algorithm. In section 3 we present the GCP-specific details of our implementa-
tion. Then, we present the results we obtained on various test instances (section
4). Finally, in the last section we give some conclusions and ideas for future work.

2 The Generic Evolutionary Annealing Algorithm

In this section we present the Evolutionary Annealing (EVA) algorithm. We do
not concentrate on any problem specific details but only present the building
blocks of the algorithm in their generic form. We will deal with the GCP-specific
details and the genetic operators in the next section.

The basic idea behind EVA is to maintain a population of solutions and
to evolve them using genetic operators such as mutation and crossover. Using
simulated annealing we can enhance the search process by two ways: first,
we use simulated annealing to exploit quickly any good solutions that we
might come upon with. This is achieved by starting the annealing process at
low temperatures. On the other hand, when the process is stuck, we can use
simulated annealing in order to generate different solutions using the existing
ones; this is achieved by starting the cooling process from high temperatures
and thus allowing many uphill moves. The main EVA procedure is given below:

1 There exists also the earlier work of Davis [12], but he did not consider the combi-
nation of GAs with local search.

122 D.A. Fotakis, S.D. Likothanassis, and S.K. Stefanakos

The main EVA algorithm
% pop size: population size
% p mut : mutation probability
% off size: number of offsprings generated by crossover

Initialize the population P with pop size solutions
Repeat

Repeat
P = evolve(P , off size, p mut)

Until term cond GA = TRUE
Choose a solution s ∈ P
snew = anneal(s)
Add snew to the population and delete s

Until term cond EVA = TRUE
Return the best solution found.

The procedure evolve implements a one-generation evolution process which
is repeated in order to obtain a complete evolution process. The model used here
is a variation of the (µ + λ) evolutionary algorithm. In our case, the offsprings
are generated only by crossover and are included in the enlarged population,
while the solutions that are selected for mutation are replaced directly (without
competition) by the new ones. The exact procedure is presented here:

Algorithm evolve(P, off size, p mut)
% P : Population of pop size solutions
% f(): cost function

Evaluate the population P
Repeat

Choose two solutions s1, s2 ∈ P
sc = crossover(s1, s2)
sc = anneal(sc)
Compute f(sc)
Add sc to P

Until iterations = off size
∀s ∈ P

with probability p mut1
s = mutate(s)
s = anneal(s)

with probability p mut2
s = anneal(s)

Discard the worst solutions from P until there
are pop size solutions left
Return the new population

The basic idea behind simulated annealing is that the search process can
escape local minima if we allow some uphill moves. Starting with an initial
solution s = s0 we choose at random a neighbor of s. If that move improves the
cost function we perform it; otherwise we move to that solution with probability

An Evolutionary Annealing Approach to Graph Coloring 123

p = e−∆/t, where ∆ is the deterioration in the cost function. The parameter t,
which is called temperature, is used in order to control the acceptance ratio: In
the beginning, the temperature is set to a high value, and therefore a move to
a worse is solution is often; as the search goes on, the temperature is reduced
by a factor a and thus the probability of a downhill move decreases. The initial
temperature together with the factor a and the number of trials performed in
each iteration is called the cooling schedule. The procedure anneal which is
presented below, implements a full annealing cycle.

Algorithm anneal(s0)
% s0: initial solution
% f(): cost function
% N(s): the neighbors of s
% We consider a minimization problem

Compute an initial temperature t0 depending on f(s0)
Let t0 = tf · t0 + tp where tf , tp are user-defined parameters
Repeat

Repeat
Compute the size of the neighborhood N = |N(s0)|
Let nrep= N · Sf , where Sf is a user-defined parameter
Randomly choose s ∈ N(s0)
∆ = f(s) − f(s0)
If ∆ < 0

Let s0 = s
Else

With probability e−∆/t0 put s0 = s
Until iterations = nrep
Let t0 = a · t0

Until term cond SA = TRUE
Return s0

Our implementation is similar to a typical SA algorithm with the exception
that the neighborhood size is re-computed for every solution and therefore varies
from time to time (in most implementations that we are aware of, the neighbor-
hood size is computed once and remains the same during the whole optimization
cycle). This feature makes a difference if we choose a neighborhood that reduces
its size over the optimization process. As we shall see in the next section, that
is the case in our implementation for the GCP.

The annealing procedure turns out to be a very important feature of our
algorithm, as it is used after every crossover or mutation. The parameters that
need to be defined by the user for the anneal procedure are namely tf , tp, sf , a.
These parameters are used so that we shall be able to control better the cooling
schedule of the annealing process.

An interesting characteristic of our implementation is that the user is able
to define different values for these parameters, according to which component of
the algorithm calls the procedure anneal. For example, we are able to define a
different cooling schedule for the annealing process that takes place in the ini-

124 D.A. Fotakis, S.D. Likothanassis, and S.K. Stefanakos

tialization phase instead of the one performed after each crossover. This is very
crucial for the efficiency of the algorithm, since it facilitates the full exploitation
of the “cooling” process: In one extreme, we may use annealing as a random
walk in the search space by using very high temperatures and therefore increase
the diversity of the population when it becomes too low. It is well known that
maintaining the diversity of the population in high levels is very important in
GAs, because otherwise the crossover is not able to produce different solutions
and that leads to premature convergence. On the other hand, we can see anneal-
ing as a greedy local search (using zero temperatures), which could be handy
when we are dealing with good solutions (e.g. with 1 or 2 conflicts) that we want
to improve.

3 GCP-Specific Details of Our Implementation

In order to find a proper coloring of a given graph G(V, E), one usually starts
out by trying to color the graph with a large enough number of colors k. Upon
succeeding, the number of colors is reduced by one and a new attempt is made.
Our evolutionary annealing algorithm (EVA) seeks out proper k-colorings and
stops when it finds one.

Initialization. The first generation of solutions is created by a modified RLF
algorithm, which uses at maximum k colors and assigns randomly those vertices
that cannot be colored, within that range. Before the solutions are entered
into the population, they are improved for a number of iterations by simulated
annealing.

Search space and cost function. A solution (i.e. a not necessarily proper
k-coloring) is a partition of the vertices of the graph in k color classes: s =
{C1, C2, . . . , Ck}. In order to evaluate such a solution we just count the number of
conflicting edges. Thus, the cost function in both the anneal and evolve processes
is

f(s) = | {(u, v) ∈ E | u ∈ Ci and v ∈ Ci , 1 ≤ i ≤ k} |.
Obviously, in order to find a proper k-coloring we need to minimize f() and
seek for a zero-cost solution.

Neighborhood operator. A solution s2 is a neighbor of s1 if the two solutions
differ in a single location of a vertex v in the coloring classes, and additionally
v is in conflict with another vertex. In order to obtain such a neighbor from a
given solution s, we first choose at random a conflicting edge and then choose
with equal probability one of its adjacent vertices. Finally, we move that vertex
to another color class.

It is obvious that this neighborhood is not symmetric because a valid
coloring would have no neighbors; apparently that is not a problem, for if we
ever find a legal coloring there is no point in continuing any further with the
search process. Another thing to be noted here is that not all the solutions have
the same neighborhood size. As we have mentioned earlier, in order to speed up

An Evolutionary Annealing Approach to Graph Coloring 125

the search process, our annealing algorithm recomputes the neighborhood size
for every solution considered, thus spending more time (making more trials)
when starting off with a solution that has many conflicts.

Crossover operator. The crossover operator used in our implementation
is called Maximum Independent Set Crossover (MISC), as it is based on the
notion of maximizing the independent sets that already appear in the parent
solutions, in a way similar to the RLF algorithm. Our crossover works on two
parent solutions s1 = { C1

1 , . . . , C1
k }, s2 = { C2

1 , . . . , C2
k } and produces an

offspring solution s = { C1, . . . , Ck } as follows: In each step the chromatic class
Ci of the offspring solution is constructed by setting Ci = Im

j , where Im
j is the

largest independent subset of a chromatic class of the solutions sm, m = 1, 2
(we check all the classes in order to find the largest independent subset). We
consider two sets V, U : V contains the uncolored vertices, while U contains at
step the vertices that can’t be colored at that moment i.e. the vertices that are
in conflict with the color class Ci that is being constructed. Initially V contains
all the vertices of the graph and U = ∅. After setting Ci = Im

j we delete all
the vertices of Ci from V and add to U all the vertices that are adjacent to a
member of Ci. The vertices of V − U are then added to Ci and are deleted from
V . Finally we set U = ∅, delete the vertices of Ci from the solutions s1, s2 and
repeat the process until V = ∅. The offspring is then improved for a number of
iterations by the anneal procedure.

Mutation operator. The mutation operator used tries to give to each conflict-
ing vertex v a feasible color. If that’s not possible (meaning that its adjacent
vertices have been already assigned to all k color classes), we then assign color
i ∈ [1, k] with probability proportional to

p(i) = d(v) − φ(v, i),

where d(v) is the degree of the vertex v and φ(v, i) is the number of the vertices
adjacent to v that own the color i. As in the crossover operator, the outcome
of the mutation is then improved by the anneal procedure. We hope that this
mutation, will move the conflicts to another part of the graph when the search
is stuck and thus in the long term we will be able to improve the solution.

4 Experimental Results

In this section we present the results we were able to obtain using the EVA
algorithm on various test instances and compare them with other algorithms.
We performed experiments on the following instances:

– Three random graphs (G125, 0.5, G250, 0.5, G500, 0.5) with unknown chro-
matic number, which we generated using the random graph generators of
LEDA [16].

– Twelve Leighton graphs with 450 vertices and chromatic numbers 5,15 and
25, which were taken from the 2nd DIMACS challenge benchmarks [17].

– Two application graphs, school and school nsh, also used in [18].

126 D.A. Fotakis, S.D. Likothanassis, and S.K. Stefanakos

We are interested in these particular instances because they have been largely
studied in the literature and thus constitute a good reference for comparisons.
Besides that, some of the Leighton graphs have proved to be very difficult. The
application graphs, which were generated from class scheduling problems, are
used in order to find out the performance and therefore the usefulness of EVA
on such problems.

In order to evaluate the algorithm’s performance we use the criterion of the
quality of the best solution found, that is the number of colors k used. For the
Leighton and the application graphs we check whether the algorithm is able
to solve the instance optimally. If optimum cannot be found, we increase the
number of colors used, until we find a feasible coloring. For the three random
graphs, due to the fact that their chromatic number is unknown, we perform
multiple runs for various values of k and measure the ratio of successful runs
(meaning these that come up with a legal coloring).

Table 1. Results for random graphs per 5 runs.

Instance k succ (fail) avg. t (sec)
G125,0.5 16 (5) -

17 4 (1) 512.49
18 5 115.51
19 5 13.26

G250,0.5 27 (5) -
28 1 (4) 50864
29 2 (3) 7867.23
30 5 2746.69

G500,0.5 50 (5) -
51 1 (4) 140043
52 3 (2) 67560
53 5 36136

We compare our results with those given for three well known algorithms:

– DCNS. The algorithm of C. Morgenestern [8], based on Simulated Annealing.
It features a distributed implementation with various child-processes coloring
in parallel a population of possible solutions.

– PGC. This algorithm of G. Lewandowski and A. Condon [18] , is a parallel
implementation based on DCNS and Johnson’s XRLF [7].

– FF. This is a hybrid GA-TS algorithm by Fleurent and Ferland [11]. Their
given results do not base on one method only: For the most difficult in-
stances they first partially color the graph with an Independent Set Extrac-
tion method based on XRLF and then color the remainder graph with their
algorithm.

In table 1 we present the results obtained by EVA on the three random graphs.
In table 2 we give the best results that were obtained for all the instances and
the parameters we used. Our algorithm is able to solve all but two Leighton

An Evolutionary Annealing Approach to Graph Coloring 127

Table 2. Best results obtained by EVA and parameters used.

Instance k |P | offsize pmut1 pmut2 t (sec)
le450 5a 5 8 2 0.5 0.7 366
le450 5b 5 8 2 0.5 0.7 146
le450 5c 5 1 - - - 3
le450 5d 5 1 - - - 3.2
le450 15a 15 10 3 0.2 0.5 4010
le450 15b 15 8 3 0.2 0.1 481
le450 15c 15 10 3 0.2 0.2 73392
le450 15d 15 14 4 0.2 0.2 38755
le450 25a 25 1 - - - 2
le450 25b 25 1 - - - 2.1
le450 25c 27 8 3 0.2 0.1 224
le450 25d 27 1 0 0.2 0.1 18.07
G125,0.5 17 6 2 0.2 0.2 411
G250,0.5 28 14 2 0.1 0.1 50864
G500,0.5 51 15 2 0.1 0.1 140043
school 14 8 3 0.3 0.5 12

school nsh 14 8 3 0.3 0.3 29

graphs optimally. Let us note that four Leighton graphs (le450 5c, le450 5d,
le450 25a, le450 25b) are easily solved in the initialization phase by the RLF
algorithm. For the two graphs that were not solved optimally (le450 25c,
le450 25d), the small execution times required to solve them with 27 colors,
suggest that they should be solved with 26 colors, given sufficient running times.
That was not the case though, as we were not able to find legal colorings with
26 colors for very large running times.

The two scheduling graphs constitute no problem as they are solved eas-
ily in very small running times. As is noted in [18], where more experiments
with such graphs were conducted, several applications, like register allocation
and scheduling, provide graphs which are easy to color. Our algorithm beats
their parallel implementation (using 32 processors) in terms of running time and
thus we believe that EVA is well suited for solving problems arising from such
applications.

We present the comparative results in table 3. Only Morgenstern’s algorithm
is able to solve all Leighton graphs optimally. Fleurent and Ferland manage to
color the two harder Leighton instances using one color less than our algorithm.
For the smaller random graphs, EVA gives similar results with the other algo-
rithms and is only out-beaten on the G500,0.5 graph. In order to find a 51-coloring
of G500,0.5 we spent nearly 40 hours of computation time, while DCNS finds 49-
colorings in half the time. Let us note here, that the three algorithms used for
comparative purposes are among the best presented in the literature and each
one uses a different technique in order to scale up well with the problem in-
stance. Our algorithm does not use a distributed or parallel implementation, nor
a pre-coloring technique that reduces the size of the instance, as the one used in
FF.

128 D.A. Fotakis, S.D. Likothanassis, and S.K. Stefanakos

Table 3. Comparative results (”-” means that the algorithm was not tested on that
instance).

Instance χ(G) DCNS PGC FF EVA

le450 5a 5 - 5 5 5
le450 5b 5 - 5 5 5
le450 5c 5 - 5 5 5
le450 5d 5 - 5 5 5
le450 15a 15 - 15 15 15
le450 15b 15 - 15 15 15
le450 15c 15 15 16 15 15
le450 15d 15 15 16 15 15
le450 25a 25 - 25 25 25
le450 25b 25 - 25 25 25
le450 25c 25 25 27 26 27
le450 25d 25 25 27 26 27
G125,0.5 - 17 17 - 17
G250,0.5 - 28 29 - 28
G500,0.5 - 49 52 49 51
school 14 - 14 - 14

school nsh 14 - 14 - 14

Note that we do not take into consideration the running times of the algo-
rithms; the only criterion used for the comparison is the number of colors needed
to legally color a given graph. Comparing the execution times of the four algo-
rithms is a difficult task, as each algorithm is run on a different machine. Our
experiments carried over in a SUN Sparc 10 workstation, that was also accessible
to other users.

5 Conclusions and Future Work

In this paper, we introduced a new hybrid algorithm for graph coloring com-
bining a genetic algorithm and simulated annealing. Our algorithm maintains
a population of possible solutions in order to investigate a large part of the
search space and uses simulated annealing to improve quickly the best solutions
found and produce new solutions in different parts of the search space. We also
presented a new crossover for graph coloring, called Maximum Independent Set
Crossover which builds the color classes of the offspring by expanding the color
classes of the parents in an RLF fashion.

We conducted experiments on three classes of instances: random graphs,
Leighton graphs, and application graphs. The experiments showed that our al-
gorithm gives excellent results in terms of solution quality and speed for small
graphs, but is not able to scale up its performance well as the instance size
increases. This can be partly overcome by a parallel or distributed implementa-
tion which is not difficult due to the nature of our algorithm. Also, pre-coloring
techniques can be used for large instances as presented in [11].

An Evolutionary Annealing Approach to Graph Coloring 129

It is our opinion that the combination of genetic algorithms and simulated
annealing is a very promising technique that we have slightly investigated in this
work and a lot remain to be done.

References

1. P.M Pardalos, T. Mavridou, and J. Xue. The graph coloring problem: A biblio-
graphic survey. In D.-Z. Du and P.M. Pardalos, editors, Handbook of Combinatorial
Optimization, Vol. 2, pages 331–395. Kluwer Academic Publishers, 1998.

2. F.T. Leighton. A graph colouring algorithm for large scheduling problems. Journal
of Research of the National Bureau of Standards, 84(6):489–503, 1979.

3. D. Brélaz. New methods to color the vertices of a graph. Communications of the
ACM, 22(4):251–256, April 1979.

4. E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines: A Stochastic
Approach to Combinatorial and Neural Computing. Interscience series in discrete
mathematics and optimization. John Wiley & Sons, New York, 1989.

5. F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 13:533–549, 1986.

6. M. Chams, A. Hertz, and D. de Werra. Some experiments with simulated annealing
for coloring graphs. European Journal of Operational Research, 32(2):260–266,
1987.

7. D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by sim-
ulated annealing: An experimental evaluation; part II, graph coloring and number
partitioning. Operations Research, 39(3):378–406, May-June 1991.

8. C.A. Morgenstern. Distributed coloration neighborhood search. In [17], pages
335–357. American Mathematical Society, 1996.

9. A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Com-
puting, 39(4):345–351, 1987.

10. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, NY, 1992.

11. C. Fleurent and J.A. Ferland. Genetic and hybrid algorithms for graph coloring.
Annals of Operations Research, pages 437–461, 1995.

12. L. Davis. Order-based genetic algorithms and the graph coloring problem. In
Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

13. D. Costa, A. Hertz, and O. Dubuis. Embedding a sequential procedure within an
evolutionary algorithm for coloring problems. Journal of Heuristics, 1:105–128,
1995.

14. P. Galinier and J.K. Hao. Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization, 1998.

15. R. Dorne and J.K. Hao. A new genetic local search algorithm for graph coloring,
1998.

16. K. Mehlhorn and S. Naher. LEDA: A platform for combinatorial and geometric
computing. Cambridge University Press, 1999.

17. D.S. Johnson and M.A. Trick, editors. Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, volume 26 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. American Mathematical Society,
1996. contains many articles on cliques and coloring.

18. G. Lewandowski and A. Condon. Experiments with parallel graph coloring heuris-
tics and applications of graph coloring. In [17], pages 309–334. American Mathe-
matical Society, 1996.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 130-139, 2001.
© Springer-Verlag Berlin Heidelberg 2001

A Constructive Evolutionary Approach to School
Timetabling

Geraldo Ribeiro Filho1 and Luiz Antonio Nogueira Lorena2

1 UMC/INPE - Av Francisco Rodrigues Filho, 399
08773-380 – Mogi das Cruzes – SP Brazil

Phone: 55-11-4791-3743
geraldo@lac.inpe.br

2 LAC/INPE - Caixa Postal 515
12.201-970 São José dos Campos – SP - Brazil

Phone: 55-12-345-6553
lorena@lac.inpe.br

Abstract. This work presents a constructive approach to the process of fixing a
sequence of meetings between teachers and students in a prefixed period of
time, satisfying a set of constraints of various types, known as school
timetabling problem. The problem is modeled as a bi-objective problem used as
a basis to construct feasible assignments of teachers to classes on specified
timeslots. A new representation for the timetabling problem is presented. Pairs
of teachers and classes are used to form conflict-free clusters for each timeslot.
Teacher preferences and the process of avoiding undesirable waiting times
between classes are explicitly considered as additional objectives.
Computational results over real test problems are presented.

1 Introduction

The timetabling problem consists in fixing a sequence of meetings between teachers
and students in a prefixed period of time (typically a week), satisfying a set of
constraints of various types. A large number of variants of the timetabling problem
have been proposed in the literature, which differ from each other based on the type
of institution involved (university or high school) and distinct constraints. A typical
timetable instance requires several days of work for a manual solution[1].

Several techniques have been developed to automatically solve the problem[2, 3].
We therefore see algorithms based on integer programming[4], network flow, and
others. In addition, the problem has also been tackled by reducing it to a well-studied
problem: graph coloring[5]. More recently, some approaches based on search
techniques appeared in the literature[6]; among others, we have simulated
annealing[7], tabu search[8] and genetic algorithms[9, 10, 11].

We consider in this paper a problem known as school timetabling: the weekly
scheduling for all the classes of a high school, avoiding teachers meeting two classes
in the same time, and vice versa. Our main objective was to help administrative staff
of public schools in Brazil. The particular characteristics observed for Brazilian
public schools are:

mailto:geraldo@dialdata.com.br
mailto:lorena@lac.inpe.br

A Constructive Evolutionary Approach to School Timetabling 131

� Full use of available rooms;
� Closed timetabling – at any timeslot all rooms are occupied;
� Usual timeslot conflicts of classes and teachers; and
� Soft constraints for teachers – preferences to some determined timeslots and in

general avoiding the waiting timeslots (windows).

Genetic Algorithms (GA) are very well known, having several applications to
general optimization and combinatorial optimization problems[12]. GA is based on
the controlled evolution of a structured population, and is considered as an
evolutionary algorithm[13]. The basis of a GA are the recombination operators and
the schema formation and propagation over generations. This work presents an
application of a Constructive Genetic Algorithm to school timetabling problems.

The Constructive Genetic Algorithm (CGA) is a recently developed approach of
Lorena and Furtado [14] that provides some new features to GA, such as a population
formed only by schemata, recombination among schemata, dynamic population size,
mutation in complete structures, and the possibility of using heuristics in schemata
and/or structure representation. Schemata do not consider all the problem data. The
schemata are recombined, and they can produce new schemata or structures. New
schemata are evaluated and can be added to the population if they satisfy an evolution
test. Structures can result from recombination of schemata or complementing of good
schemata. A mutation process is applied to structures and the best structure generated
so far is kept in the process.

In this work, the school timetabling problem is considered as a clustering problem
to be solved using the CGA. Our CGA application presents various new features
compared to others GA applications to school timetabling. They include a specific
representation for clustering problems, specialized recombination and local search
mutation.

2 CGA Modeling

The CGA is proposed to address the problem of evaluating schemata and structures in
a common basis. While in other evolutionary algorithms evaluation of individuals is
based on a single function (the fitness function), in the CGA this process relies on two
functions, mapping the space of structures and schemata onto +́ .

2.1 Representation

Considering p timeslots in a week, and respecting the lecture requirements of each
class, we can form all possible pairs of (teacher, class), which should be implemented
in the p timeslots. Let n be the total of possible pairs.

The soft constraints for teachers are considered implicitly encoded in the
representation. The set of teachers is partitioned on three levels, according the number
of classes and overall time dedicated to the school. All the teachers are asked to

132 G.R. Filho and L.A. Nogueira Lorena

k
ia
j

ia

identify undesirable timeslots (preference constraints) conformable with their number
of classes per week.

Pairs (teacher, class) are represented by binary columns. For example, considering
4 teachers and 5 classes, the column corresponding to the pair (2,3) is

0
1 � teacher 2
0
0
--

a = 0
0
1 � class 3
0
0

The CGA works over a population of schemata (strings) formed by n symbols,
one for each column. For example: s = (#,0,0,0,#,0,1,#,1,0,0,0,1,#,#,0,#,0,1,0,0,0,1,#),
is a possible schema. There are three possible symbols:

1 � the corresponding column is a seed to form a cluster
(there is always exactly p seeds inside each schema or structure);

0 � the corresponding column is assigned to a cluster; and
� the column is considered temporarily out of the problem.

The dissimilarity between two columns is then calculated to non-seed columns and
all the other columns assigned to a cluster. The result is used to identify the cluster to
which non-seed columns will be assigned. The dissimilarity measure between two
columns is given by:

()å
å

+

-
-=

i

j
i

k
i

i

j
i

k
i

jk
aa

aa
d 1

(1)

where:
is the value (zero or one) on position i at column k , and

is the value (zero or one) on position i at column j.

To find out the cluster to which a non-seed column will be assigned,

� columns are ordered according to the teacher level and the number of preference
constraints,

� we take the seed column that is most dissimilar,
the columns (the non-seed and the chosen seed) are merged into a single one

(simple binary OR operation – see figure 1 for an example) that becomes a new seed
column. The process then continues until all non-seed columns are assigned to a
cluster.

After columns to clusters assignments, exactly p clusters

)(),...,(),(21 sCsCsC p are identified, corresponding to the p available timeslots.

A Constructive Evolutionary Approach to School Timetabling 133

0 0 0
1 1 0
0 1 1
0 0 0
-- -- --
0 1 1
0 0 0
1 1 0
0 0 0
0 0 0

Fig. 1. Merging two strings.

2.2 Modeling

Let C be the set of all structures and schemata that can be generated by the 0-1-#
string representation of section 2.1., and consider two functions f and g , defined as
f : C � +́ and g : C � +́ such that f(si) � g(si) , for all si ³ C. We define
the double fitness evaluation of a structure or schema si , due to functions f and g, as
fg-fitness.

The CGA optimization problem implements the fg-fitness with the following two
objectives:

(interval minimization) Search for si ³ C of minimal {g(si) - f(si)}, and
(g maximization) Search for si ³ C of maximal g(si) .

Considering the schema representation, the fg-fitness evaluation increases as the
number of labels # decreases, and therefore, structures have higher fg-fitness
evaluation than schemata. To attain these purposes, a problem to be solved using the
CGA is modeled as the following Bi-objective Optimization Problem (BOP):

)}()({ ii sfsgMin -
)(isgMax

subj. to g(si) � f(si) " si ³C

Functions f and g must be properly identified to represent optimization
objectives of the problem at issue. For each schema si ³ C, exactly p clusters

)(),...,(),(21 ipii sCsCsC are identified. Functions g and f are defined by

()[] 2/)(.1)()(
1

å
=

-=
p

j
ijiji sCsCsg �and ()[]å

=

-=
p

j
ijii sCconflictssgsf

1

)()()(�

Considering graphs formed by vertices as columns and the edges as possible
conflicts between columns (clashes of teachers or classes), function g(si) can be
interpreted as the total number of possible conflicts in p complete graphs of size

134 G.R. Filho and L.A. Nogueira Lorena

)(ij sC . Function f (si) decreases this number by the true number of conflicts on the

clusters)(ij sC . When f (si) = g(si) the p clusters)(ij sC are free of conflicts (a

possible feasible solution).

3 The Evolution Process

The BOP defined above is not directly considered as the set X is not completely
known. Instead we consider an evolution process to attain the objectives (interval
minimization and g maximization) of the BOP. At the beginning of the process, the
following two expected values are given to these objectives: a non-negative real

number gmax >)(is sgMax
i C˛ , that is an upper bound to g(si), for each si ³ C;

and the interval length d maxg , obtained from maxg using a real number 0 < d � 1.

Let º ß() º ß
œß
œ

Œº
Œ -

=
2

/.1/
..max

pnpn
pmultg �� This upper bound is obtained by

dividing the number of vertices n in p clusters with approximately the same number
of elements (the expression º ßpn / gives the large integer smaller than n/p), and the

same procedure used for g(si) is applied, where the positive factor mult is considered
to certify that gmax >)(i

Xs
sgMax

i ˛
.

The evolution process is then conducted considering an adaptive rejection
threshold, which contemplates both objectives in BOP. Given a parameter a � 0 , the
expression

g(si) - f(si) � d gmax - a .)]([max isggd - (2)

presents a condition for rejection of a schema or structure si from the current
population.

The right hand side of (2) is the threshold, composed of the expected value to the
interval minimization d gmax , and the measure)]([max isgg - , that shows the

difference of g(si) and gmax evaluations. For a = 0 , the expression (2) is
equivalent to comparing the interval length obtained by si and the expected length
d gmax . Schemata or structures are discarded if expression (2) is satisfied. When a>0,

schemata have higher possibility of being discarded than structures, as structures
present, in general, smaller differences)]([max isgg - than schemata.

The evolution parameter a is related to time in the evolution process. Considering
that the good schemata need to be preserved for recombination, a starts from 0 , and
then increases slowly, in small time intervals, from generation to generation. The
population at the evolution time a , denoted by Pa , is dynamic in size according to

A Constructive Evolutionary Approach to School Timetabling 135

the value of the adaptive parameter a , and can be eventually emptied during the
process.

The parameter a is isolated in expression (2), yielding the following expression

and the corresponding rank to si : a �
)]([

)]()([

max

max

i

ii

sggd

sfsgdg

-
--

=d(si)

At the time they are created, structures and/or schemata receive their corresponding
rank value)(isd . This rank is then compared to the current evolution parameter a .

At the moment a structure or schema is created, it is then possible to have some figure
of its survivability. The higher the value of)(isd , and better is the structure or

schema to the BOP, and they also have more surviving and recombination time.

3.1 Selection, Recombination, and Mutation

Functions f and g defined in section 2.2. drives the evolution process to reach
feasible solutions (structures free of conflicts), but the soft constraints are not directly
considered. The selection will consider explicitly the soft constraints. Define a new

measure
windowpref

iwindowiprefi
i ww

sdwsdwsd
sd

++
++

=
1

)](.)(.)([
)(321 , where

)(/)]()([)(ijijijij sgsfsgsd -= , j = 1,2,3;
prefw is the preference constraint weight,

windoww is the window constraint weight, and)()(),()(11 iiii sfsfsgsg == � (as

defined in section 2.2), =)(2 isg number of columns, -=)()(22 ii sgsf number of

columns with preference in conflict, =)(3 isg � number of columns,

and -=)()(33 ii sgsf number of windows.

The population is kept in a non-decreasing order according to the following key:
() ()#/)(1)(nnsds ii -+=D , where n# is the number of # labels in si. Schemata with

small n# and/or presenting small)(isd are better and appear in first order positions.

The method used for selection takes one schema from the n first positions in the
population (base) and the second schema from the whole population (guide). Before
recombination, the first schema is complemented to generate a structure representing
a feasible solution (all #’s are replaced by 0’s). A mutation process is applied to this
complete structure and it is compared to the best solution found so far, which is kept
throughout the process. The recombination merges information from both selected
schemata, but preserves the number of labels 1 (number of timeslots) in the new
generated schema.

At each generation, exactly n new individuals are created by recombination. If a
new individual is a schema, it is inserted into the population; otherwise the new
individual is a structure, the mutation process is applied, and it is compared to the best
solution found so far.

136 G.R. Filho and L.A. Nogueira Lorena

Recombination
if sbase(j) = sguide(j) then snew(j) � sbase(j)
if sguide(j)=# then snew(j) � sbase(j)
if sbase(j) = # or 0 and sguide(j)=1 then

snew(j) � 1 and snew(i) � 0 for some snew(i)=1
if sbase(j) = 1 and sguide(j)=0 then

 snew(j) � 0 and snew(i) � 1 for some snew(i)=0

The mutation process has three parts. The purpose of the first two parts is to repair
infeasible solutions eventually produced by recombination. The third part maximizes
soft constraints satisfaction.

The mutation process can be described as: 1) Class feasibility - for each cluster,
while there are repeated classes in this cluster, find in other clusters a missing class on
this one, and swap the columns; 2) Teacher feasibility - for each cluster, while there
are repeated teachers in this cluster, find in other clusters a missing teacher on this
one, for the same class, and swap the columns; and 3) Teacher preference
improvement - make columns ordered according to teachers level and number of
constraints, and for each column, if the teacher is constrained in the present cluster,
find in other clusters a unconstrained teacher which is missing on this cluster and is
feasible to swap, and swap the columns.

4 Computational Tests

The computational tests consider four instances, corresponding to two typical
Brazilian high schools. Three periods were considered for the Gabriel school,
respectively, morning, afternoon and evening, and only one period for the Massaro
school.

When the tests were performed, the schools activities were already begun. The data
used in the tests were taken from feasible solutions given by the schools
administrative staff. As the teachers precedence levels and preference timeslots were
unknown to us, this information were artificially generated. The set of teachers was
partitioned into three levels, according to the number of classes and overall time
dedicated to the school: teachers giving classes in less than 50% of the all timeslots in
the week were considered at level three, between 50% and 75% were considered at
level two, and those giving classes in more than 75% of the timeslots, had the
precedence level considered one. Teachers in level one precedes the others and so on.
The teachers undesirable timeslots (preference constraints) were artificially identified
considering their number of classes per week and the real solution manually obtained
by the schools administrative staff.

Tables 1 to 4 show the results for weights (prefw and windoww) varying on the set

{0, 0.5, 1}. Three runs were made for each weight combination and the average
results are reported in the tables lines. The first column resumes the data: number of
teachers, classes, timeslots and preference constraints (total and particularized for the
teachers in level one). The other columns show the weight values, percentage of

A Constructive Evolutionary Approach to School Timetabling 137

preferences attendance (total and for teachers in level one) and number of windows
(total and for the teachers in level one) at the best schedule obtained.

It can be seen in the tables that the weights have direct influence on the soft
constraints attendance. The percentages of attendance for teacher preferences and
final number of windows are comparable to those obtained by manual schedule,
aiming the possibility of being in future an important component of administrative
school tools.

All tests were made considering the initial population composed of 100 schemata,
generated randomly, and considering for each schema, 20% of it’s positions filled
with zeros, exactly p with ones and #’s in all remaining positions. For each
algorithm run the maximum number of generations was set to 60, and 30 new
schemata or structures were created at each generation. For each selection, the base
schema was taken from the best 33% individuals of the population and the guide
schema was taken from the whole population. Computational times reported
correspond to a Pentium II 266 MHz machine.

Comparison between the computer generated solutions and real manually obtained
solutions was not considered because of the lack of information like teachers
preferences timeslots and teachers precedence level, which in practice can be very
subjective.

5 Conclusion

The school timetabling problem is very challenging for public schools in Brazil.
Several days of work are normally employed to manually solve these problems. We
have proposed in this paper a constructive evolutionary approach to school
timetabling problems. It considers the usual feasibility problem of teachers and
classes allocation avoiding conflicts, and also some soft constraints, like teacher
preferences and to avoid waiting times.

The problem was considered as a clustering problem, and adapted to the
application of a recently proposed Constructive Genetic Algorithm (CGA). The CGA
has been successfully applied to other clustering problems[14]. The weights used at
the selection phase may extend the CGA to the class of multicriteria algorithms. The
mutation process was highly specialized to this problem. Some algorithm parameter
tuning can give even better results. Computational tests with real world instances was
promising and the algorithm may result on a useful tool for Brazilian high schools.

Acknowledgments. The second author acknowledges Fundação para o Amparo a Pesquisa
no Estado de S. Paulo - FAPESP (proc. 96/04585-6 and 99/06954-7) for partial financial
support. The authors acknowledge the referees for their useful suggestions and comments.

138 G.R. Filho and L.A. Nogueira Lorena

Table 1. Results for Gabriel – morning.

Gabriel
morning prefw windoww % prefer. % prefer.

(1)
Number of
Windows

Number of
Windows (1)

Times
(sec.)

0 0 89.39 83.33 55.00 12.33 718.67
0 0.5 88.33 74.24 33.33 7.33 625.33

30 teachers 0 1 89.85 80.30 33.33 8.67 599.33
17 classes 0.5 0 93.18 83.33 43.00 8.67 687.33

 5x5 Timeslots 0.5 0.5 91.52 81.82 36.00 7.33 632.00
220 pref. 0.5 1 90.91 81.82 37.00 10.00 601.33

22 pref. (1) 1 0 93.18 81.82 42.67 11.33 681.00
1 0.5 92.12 87.88 35.67 7.33 628.00
1 1 92.88 83.33 36.67 9.67 594.67

Table 2. Results for Gabriel – afternoon.

Gabriel
Afternoon prefw windoww % prefer. % prefer.(1) Number of

Windows
Number of

Windows (1)
Times
(sec.)

0 0 92.75 75.76 48.67 6.00 840.33
0 0.5 92.31 69.70 32.00 3.33 740.00

38 teachers 0 1 93.28 75.76 34.33 3.00 692.00
17 classes 0.5 0 94.52 75.76 49.67 3.33 758.67

5x5 timeslots 0.5 0.5 93.72 83.33 38.67 4.00 687.67
377 pref. 0.5 1 94.16 81.82 35.67 3.00 668.67

22 pref.(1) 1 0 95.05 84.85 51.33 4.33 732.00
1 0.5 94.16 80.30 41.67 4.33 679.00
1 1 93.37 77.27 35.67 4.33 648.67

Table 3. Results for Gabriel – evening.

Gabriel
evening prefw windoww % prefer. % prefer.

(1)
Number of
Windows

Number of
Windows (1)

Times
(sec.)

0 0 88.17 75.31 25.00 4.67 574.33
0 0.5 88.17 76.54 12.33 2.67 518.67

38 teachers 0 1 88.69 79.01 13.00 1.67 503.33
17 classes 0.5 0 90.59 77.78 22.67 3.33 486.33

5x4 timeslots 0.5 0.5 90.24 87.65 15.33 2.00 478.00
386 pref. 0.5 1 89.55 82.72 13.33 2.67 480.33

27 pref.(1) 1 0 90.85 76.54 26.67 2.33 451.00
1 0.5 90.59 77.78 16.33 3.00 444.67
1 1 89.90 83.95 16.33 3.00 446.33

A Constructive Evolutionary Approach to School Timetabling 139

Table 4. Results for Massaro.

Massaro prefw windoww % prefer. % prefer.
(1)

Number of
windows

Number of
windows (1)

Times
(sec.)

0 0 85.79 66.67 11.33 2.33 182.00
0 0.5 88.80 86.67 4.67 0.33 169.67

18 teachers 0 1 89.89 76.67 4.00 1.67 163.00
11 classes 0.5 0 93.44 86.67 7.00 1.33 163.67

5x4 timeslots 0.5 0.5 92.62 93.33 4.00 0.67 159.00
122 pref. 0.5 1 93.17 96.67 6.33 1.00 160.00

10 pref. (1) 1 0 93.72 90.00 7.67 1.67 157.33
1 0.5 93.44 86.67 5.33 1.00 158.33
1 1 92.90 83.33 6.00 2.33 158.00

References

1. de Werra D.: An introduction to timetabling. European Journal of Operations Research.
19 (1985) 151–162.

2. Carter M. W.; Laporte G.: Recent developments in practical course timetabling. In Carter
M. W.; Burke E. K. (eds.) Lecture Notes in Computer Science 1408. Springer-Verlag,
Berlin (1998) 3–19.

3. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review. n.13
(1999) 87-127.

4. Tripathy, A.: School timetabling : A case in large binary integer linear programming.
Management Science, 30 (12) (1984) 1473-1489.

5. Neufeld, G. A.; Tartar, J.: Graph coloring conditions for existence of the solution to the
timetabling problem. Communications of the ACM. n. 17 v.8 (1974).

6. Coloni A.; Dorigo, M.; Maniezzo, V.: Metaheuristics for high school timetabling.
Computational Optimization and Applications. n. 9 (1998) 275-298.

7. Dowsland K. A.: Simulated annealing solutions for multi-objective scheduling and
timetabling. In Modern Heuristic Search Methods. Wiley, Chichester, England (1996)
155–166.

8. Hertz A.: Tabu search for large scale timetabling problems. European Journal of
Operations Research, 54 (1991) 39–47.

9. Burke E. K.; Elliman D. G.; Weare R. F.: A hybrid genetic algorithm for highly
constrained timetabling problems. In Larry J. Eshelman (ed.) Genetic Algorithms:
Proceedings of the 6th In-ternation Conference, San Francisco. Morgan Kaufmann. (1995)
605–610.

10. Burke E. K.; Newall J. P.; Weare R. F.: Initialization strategies and diversity in
evolutionary timetabling. Evolutionary Computation 6(1) (1998) 81–103.

11. Corne D.; Ross P.; Fang H.: Fast practical evolutionary time-tabling. In Fogarty T.C. (ed.)
Lecture Notes in Computer Science 865. Springer-Verlag, Berlin (1994) 250–263.

12. Holland, J.H.: Adaptation in natural and artificial systems. MIT Press (1975) 11-147.
13. Michalewicz Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn.

Springer Verlag, Berlin Heidelberg New York (1996).
14. Lorena, L. A N. and Furtado, J. C.: Constructive Genetic Algorithms for Clustering

Problems. Evolutionary Computation - to appear (2000). Available from
http://www.lac.inpe.br/~lorena/cga/cga_clus.PDF.

A Co-evolutionist Meta-heuristic for the
Assignment of the Frequencies in Cellular

Networks

Benjamin Weinberg1, Vincent Bachelet2, and El-Ghazali Talbi1

1 USTL-LIFL-UPRESA 8022 CNRS,
59655 Villeneuve d’Ascq CEDEX, France

{Weinberg, Talbi}@lifl.fr
2 CREGI-FUCaM B 7000 Mons, Belgium bachelet@fucam.ac.be

Abstract. This paper presents a new approach, the COSEARCH
approach, for solving the Problem of Assigning Frequencies (FAP) on
antennas of a cellular telecommunication network. The COSEARCH
approach is a co-evolutionist method in which complementary meta-
heuristics, such as genetic algorithm (GA) or tabu search (TS),
cooperate in parallel via an adaptive memory (AM). We introduce an
original encoding and two new cross-over operators suited to FAP.
COSEARCH for the FAP is compared with other studies and its
efficiency is revealed on both medium and large instances.

Keywords: frequency assignment problem, graph colouring problem,
meta-heuristics, co-evolution, hybrid.

1 Introduction

In this paper, we consider the so-called Frequency Assignment Problem (FAP)
for cellular telecommunication networks. It consists in the allocation of a set of
frequencies on all antennas1 of the network. Usually, radio resources are con-
trolled by the government, so the telecommunication companies have to cope
with expensive narrow ranges of frequencies. Moreover, the needs of consumers
are growing exponentially. Thus, efficient assignments of frequencies on the net-
work are required to exploit the radio resource in an (almost) optimal manner.
Hence, industrials have to reuse the same frequencies on several antennas, un-
less they do not interfere. According to the propagation of waves, the signal
power is decreasing with the distance; thus, equal frequencies should be as-
signed to distant stations to limit the interferences. This assignment problem
can be formulated as a set-T-colouring problem, which is a NP-hard problem.
Several meta-heuristics have been proposed for solving this colouring problem:
ant colonies system based on the greedy algorithm DSATUR [12], tabu search
(TS) [9,3,4], genetic algorithms (GA) [8,11,10], and hybrid algorithms [6,7,5].
1 Also called Base Transceiver Stations (BTS)

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 140–149, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

The Frequencies in Cellular Networks 141

In the remainder of this article, we first present the FAP, followed by
the encoding of a configuration and the operators: especially two new cross-
over operators, well-suited to the FAP. Then, the co-evolutionist meta-heuristic
COSEARCH we have designed, is specified. We give the idiosyncrasies of the dif-
ferent agents which co-evolve. Finally, the results of COSEARCH are compared
to other studies.

2 Frequency Assignment Problem

We use the formulation of the FAP as a set-T-colouring problem (STCP). This
problem can be viewed as a generalised version of the well known graph colouring
problem [9]. An instance of the STCP can be stated as follows. Given:

– the number of stations of the network N ∈ N

– the set of stations V = [1, N] ∩ N

– the separation constants between two antennas A : V × V −→ N

vi, vj 7−→ aij

– the number of required frequencies per antenna T : V −→ N,
v 7−→ T (v)

Find a configuration or a mapping C : V −→ 2N such that ∀ v ∈ V, |C(v)| =
T (v). Such a mapping fits with an assignment of a set of frequencies to each an-
tenna of the network. For any configuration, the size of the interval of frequencies
used, called spectrum span is stated as:

χ(C) = max
v∈V

[max
f∈C(v)

f] − min
v∈V

[min
f∈C(v)

f]

The problem consists in the search of the minimal spectrum span configura-
tion does not violate the separation constraints. These constraints are formulated
as follows:

– frequencies assigned to different stations v and w must be separated by at
least A(v, w),

∀ v, w ∈ V, v 6= w ∀ k ∈ C(v) ∀ l ∈ C(w) |k − l| ≥ A(v, w)

– frequencies assigned to the same station v must be separated by at least
A(v, v).

∀ v ∈ V, ∀k ∈ C(v), ∀l ∈ C(v), k 6= l, |k − l| ≥ A(v, v)

3 Encoding and Operators

In the mobile telecommunication networks, the instances are strongly structured:
the transceivers are grouped by stations and the stations are grouped by sites
(one site is equipped with 1 to 3 stations). Hence, we propose a natural encoding

142 B. Weinberg, V. Bachelet, and E.-G. Talbi

of a configuration of the network which integrates this particular structure (see
Figure1). A configuration is encoded by an array indexed by the stations. For
each station, the set of frequencies is encoded as a sorted array. This sort is used
because different assignments of the same set of frequencies to the same station
are equivalent with regard to the problem, because transceivers of a same station
are not differentiated.

each station is a sorted

array of frequencies

TRANSCEIVER

SITE

STATION

NETWORK

Fig. 1. Encoding of a configuration: an array of sorted array of frequencies.

We defined several operators for moving in the search space. The neighbour-
hood operator, we have chosen, is the usual one: change one frequency assign-
ment. This operator induces a notion of distance between configurations: the
distance between two configurations is defined as the minimum number of ap-
plications of the neighbourhood operator to move from one configuration to the
other one.

d(C1, C2) = card({f | ∀i ∈ V f ∈ C1(i), f 6∈ C2(i)})

This distance is used in COSEARCH to guide the search. Aside the neighbour-
hood operator, we use two complementary cross-overs. These new operators, we
have designed, are well suited to the FAP. They preserve the structure of the
problem, and thus do not act as blind operators. The first one, called SX for
site cross-over, is a coarse grain cross-over. It works on site level. It realizes a
two points cross-over on the whole configuration but does not separate neither
the frequencies of a stations nor the stations of a site (see Figure 2). The sec-
ond cross-over, FX for frequency cross-over, is a fine grained one. It shuffles the
frequencies of stations. It requires two stages: the first stage acts on each set of
frequencies of each station. This step works as a one point cross-over and gen-
erates two new sets. But one of these sets may be unavailable (unsorted), hence
it is always discarded (even if, they are well sorted). At the second stage, two
new configurations are built by mixing the stations. One cutting point is defined.

The Frequencies in Cellular Networks 143

2 cutting points
between the sites

Parents Offsprings

Fig. 2. Site cross-over (SX): a 2 points cross-over on site level.

Child 1 inherits, for station before the cutting point, of corresponding shuffled
set of frequencies and inherits, for stations after the cutting points, of set of
frequencies of parent 1. The opposite is done for child 2 (see Figure 3). The two
cross-over operators, SX and FX, operate in complementary manners. SX does
not split configurations of sites: complete sites are exchanged. Children may in-
herit well assigned sites from the parent configurations but no improvement into
a site is done. On the contrary, with FX, assignments of the parents are crossed
for each station separately, and the assignments on stations are improved.

To evaluate of a configuration, the cost function we use is stated as the
number of violated constraints:

f(C) =
∑

i, j ∈ V
fi,k ∈ C(i)
fj,l ∈ C(j)

CI(fi,k, fj,l) +
∑

i ∈ V,
fi,k ∈ C(i)
fi,l ∈ C(i)

k 6= l

CO(fi,k, fi,l)

where CI is the number of violated constraints for distant stations:

CI(fi,k, fj,l) =
{

1 if |fi,k − fj,k| < Tij

0 else

and CO is the number of violated constraints inside for a station:

CO(fi,k, fi,l) =
{

1 if |fi,k − fi,k| < Tii

0 else

4 COSEARCH for Solving the FAP

The meta-heuristic COSEARCH is based on three complementary agents. Theses
agents evolve in parallel and cooperate through an adaptive memory (AM).
COSEARCH was first applied to the Quadratic Assignment Problem [1]. As a

144 B. Weinberg, V. Bachelet, and E.-G. Talbi

this array

on
e

po
in

t X
ov

er

may be unsorted

Stage 1 Stage 2

Parents Offsprings1 cutting point

Fig. 3. Frequency cross-over (FX) shuffle the frequencies on each station.

key point for efficiency, the heuristic COSEARCH is intended to balance the
exploration and the exploitation of the search space. The exploration is useful
to guarantee a good approximation of the global optimum. The exploitation
of a region of the space is useful because the efficient configurations are usually
gathered in few regions, depending on the structure of the instance to be tackled.

The three complementary agents are:

– the searching agent SA, a neighbourhood-based method which improves an
initial configuration;

– the diversifying agent DA, which provides new configurations in unexplored
areas of the search space;

– the intensifying agent IA, which provides new configurations in already vis-
ited promising areas.

During the search, all agents refers to the AM which is accumulating the knowl-
edge of the search space (see Figure 4). This AM essentially provides informa-
tions about the explored regions and the promising regions. It collects the set of
visited configurations (or an approximation of this set), and the set of interest-
ing configurations. In the COSEARCH approach, an interesting configuration
corresponds to an efficient configuration and/or configuration being in a region
that has not been explored. The exploration mechanism is based on a cycling
strategy of diversification. The SA starts from initial the configurations of the
AM, computes, and then provides back the set of visited configurations to the
AM (explored regions). The DA refers to the explored regions and yields back
configurations in unexplored regions. On the other side, in the intensifying cycle,
the search agent starts from initial configurations, computes, and send efficient

The Frequencies in Cellular Networks 145

R
e
f
e
r
s

t
o

Promising

solutions

R
e
f
e
r
s

t
o Solutions

being in
unexplored

regions

Intensifying Agent

Explored Regions Promising Regions

solutionsInitial

Diversifying Agent

Searching Agent

Good

solutions

Explored

space

Adaptive Memory

Fig. 4. Scheme of the co-evolutionist meta-heuristic COSEARCH.

configurations to the AM (promising regions). The AM collects the most in-
teresting configurations. Afterward, the IA refers to the AM and provides new
configurations in the good regions toward the SA. The balance of this two cy-
cles is a key point of the robustness and the efficiency of the meta-heuristic
COSEARCH. This balance is effected by the alternation of the cycles.

In the following of this section, we present the specifications of the meta-
heuristic COSEARCH for tackling the FAP. We give first the details of the AM,
then the different agents are detailed. In the AM, the storing of all explored
configurations is approximated by a frequency matrix M . M is a N ×F matrix,
where N is the number of stations2 and F is the current used spectrum span. In
M , element mf,s is the number of assignments of the frequency f to the station
s during the previous searches. We use an approximation of the explored regions
because the complete information about the explored regions is too heavy in
terms of memory. To evaluate the distance of a configuration from explored
regions, we use the function g defined by:

g : {configurations} −→ N

C 7−→ ∑
s,f∈C(s) ms,f

The greater g(C) is, the closer c is to the already visited portion of the space.
The part of the AM concerned with the promising regions collects a limited

number of “interesting” configurations called elites. In this set, elites have two
2 The number of transceivers is much bigger.

146 B. Weinberg, V. Bachelet, and E.-G. Talbi

properties: they are scattered in the search space and have a good cost. To achieve
these properties, the updating of the elites is based on a bicriteria approach using
the notion of Pareto dominance [13]. We define the relationship “dominate” on
the set of elite E as follows:

c1 domines c2 ⇐⇒
{

d(C1, E \ {C2}) ≥ d(C2, E \ {C1})
and f(C1) ≤ f(C2)

Each time the SA provides its best configuration to the AM, this configuration
is inserted into the elite set and the oldest most dominated elite is discarded.

The SA is the main agent for the CO-SEARCH architecture. It searches and
finds the good solutions. It is implemented by a TS with only the tabu list and
the aspiration criterion The tabu list is implemented by a matrix3 N × F [5].
Moreover, we use a heuristic to reduce the neighbourhood: during the search
of the best neighbour, the transceivers that are not interfered are not checked.
Indeed, the change of the frequencies of such transceivers do not improve the
configuration anyway. In the TS, we do not need long or medium term memory
because the diversification and the intensification are achieved by the remainder
of the COSEARCH method.

The DA finds new configurations in the unexplored area by examining the
frequency matrix of the AM and minimising the function g. This new optimi-
sation problem is NP-hard. We do not try to solve it exactly because we do
not need the farthest configuration, we just need a far enough configuration to
contribute to the search. To solve this problem, we use a GA because they are
well suited to dynamic environments [2]. Indeed, the frequency memory is con-
tinuously updated. The DA is steady state GA, using a SUS selection, the both
evolutionary operators (FX and SX) involved concurrently in the GA, and the
mutation operator which consists in changing a frequency of a antenna.

According to the fact that good configurations are concentrated in few re-
gions, the IA refers to the set of elites and provides new configurations in good
regions for the SA to start with. The IA is implemented by a short random walk,
to make the SA exploit the good region represented by an elite.

5 Evaluation of COSEARCH

For solving the problem, a large spectrum span is allowed at the beginning.
Then a feasible (no interference) configuration of this spectrum is searched. If
such a configuration is found, the search is restarted reducing the spectrum by
one. This process is iterated until no improvement is found or a time limit is
exceeded. Each time the span is reduced, the new search is launched from the
best configurations previously found in which the greatest values of frequencies
are replaced by an uniform random smaller one.

The different parameters of the different agents are based on the diameter4 of
the instances. For the used distance, the diameter of an instance is the number of
3 N is the number of stations and F the current number of frequencies.
4 the greatest distance between any two configurations.

The Frequencies in Cellular Networks 147

transceivers N ′. The parameters of the agents of COSEARCH are set as follows:
the searching agent: SA

length of the tabu list = α1 × N ′ + rand(α1 × N ′)
number max of iterations = α2 × N ′

the intensifying agent: IA

length of the random walk = α3 × N ′

the diversifying agent: DA

number of generations = α4 × N ′

size of the population = Log(1− F ×N
√

µ)
Log(1− 1

F)
where F is the first number of frequencies used, N is the number of
cells, µ is a coefficient of confidence. So we can guarantee with the
confidence µ that the whole diversity of the search space is represented
in the initial random population.
number of selections = k
mutation probability = p

The parameters are experimentally tuned:
α1 = 1/8; α2 = 2; α3 = 1/8; α4 = 1; k = 20; p = 0.1.

COSEARCH was tested on several benchmarks provided by the France
Télécom R&D Department. In this instances, each BTS is equipped with 2
transceivers, the separation needed between transceivers of the same BTS is
always 3 and the separation needed between transceivers of different BTS is 1
for distant sites, 2 on the same site. The name of the instances are composed
by 4 elements ms.nc..d.p.
ms : information about the lower bounds.
nc : the number of station of the network.
d : the density of the network.
p : the average degree of a node.

The results on large instances are grouped in the table 1. We made, for each
benchmark, runs which number of iterations are bounded by 50 000, in ordred
to notice, the significance of diversification cycle and intensification cycle in the
FAP. For each instances, this table provides the minimum spectrum span, the
minimum excess found by COSEARCH, and the number of movements effected
by COSEARCH. the minimum spectrum span is a theorical lower bound. This
bound is know at the construction of the instance. So we reported in the table 1
the results with only the SA, then with SA and DA, finally with SA and IA. When
COSEARCH found a zero excess, it guarantees, that the found configuration is
the optimal one.

We found for each instance, a zero excess configuration as Dorne in [5]. We can
notice that for several instances, we found the best configuration without using

148 B. Weinberg, V. Bachelet, and E.-G. Talbi

Table 1. Results on instances of STCP from France télécom R&D.

problem ms excess nb moves SA SA+DA SA+IA

15.150..05.30 30 0 128 0 0 0
15.150..05.60 30 0 116 0 0 0
15.150..15.30 30 0 2260 0 0 0
15.150..15.60 30 0 255 0 0 0
15.150..25.30 30 0 34152 3 2 1
15.150..25.60 30 0 10776 0 0 0

15.300..05.60 30 0 316 0 0 0
15.300..05.90 30 0 325 0 0 0
15.300..15.60 30 0 22359 - - 0
15.300..15.90 30 0 8755 0 0 0

30.300..05.60 60 0 177 0 0 0
30.300..05.90 60 0 198 0 0 0
30.300..15.60 60 0 520 0 0 0
30.300..15.90 60 0 463 0 0 0
30.300..25.60 60 0 2516 0 0 0
30.300..25.90 60 0 1696 0 0 0

ms: minoring spectrum span;
excess: minimum spectrum span found by COSEARCH − ms;
nb moves: number of movements in the search space;
SA: the excess using only the searching agent several times with random ini-
tialization;
SA+DA: the excess using the searching agent several times with initialization
provided by the diversifying agent;
SA+IA: the excess using the searching agent several times with initialization
provided the intensifying agent.

any divrsification or intensification agent. In fact, for most of this instances only
one run of the searching agent found the best result. They are relatively easy to
solve. The “-”, in the table, maks, that the procedure do not find a configuration
with out any interferences using a spectrum larger of ten frequencies of the lower
bound (ms). This studies shows that the intensifying cycle is more interesting for
COSEARCH (with this parameters). We can notice that diversification is helpful
for 15.150..25.30; Moreover in some other cases, it reduces the total number of
iterations of the searching agent.

6 Conclusion

In this paper, we have presented the co-evolutionist meta-heuristic COSEARCH,
which is based on the co-evolution of three complementary agents. We also see
how it can be implemented for the Frequency Assignment Problem, using a
genetic algorithm and a short tabu search. Advanced mechanism to reduce the

The Frequencies in Cellular Networks 149

neighbourhood in the tabu search and two complementary X-overs in the genetic
algorithm are used. The reported experiments show the efficiency of our approach
for several instances of the FAP in the mobile telecommunication networks. We
are investigating now others adaptation of the COSEARCH’s model, around the
elite. Moreover we will parallelise COSEARCH for the Frequency Assignment
Problem, and will implement it on the 64 processors of the IBM SP2 parallel
machine.

References

1. V. Bachelet and E.G. Tabli. Co-search: A parallel co-evolutionary metaheuristic.
In Congress on Evolutionary Computation CEC’2000, pages 1550–1557, San Diego,
USA, 2000.

2. P. Bessiere, J.M. Ahuactzin, E-G. Talbi, and E. Mazer. The ariadne’s clew al-
gorithm: global planning with local methods. IEEE International Conference on
Intelligent Robots Systems IROS, Yokohama, Japan, pages 1373–1380, july 1993.

3. A. Bouju, J.F. Boyce, C.H.D. Dimitropoulos, G. Vom Scheid, and J.G. Taylor.
Tabu search for the radio links frequency assignment problem. In Applied Decision
Technologies, pages 233–250, London ADT’95, april 1995.

4. A. Bouju, J.F. Boyce, C.H.D. Dimitropoulos, G. Vom Scheidt, and J.G. Taylor.
Intelligent search for the radio links frequency assignment problem. In Digital
Signal Processing DSP’95, pages –, University of Cyprus, june 1995.

5. R. Dorne. Etude des méthodes heuristiques pour la coloration, la T-coloration et
l’affectation de fréquences. PhD thesis, Université de Montpellier II, 1998.

6. R. Dorne and J.K. Hao. An evolutionary approch for frequency assigment in
cellular radio networks. In IEEE Intl. Conf. on Evolutionary Computation (IEEE
ICEC’95), pages 539–544, Perth, Australia, 1995.

7. R. Dorne and J.K. Hao. Constraint handling in evolutionary search: A case study
of the frequency assignment. In Parallel Problem Solving from Nature PPSN’96,
pages 801–810, Berlin Germany, sept 1996. Lecture Notes in Computer Science.

8. J.K. Hao and R. Dorne. Study of genetic search for the frequency assignment
problem. In Artifical Evolution AE’95, pages 333–344, Brest France, 1996. Lecture
Notes in Computer Science.

9. J.K. Hao, R. Dorne, and P. Galinier. Tabu search for frequency assignment problem
in mobile radio networks. Journal of Heuristics, pages 47–62, june 1998.

10. S. Hurley, D. Smith, and C. Valenzuela. A permutation based genetic algorithm
for minimum span frequency assignment. In Parallel Problem Solving from Nature
PPSN’5, pages 907–916, Amsterdam, sept 1998. Springer-Verlag.

11. T.L. Lau and E.P.K. Tsang. Solving the radiolink frequency assignment prob-
lem with the guided genetic algorithm. In NATO Symposium on Radio Length
Frequency Assignment, Sharing and Conservation Systems (Aerospace), Aalborg,
Denmark, Oct 1998.

12. V. Maniezzo and A. Carbonaro. An ants heuristic for the frequency assignment
problem. In Ants’98, pages 927–935, North-Holland/Elsevier, Amsterdam, oct
1998. M.Dorigo.

13. R. Steuer. Multiple criteria optimization: Theory, computation and application.
Wiley, New York, 1986.

A Simulated Annealing Algorithm for Extended
Cell Assignment Problem in a Wireless ATM

Network

Der-Rong Din1 and Shian–Shyong Tseng2

Department of Computer and Information Science
National Chiao-Tung University

Hsinchu 300, Taiwan R.O.C.
deron@aho.cis.nctu.edu.tw, sstseng@cis.nctu.edu.tw

Abstract. In this paper, we investigate the extended cell assignment
problem which optimally assigns new adding and splitting cells in
PCS (Personal Communication Service) to switches in a wireless ATM
(Asynchronous Transfer Mode) network. Given cells in a PCS and
switches on an ATM network (whose locations are fixed and known),
we would like to do the assignment in an attempt to minimize a cost
criterion. The cost has two components: one is the cost of handoffs
that involve two switches, and the other is the cost of cabling. This
problem is modeled as a complex integer programming problem, and
finding an optimal solution to this problem is NP-hard. A simulated
annealing algorithm are proposed to solve this problem. The simulated
annealing algorithm, ESA (enhanced simulated annealing), generates
constraint-satisfy configurations, and uses three configuration perturba-
tion schemes to change current configuration to a new one. Experimental
results indicate that ESA algorithm has good performances.

Keywords: wireless ATM, PCS, optimization, simulated annealing, cell
assignment problem.

1 Introduction

The rapid worldwide growth of digital wireless communication services motivates
a new generation of mobile switching networks to serve as infrastructure for
such services. Mobile networks being deployed in the next few years should
be capable of smooth migration to future broadband services based on high-
speed wireless access technologies, such as wireless asynchronous transfer mode
(wireless ATM)[1]. The architecture shown in Fig. 1 was presented in [1]. In
this architecture, the base station controllers (BSCs) in traditional PCS network
are omitted, and the base stations (BSs or cells) are directly connected to the
ATM switches. The mobility functions supported by the BSCs will be moved to
the BSs and/or the ATM switches. In this paper, we address the problem that is
currently faced by designers of mobile communication service and in the future,
it is likely to be faced by designers of personal communication service (PCS).

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 150–159, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A Simulated Annealing Algorithm 151

Fig. 1. Architecture of wireless ATM PCS.

Fig. 2. (a)Cell splitting, (b)intra-switch handoff, (c)inter-switch handoff.

In the designing process of wireless ATM system, first the telephone company
estimates the demand of mobile users and devided the global service area into
local coverage areas defined by a mesh of hexagonal cells. Second, the cellular
system, base stations, are constructed and connected to the switches on the ATM
network. This topology may be out of date, since more and more users may
use the PCS communication system. Some areas, which have not been covered
in the originally designing plan may now have mobile users to traverse. The
services requirement of some areas, which covered by original base stations may
be increased and the capacities of the original base stations may be exceeded.
Though, the wireless ATM system must be extended so that the system can
provides higher quantity of services to the mobile users. Two methods can be
used to extend the capacities of system and provide higher quantity of services.
The first one is: adding new cells or base-stations (BSs) to the system so that the
non-covered area can be covered by one of the new cells. The other is: reducing
the size of the cells so that the total number of channels available per unit area
and the capacity of a system can be increased. In practice, this can be achieved
by performing cell splitting [2] process. The cell splitting process establishes new
base stations at specific points in the cellular pattern and reduces the cell size
by a factor of 2 (or more) as shown in Fig. 2(a).

In this paper, we are given a two-level wireless ATM network as shown in
Fig. 3. In the PCS network, cells are divided into two sets. One is the set of cells,
which are built originally, and each cell in this set has been assigned to a switch

152 D.-R. Din and S.-S. Tseng

Fig. 3. Two-level wireless ATM network.

on the ATM network. The other is the set of cells which are newly added or
established by performing the cell splitting process. Moreover, the locations of
cells and switches are fixed and known. To simplify the discussion, we assumed
that the number of cells and switches are fixed. The problem is to assign new
adding and splitting cells in the PCS to switches on the ATM network in an
optimum manner. We would like to do the assignment in as attempt to minimize
a cost criterion. The cost has two components: one is the cost of (inter-switch)
handoffs that involve two switches (as shown in Fig. 2(c)), and the other is
the cost of cabling (or trucking)[3][4][5]. In the wireless environment, two types
of handoffs should be considered in the design of PCS. They are inter-switch
handoff and inter-switch handoff as shown in Fig. 2(b) and (c), respectively.
We assume that the cost of (intra-switch) handoff involving only one switch is
negligible[3][4][5]. Through this paper, we assume each cell to be connected to
only one switch.

Merchant and Sengupta[3] considered the cell assignment problem which as-
signs cells to switches in PCS network. They formulated the problem and pro-
posed a heuristic algorithm to solve it so that the total cost can be minimized.
The total cost consists of cabling and location update. The location update cost
considered in [3], which depend only on the frequency of handoff between two
switches, is not practical. Since the switch of the ATM backbone is wide spread,
the communication cost between two switches should be considered in calcu-
lating the location update cost. In [4][5], this model was extended to solve the
problem that grouped cells into clusters and assigned these clusters to switches
on the ATM network in an optimum manner by considering the communication
cost between two switches. A three-phase heuristic algorithm and two genetic
algorithms are proposed to solve the cell assignment problem in wireless ATM
network, respectively. In this paper, we follow the objective function, which was
formulated in [4] and [5], and solve the problem of assigning the new adding and
the splitting cells to the switches on the ATM network so that the total cost can
be minimized. This problem is defined as extended cell assignment problem[6].

2 Problem Formulation

Let CG(C,L) be the PCS network, where C is a finite set of cells with |C| = n
and L is the set of edges such that L ⊆ C × C. We assume that Cnew ∪ Cold =

A Simulated Annealing Algorithm 153

C, Cnew ∩ Cold = ∅, Cnew be the set of new adding and splitting cells where
|Cnew | = n′, cells in Cnew have not yet been assigned to switches on the ATM,
and Cold be the set of original cells where |Cold | = n − n′. Without loss of
generality, we assume that cells in Cold and Cnew are indexed from 1 to n − n′

and n − n′ + 1 to n, respectively. If cells ci and cj in C are assigned to different
switches, then a handoff cost is incurred. Let fij be the frequency of handoff
per unit time that occurs between cells ci and cj , (i, j = 1, ..., n) and is fixed
and known. We assume that all edges in CG are undirected and weighted; and
assume cells ci and cj in C are connected by an edge (ci, cj) ∈ L with weight
wij , where wij = fij + fji, wij = wji, and wii = 0[4][5][6]. Let G(S, E) be the
ATM network, where S is the set of switches with |S| = m, E ⊆ S ×S is the set
of edges, sk, sl in S and (sk, sl) in E and G is connected. We assume that the
locations of cells and switches are fixed and known. The topology of the ATM
network G(S, E) is also fixed and known. Let dkl be the minimal communication
cost between the switches sk and sl. Let lik be the cost of cabling per unit time
and between cell ci switch sk, (i = 1, ..., n; k = 1, ..., m) and assume lik is the
function of Euclidean distance between cell ci and switch sk.

Assume the number of calls that can be handled by each cell per unit time
is equal to 1. Let Capk be the number of remaining cells that can be used to
assigned cells to switch sk. Our objective is to assign cells in C

new

to switches
so that the total cost (sum of cabling cost and handoffs cost) per unit time of
whole system can be minimized.

To formulate this problem, let us define the following variables. Let xik = 1 if
cell ci ∈ C is assigned to switch sk; xik = 0, otherwise. Since each cell should be
assigned to only one switch, we have the constraint

∑m
k=1 xik = 1, for i = 1, .., n.

Further, the constraint on the capacity is
∑n

i=n−n′+1 xik ≤ Capk, k = 1, ..., m.
Also, the sum of cabling costs is

∑n
i=1
∑m

k=1 likxik.

To formulate handoff cost, variables zijk = xikxjk, for i, j,= 1, ..., n and
k = 1, ..., m are defined in [3]. Thus, zijk equals 1 if both cells ci and cj

are connected to a common switch k; otherwise it is zero. Further, let yij =∑m
k=1 zijk, i, j = 1, ..., n Thus, yij takes a value of 1 if both cells ci and cj are

connected to a common switch and 0 otherwise. With this definition, it is easy
to see that the cost of handoffs per unit time is given by [4] [5]

∑n
i=1
∑n

j=1
∑m

k=1∑m
l=1 wij(1 − yij)xikxjldkl

This, together with our earlier statement about the sum of cabling costs,
gives us the objective function[4][5][6] is to minimize

∑n
i=1
∑m

k=1likxik+α∑n
i=1
∑n

j=1
∑m

k=1
∑m

l=1wij(1 − yij)xikxjldkl, where α is the ratio of the cost
between cabling and handoff costs.

The following assumptions will be satisfied:
(1) We assume that the number of cells in C

new

is less or equal to
∑m

k=1 Capk.
That is, there is no need for adding new switches into the ATM network.

(2) The structures and locations of the ATM network and the PCS network
are fixed and known.

(3) Each cell in the PCS network will be directly assigned and connected to
only one switch in ATM network.

154 D.-R. Din and S.-S. Tseng

(4) To simplify the discussion, we assumed that Capk > 0, for k = 1, ..., m.
Example 1. Consider the two graphs shown in Fig. 3. There are 14 cells in CG
which should be assigned to four switches in S. In CG, cells are divided into
two sets, one is the set Cold of cells which are built originally, and cells in Cold

have been assigned to switches in the ATM network (e.g., {c1, c2, c3, c4, c5}
in Fig. 3). The other is the set Cnew of cells which are new adding cells (e.g.,
{c6, c7, c8}) or splitting cells (e.g., {c9, c10, c11, c12, c13, c14}). The edge weight
between two cells is the frequency of handoffs per unit time that occurs between
them. Four switches are positioned at the center of cells c1, c2, c4, and c6.

3 Simulated Annealing Algorithm

Due to the complexity of the extended cell assignment problem in two-level
wireless ATM network, the provision of an optimal solution in reasonable time
is not guaranteed. In this respect, the usual step is to devise an approximate
algorithm for solving this problem. The SA technique is applied to solve the
extended cell assignment problem in this section.

In the design of simulated annealing algorithm[7], if the traditional-SA ap-
proach is used to solve the extended cell assignment problem, it may generate a
significant number of configurations, but only a small fraction of these are indeed
constraint-satisfied (10% or 20%). Thus, the performance of the traditional-SA
algorithm is not promising. In this paper, we attempt to develop an enhanced-SA
approach to solve the extended cell assignment problem by generating config-
urations which are feasible and satisfy all the constraints. The key elements in
simulated annealing are a cost function, a configuration space, a perturbation
mechanism, and a cooling schedule. In our case, the solution method is shown
in follows.

3.1 Configuration Space and Perturbation Mechanism

The objective of the extended cell assignment problem in two-level wireless ATM
network is to find an optimal assignment of new adding and splitting cells to
switches so that the object function value is minimized. To solve the extended
cell assignment problem, the configuration space is the set of feasible solutions
which can be defined as a binary

∑m
k=1 Capk × m matrix X. Define xik in X to

be 1 if the cell ci is assigned to switch sk; xik = 0, otherwise. Consider a feasible
assignment of the example shown in Fig. 4(a), the configuration matrix of the
assignment is shown in Fig. 4(a). In this example, two dummy cells c15 and c16
introduced to the configuration.

It is worth noting that the configuration can be divided into two parts,
fixed and variable parts, the first part of matrix, which represents the assigning
status of cells in Cold, is fixed in running of SA. Also, the first part of matrix
can be ignored since it is never changed during experiments. For the reason
of easily understanding, the fixed part of matrix is still kept in configuration
in the rest of the paper. If the initial configuration is randomly generated or

A Simulated Annealing Algorithm 155

new configuration is formed by changing the assigning status of cell by way of
randomly choosing cells and switches, then, there is a large chance that the
configuration generated is not a feasible one. To avoid generating infeasible
configurations, constraint-satisfying configurations and perturbation schemes
must be constructed. To generate the constraint-satisfying initial configuration,
we propose the following algorithm:

Algorithm: Initial Configuration Generating Algorithm(ICGA).

Step 1. Let A = S, B = Cnew
⋃

DM .
Step 2. Repeat Steps 2.1, 2.2 and 2.3 until B is empty.
Step 2.1 Randomly select a switch sa from A.
Step 2.2 Randomly assign |Capk| cells in B to switch sa and remove these cells form B.

Step 2.3 Remove sa form A.

In the traditional-SA algorithm, the search process may stuck at a local min-
imum due to the small change moves, particularly as the barrier is high and the
temperature is low. Hence, we introduce an idea of large perturbation schema[9]
whose function is the same as the mutation operation in genetic algorithm. The
main idea of large perturbation schema is to leap over the barrier during a
search and to explore another region of the search space. This can be achieved
by applying a certain number of moves consecutively, special problem domain
perturbations, or local search heuristic perturbation. Three types of perturba-
tions are introduced to the enhanced-SA algorithm which are shown in follows.

– cells exchanging schema: First, the cells exchanging schema randomly selects
two cells ci and cj in Cnew

⋃
DM , which have been assigned to different

switches sk and sl, respectively. Then, reassign the cell ci to the switch
sl and the cell cj to the switch sk. For example, assume cells c6 and c10
are randomly selected; after performing cells exchanging perturbation, the
configuration matrix is shown in Fig. 4(b).

– multiple cells exchanging schema: First, the multiple cells exchanging schema
randomly selects two switches sk and sl from S. Then reassigns cells in the
switch sk to the switch sl and vice versa. Since the original configuration
is constraint-satisfied, after perturbation, the resulting configuration must
be a feasible one. If we reassign cells in two switches directly, the resulting
configuration may violate the constraints. Let COSk be the set of cells that
contains cells which are currently assigned to switch sk. If nk > Capl and
nl < Capk then randomly select Capl cells from the set COSk and reassigned
these cells to switch sl; at the same time, all cells in COSl are reassigned to
the switch sk. If nl > Capk and nk < Capl, randomly select Capk cells from
the set COSl and reassigned these cells to the switch sk; at the same time,
all cells in COSk are reassigned to the switch sl. Otherwise, all cells being
assigned to the switch sk are directly reassigned to the switch sl and vice
versa. For example, assume switches s1 and s2 are randomly selected; after
performing multiple cells exchanging, the configuration matrix is shown in
Fig. 4(c) (Assume cells c6 and c7 are randomly selected from the switch s1.)

156 D.-R. Din and S.-S. Tseng

Fig. 4. (a)Possible feasible configuration for Example 1, (b)cell exchanging for Example
1c (c)multiple cells exchanging for Example 1.

It is worth noting that if the probabilistic decision mechanism of SA is dis-
able, and two perturbation schemes are used to perturb the initial configuration
to generate a new one, then, it is easily to prove that all possible feasible config-
urations can be reached by applying a sequence of perturbations. In the exper-
iment, let p1 and p2 be the probabilities of transforming current configuration
to a new one by applying cell exchanging schema and multiple cells exchanging
schema, respectively. We assume p1 + p2 = 1 and the values of p1 and p2 will be
empirically determined and described in later section.

3.2 Cooling Schedule

One of the most important problems involved in the simulated annealing al-
gorithm implementation is the definition of a proper cooling schedule, which is
based on the choice of the following parameters: starting temperature, final tem-
perature, length of Markov chains, the way of decreasing temperature. A correct
choice of these parameters is crucial because the performances of the algorithm
strongly depend on it. In the following we describe these parameters.

– Initial value of the control parameter: The rule used in our enhanced-SA is
determine starting temperature c0 by calculating the average increasing in
cost, ∆C

+
, for 50 random transitions and solve c0 from c0 = ∆C

+
/ln(χ−1

0),
where accepted ratio χ0 defined as the number of accepted transitions divided
by the number of proposed transitions. In this paper, the accepted ratio χ0
is empirically set to value of 0.99.

– Decrement of the control parameter: The decreasing rate of the temperature
needs to be small enough to reach thermal equilibrium for each temperature
value. The decrement rule in enhanced-SA is defined as follows: Tk+1 = γTk,
where γ is empirically set to value of 0.99.

– The final value of the control parameter: The iterative procedure is termi-
nated when there is no significant improvement in the solution after a pre-
specified number of iterations. It can also be terminated when the maximum
number of iterations is reached.

A Simulated Annealing Algorithm 157

– The length of Markov Chains: In general, a chain length of more than 100
transitions is reasonable. In this paper, the chain length is empirically set to
value of n.

3.3 Enhanced-SA Algorithm of Extended Cell Assignment Problem

The details of the simulated annealing is described as follows:

Algorithm: Enhanced-SA Algorithm.
Step 1. Perform Initial Configuration Generating Algorithm to generate initial configura-

tion IC and an initial temperature T . The currently best configuration (CBC) is IC,
i.e., CBC = IC, and the current temperature value (CT) is T , i.e., CT = T .

Step 2. If CT = 0 or the stop criterion is satisfied then go to Step 7.
Step 3. Generate a random number p in [0, 1), if p ≤ p1 then new configuration (NC) is generated

by applying cells exchanging schema; if p1 < p ≤ p1 + p2 then NC is generated by
applying multiple cells exchanging schema; otherwise NC is generated by applying by
applying local search heuristic schema.

Step 4. The difference of the costs of the two configurations, CBC and NC is computed, i.e.,
∆C = E(CBC) − E(NC).

Step 5. If ∆C ≥ 0 then the new configuration NC becomes the currently best configuration,
i.e., CBC = NC. Otherwise, if e−(∆C/CT) > random[0, 1), the new configuration NC
becomes the currently best configuration, i.e., CBC = NC. Otherwise, go to Step 2.

Step 6. The cooling schedule is applied, in order to calculate the new current temperature value
CT and go to Step 1.

Step 7. End.

4 Experimental Results

In this paper, a simulated annealing algorithm is proposed to solve the extended
cell assignment problem. In order to evaluate its performances, we have imple-
mented the algorithm and applied it to a number of examples with randomly
positioned cells and switches, The results of these experiments are reported be-
low. For all experiments, the implementation language is C, and some experi-
ments have been made on Windows NT with a Pentium II 450MHz CPU and
256MB RAM. We simulated a hexagonal system in which cells are configured as
an H-mesh. The handoff frequency fij of two cells were generated by a normal
random number generator with mean 100 and variance 20. To examine effects
of different number of cells, Cell Graph CG with thenumberofcellsn = 50, 100,
150, and 200 cells were tested. |Cnew| = 3n/4, |Cold| = n/4, the number of
switches m = 10, α = 1 and the Cap/n, which is the ratio of capacity to the
number of cell, of each problem is 0.2.

To know the efficiency of the enhanced-SA algorithm to the traditional-SA
algorithm, we also implement a traditional-SA algorithm that does not guar-
antee to generate constraint-satisfying configurations. The experimental results
shown in Fig. 5(a) explain that the enhanced-SA algorithm have better perfor-
mance than the traditional-SA algorithm. In other words, constraint-satisfying
configurations and perturbation schemes of enhanced-SA algorithm are indeed
more efficient than the traditional-SA algorithm and enhanced-SA algorithm has
better convergent behaviors. To evaluate the effect of the probabilities of differ-
ent perturbation schemes of enhanced-SA algorithm described in Section 3, we
test the enhanced-SA algorithm with different values of probabilities p1 and p2.

158 D.-R. Din and S.-S. Tseng

Fig. 5. (a) Comparison of the result of traditional-SA and enhanced-SA algorithms.
(b) Comparison of the result of different probabilities of p2. (c) Comparison of the
result of different probabilities of p2.

In the experiments, assume p2 = 1 − p1, and the value of p1 is in {1.00,
0.99, 0.95, 0.90, 0.01, 0.00}. Figures 5(b) and 5(c) show the results of the experi-
ment, where x-axis represents the number of acceptances when the configuration
is perturbed in enhanced-SA algorithm and y-axis represents the total cost of
the problem instance. When p1 = 1.00 (p2 = 0.00), i.e., the multiple cells ex-
changing perturbation does not activate in the experiment. We found that the
enhanced-SA algorithm converges very slow and traps into local minima, since
the cell exchanging perturbation only exchange two cells at one time. When
p1 = 0.99, p1 = 0.95, or p1 = 0.90, that is, only a small chance that the multiple
cells exchanging perturbation may activate in the experiment, the enhanced-SA
algorithm converges quicker than the case with p1 = 0 and has very good per-
formance as shown in Fig. 5(b). When p1 = 0.00 or p1 = 0.01, the single cell
exchanging perturbation dose not activate or has very small chance to activate.
As seen in Fig. 5(c), the current configuration up and down rapidly and hardly
converges to the global minima. Thus, we can conclude that if the probability
of cells exchanging perturbation is higher (p1 = 0.90–0.99), the enhanced-SA
algorithm has very good performance.

The results of the executions of the ESA for the above networks are given in
Table 1. The ESA was run with fifty random seeds on each problem in order to
get some statistical information about the quality of their solutions. The ESA
column of Table 1 shows the minimum, mode, average, maximum, and standard
deviation of the cost of solutions for fifty runs. The most repeated solution or
the mode is close to the minimum cost solution for all example problems.

5 Conclusions

A simulated annealing algorithm ESA (enhanced-SA) is proposed to solve the
extended cell assignment problem. Owing to the inability of simulated annealing
(SA) to generate solutions that always satisfy all the constraints, the perfor-

A Simulated Annealing Algorithm 159

mance of a traditional-SA approach is not so promising. The SA technique is,
however, easy to implement, requires little expert knowledge and is not memory
intensive. Hence, in this paper, we have developed an enhanced-SA algorithm
to solve the extended cell assignment problem. The enhanced-SA algorithm con-
structs constraint-satisfying configurations and perturbation mechanism to en-
sure that the candidate configurations produced are feasible and satisfy all the
constraints. The performance of the enhanced-SA algorithm is demonstrated
through simulation. The experimental results indicate that the proposed algo-
rithm run efficiently.

Acknowledgment. This work was supported in part by MOE program of
Excellence Research under Grant 89-E-FA04-1-4.

References

1. M. Cheng, S. Rajagopalan, L. F. Chang, G. P. Pollini, and M. Barton, “PCS
Mobility Support over Fixed ATM Networks,” IEEE Communication Magazine,
Nov. 1997, pp. 82–91.

2. R. C. V. Macario, Cellular Radio. McGraw-Hill, New York (1993).
3. A. Merchant and B. Sengupta, “Assignment of Cells to Switches in PCS Networks”,

IEEE/ACM Trans. on Networking, Vol. 3, no. 5, 1995, pp. 521-526.
4. Der-Rong Din and S. S. Tseng, “Genetic Algorithms for Optimal design of two-

level wireless ATM network,” Technical Report, Department of Computer Science,
NCTU, TR-WATM-9902 Taiwan, R.O.C, 1999; to appear in Proceeding of NSC .

5. Der-Rong Din and S. S. Tseng, “Heuristic Algorithm for Optimal design of two-
level wireless ATM network, ”Technical Report, Department of Computer Science,
NCTU, TR-WATM-9901 Taiwan, R.O.C, 1999; to appear in JISE .

6. Der-Rong Din and S. S. Tseng, “Genetic Algorithm for Extended Cell Assignment
Problem in Wireless ATM Network,” accepted by ASIAN’00, Asian Computing
Science Conference, Penang, Malaysia, November 25-27, 2000, to appear in Lecture
Note on Computer Science.

7. Kirkpatrick S., Gelatt C. D. and Vecchi M. P. “Optimization by simulated anneal-
ing”, Science 220, 671–680, 1983.

8. D. Raychaudhuri and N. Wilson, “ATM Based Transport Architecture for Multi-
services Wireless Personal Communication Network,” IEEE JSAC, Oct. 1994.

9. Ravinda K Ahuja, James B. Orlin and Dushyant Sharma,“Very large-scale neigh-
bourhood search”, Int’l. Trans. in Op. Res. 7 (2000) 301-317.

Table 1. Experiments of ESA algorithm.

ESA
|n| |m| Cap Minimum Mode Average Maximum Std. Dev.
50 10 10 2476.7 2478.2 2480.4 2485.7 352.26

100 10 20 6011.3 6026.9 6022.9 6035.7 1141.1
150 10 30 14219.9 14236.8 14237.0 14257.0 4266.5
200 10 40 22052.6 22075.8 22075.9 22099.8 7289.7

On Performance Estimates for Two Evolutionary
Algorithms

Pavel A. Borisovsky1 and Anton V. Eremeev2

1 Omsk State University, Mathematical Department,
55 Mira str. 644077, Omsk, Russia

borisovski@mail.ru
2 Omsk Branch of Sobolev Institute of Mathematics,

13 Pevtsov str. 644099, Omsk, Russia.
eremeev@iitam.omsk.net.ru

http://iitam.omsk.net.ru/˜eremeev

Abstract. In this paper we consider the upper and lower bounds on
probability to generate the solutions of sufficient quality using evolu-
tionary strategies of two kinds: the (1+1)-ES and the (1,λ)-ES (see e.g.
[1,2]). The results are obtained in terms of monotone bounds [3] on
transition probabilities of the mutation operator. Particular attention
is given to the computational complexity of mutation procedure for
the NP -hard combinatorial optimization problems.

1 Introduction

The estimates for the behaviour of evolutionary strategies (ES) obtained in this
paper are based on the a priori known parameters of the mutation operator,
called monotone transition bounds. Using a model analogous to the one proposed
in [3] we obtain in Sect. 2 the upper and lower bounds on the probability to
generate a solution with fitness above given threshold on any iteration of the
(1,λ)-ES and the (1+1)-ES. In this section some conditions are formulated when
the latter heuristic has definite advantages over the first one. A connection with
the complexity theory in Sect. 3 demonstrates some possible limitations on the
a priori transition bounds of mutation operators implementable as polynomial-
time randomized algorithms [4].

Let the optimization problem consist in finding a feasible solution y ∈ Sol ⊆
D, which maximizes the objective function f : D → R, where D is the space of
solutions, and Sol ⊆ D is a set of feasible solutions. In general an evolutionary
algorithm is searching for the optimal or near-optimal solutions using a pop-
ulation of individuals, which is driven by the principles observed in biological
evolution. In both simplified versions of ES considered here the population con-
sists of a single individual: in each iteration a new individual is constructed on
the basis of the current one, and then the current individual is called a parent.

We assume that an individual is represented by a genotype, which is a fixed
length string g of genes g1, g2, . . . , gn, and all genes are the symbols of some finite
alphabet A. For example, the alphabet Σ = {0, 1} is used in many applications.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 161–171, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

162 P.A. Borisovsky and A.V. Eremeev

Each genotype g represents an element y = y(g) of space D, which may not
necessarily be a feasible solution.

The search process is guided by evaluations of nonnegative fitness function
Φ(g), which defines the fitness of an individual with genotype g. Usually in case
y(g) ∈ Sol, Φ is a monotone function of f(y(g)), and for simplicity in this paper
we shall assume that Φ(g) = f(y(g)). In case y(g) 6∈ Sol, the fitness function
may incorporate a penalty for violation of constraints defining the set Sol. In
what follows we will assume that for any g ∈ Sol and g′ ∈ D\Sol, Φ(g) > Φ(g′)
if D\Sol 6= ∅.

The genotype of the current individual on iteration t of the (1,λ)-ES will
be denoted by b(t), and in the (1+1)-ES it will be denoted by g(t). The initial
genotypes b(0) and g(0) are generated with some a priori chosen probability
distribution. The stopping criterion of the heuristics is the limit of the maximum
number of iterations.

The only difference between the (1,λ)-ES and the (1+1)-ES consists in the
method of construction of an individual for iteration t + 1 using the current
individual of iteration t as a parent. In both algorithms the new individual is
built with the help of a random mutation operator Mut : An → An, which
adds some random changes to the parent genotype. In case of the (1,λ)-ES the
mutation operator is independently applied λ times to the parent genotype b(t)

and out of λ offspring a single genotype with the highest fitness value is chosen
as b(t+1). In case there are several offspring with the highest fitness, the new
individual b(t+1) is chosen with uniform distribution among them. In the (1+1)-
ES heuristic the mutation operator is applied to g(t) once. If g = Mut(g(t)) is
such that Φ(g) > Φ(g(t)), then we set g(t+1) := g; otherwise g(t+1) := g(t).

In this paper the mutation operator will be viewed as a randomized algorithm
which has an input g and a random output Mut(g) ∈ An with probability dis-
tribution depending on g. We assume that all data of the given problem instance
is available in mutation as well. One of the frequently used mutation operators
consists in randomly changing each gene of g with a fixed mutation probability
pm. Another example is the operator which chooses a random position i and
replaces the gene gi by a new random symbol (see e.g. [5]).

The analysis of ES in principle could be carried out by the means of Markov
chains theory (see e.g. [5]). However, the size of the transition matrix of a Markov
chain grows exponentially as the genotype length increases, and the applicability
of this approach appears to be limited when studying the optimization problems
with large cardinality of solutions space. In order to overcome this difficulty we
use a grouping of the states into larger classes on the basis of fitness.

1.1 Notations and Assumptions of the Model

The model of mutation operator used in this paper has been introduced in [3].
The information about fitness of distinct genotypes is not used explicitly. Instead,
model makes use of certain a priori known parameters of probability distribution
of the mutation operator described below.

On Performance Estimates for Two Evolutionary Algorithms 163

Assume that there are d level lines of the fitness function fixed so that
Φ0 = 0 < Φ1 < Φ2 . . . < Φd. The number of the level lines and the fitness
values corresponding to them may be chosen arbitrarily, but they should be rel-
evant to the given problem and the mutation operator to yield a meaningful
model. Let us introduce the following sequence of subsets of the set An:

Hi = {g : Φ(g) ≥ Φi}, i = 0, . . . , d.

Due to nonnegativity of the fitness function, H0 equals to the set of all genotypes.
Besides that, for the sake of convenience, let us define the set Hd+1 = ∅.

Now suppose that for all i = 0, ..., d and j = 1, ..., d the a priori lower
bounds αij and upper bounds βij on mutation transition probability from
subset Hi\Hi+1 to Hj are known, i.e. for every g ∈ Hi\Hi+1 holds αij ≤
P{Mut(g) ∈ Hj} ≤ βij , where P{Mut(g) ∈ Hj} =

∑
g′∈Hj

P{Mut(g) = g′}.
Let A denote the matrix with elements αij where i = 0, ..., d, and j = 1, ..., d.

The matrix of upper bounds βij is denoted by B.
If for all i = 0, . . . , d, and j = 1, . . . , d the probability P{Mut(g) ∈ Hj}

does not depend on choice of g ∈ Hi\Hi+1 then there exist such matrices of
probability bounds that A = B. In this case the mutation operator is called a
step mutation operator with respect to the sequence of subsets H0, H1, . . . , Hd (or
step mutation operator for short), and the matrix A = B is called the threshold
transition matrix. Here we should note that the step mutation operators do not
seem to be natural for the real-life optimization problems, however they will be
useful in further analysis as a sort of ideal operators.

A matrix M with elements mij , i = 0, . . . , d, and j = 1, . . . , d will be called
monotone if mi−1,j ≤ mij for all i, j from 1 to d. In other words, the matrix
of bounds on transition probabilities is monotone if for any j = 1, . . . , d, the
genotypes from any subset Hi have the bounds on transition probabilities to Hj

not less than the bounds of the genotypes from any Hi′ , i′ < i.
In what follows we will focus the attention on the monotone matrices. Obvi-

ously, for any mutation operator the monotone bounds exist. (For example A = 0
where 0 is a zero matrix and B = U where U is the matrix with all elements
equal 1.) The problem may be only with the absence of bounds which are sharp
enough to evaluate the mutation operator properly. In fact if we conjecture that
the probability distribution of a mutation operator is closely approximated by
some monotone matrix of bounds on transition probabilities, this will imply that
all solutions with high fitness values are relatively ”easy” to reach from other
solutions of high fitness. So the assumption that such ”good” approximation
exists, appears to be resembling the well-known ”big valley” conjecture.

The distribution of the current individual in the (1,λ)-ES will be character-
ized (though not completely) by the vector of probabilities

P (t) = (p(t)
1 , ..., p

(t)
d) = (P{b(t) ∈ H1}, . . . , P{b(t) ∈ Hd}),

which reflects the chances to have ”good enough” genotypes on iteration t. By
”good” genotypes we mean the genotypes with fitness above a certain threshold.

164 P.A. Borisovsky and A.V. Eremeev

In [3] for a genetic algorithm (GA) based on the tournament selection and
mutation it was shown that in the case of step mutation with monotone thresh-
old transition matrix and a sufficiently large population, a GA with a smaller
tournament size does not ”outperform” the same GA with larger tournament
size. Namely, for the first algorithm the probability that the offspring generated
on iteration t belongs to Hj , j = 1, ..., d is not greater than that for the latter
one. This conclusion motivated our present study of the (1,λ)-ES, since its be-
havior is identical to the behavior of the GA with infinite tournament size in the
framework of our model.

2 Bounds for the Probability of Obtaining ”Good”
Solutions

Our goal now is to estimate P{b(t) ∈ Hj} for all j. Note that there always exists
such 0 ≤ i ≤ d that b(t−1) ∈ Hi \ Hi+1, so by the total probability formula

p
(t)
j =

d∑
i=0

P{b(t) ∈ Hj |b(t−1) ∈ Hi \ Hi+1}P{b(t−1) ∈ Hi \ Hi+1}.

Let us assume for convenience that p
(t−1)
0 = 1 and p

(t−1)
d+1 = 0. Then for all

i = 0, ..., d we have P{b(t−1) ∈ Hi \ Hi+1} = p
(t−1)
i − p

(t−1)
i+1 . Thus

P{b(t) /∈ Hj |b(t−1) ∈ Hi \Hi+1} =
∑

b∈Hi\Hi+1

P{b(t) /∈ Hj |b(t−1) = b}P{b(t−1) = b}
P{b(t−1) ∈ Hi \ Hi+1} ≤

∑
b∈Hi\Hi+1

(1 − αij)λP{b(t−1) = b}
P{b(t−1) ∈ Hi \ Hi+1} = (1 − αij)λ.

Proposition 1. The components of P (t) are bounded as follows:

p
(t)
j ≥ 1 − (1 − α0j)λ +

d∑
i=1

((1 − αi−1,j)λ − (1 − αij)λ)p(t−1)
i (1)

for j = 1, . . . , d, and (1) is an equality in case of a step mutation operator.

Let us define for (d × d)-matrix W a matrix norm ||W|| = maxj

∑d
i=1 |wij |.

To convert recurrent bound (1) into a bound for a general term of sequence
{P (t)} we will use the following result from [3].

Lemma 1. Let W be a (d × d)-matrix with nonnegative elements such that
||W|| < 1. Suppose that α ∈ Rd, β ∈ Rd and {ζ(t)}, t = 0, 1, . . . is a sequence of
vectors from Rd.
(a) If ζ(t+1) ≥ ζ(t)W + α for all t ≥ 0, then

ζ(t) ≥ ζ(0)Wt + α(I − W)−1(I − Wt). (2)

On Performance Estimates for Two Evolutionary Algorithms 165

(b) If ζ(t+1) ≤ ζ(t)W + β for all t ≥ 0, then

ζ(t) ≤ ζ(0)Wt + β(I − W)−1(I − Wt), (3)

were I denotes the identity matrix.

Note that the right-hand side of (2) approaches α(I−W)−1 when t tends to
infinity, regardless of the initial vector ζ(0).

Now we apply Lemma 1 to matrix W′ with elements w′
ij = (1 −

αi−1,j)λ − (1 − αi,j)λ (which are nonnegative if A is monotone), and
α′ = (1 − (1 − α01)λ, . . . , 1 − (1 − α0d)λ). Also let us require that
αdj − α0j < 1, j = 1, . . . , d which is sufficient for ||W|| < 1.

Theorem 1. If A is monotone and αdj − α0j < 1 for j = 1, . . . , d, then
P (t) ≥ ζ(t) where ζ(t) is bounded according to (2) with ζ(0) = P (0),W = W′,
and α = α′.

Note that in many practical algorithms an arbitrary given genotype may be
produced with non-zero probability during mutation. In such cases the condition
αdj − α0j < 1 is obviously satisfied for all j.

The upper bounds for the components of P (t) can be obtained from matrix
B in the same way. Let us denote ŵ′

ij = (1 − βi−1,j)λ − (1 − βi,j)λ, i = 1, ..., d,
j = 1, ..., d, and β′ = (1 − (1 − β01)λ, . . . , 1 − (1 − β0d)λ).

Theorem 2. If B is monotone and βdj − β0j < 1 for j = 1, . . . , d,
then P (t) ≤ ζ(t) where ζ(t) is bounded according to (3) with ζ(0) = P (0),W = Ŵ′,
and β = β′.

In case of step mutation operator we have A = B, and the lower and upper
bounds of theorems 1 and 2 coincide. In this case we can consider P (t) as a
function on P (0), and denote P (t) = P (t)(P (0)).

One can note that in the case of step monotone mutation on any iteration t
there is no use to continue generating the offspring genotypes if we have already
found a genotype with higher fitness than Φ(b(t)) (then it is reasonable to use
the new genotype as a parent). Besides that if all offspring have lower fitness
than Φ(b(t)), there is no sense to substitute b(t) by the best offspring.

This observation leads us to investigation of the (1+1)-ES and to its compar-
ison to the (1,λ)-ES in a formal setting. For the (1+1)-ES we define the following
vector of probabilities:

Q(t) = (q(t)
1 , ..., q

(t)
d) = (P{g(t) ∈ H1}, . . . , P{g(t) ∈ Hd}).

By means of the total probability formula we conclude that

q
(t)
j ≥

j−1∑
i=0

αijP{g(t) ∈ Hi \ Hi+1} + q
(t−1)
j =

j−1∑
i=0

αij(q
(t−1)
i − q

(t−1)
i+1) + q

(t−1)
j .

166 P.A. Borisovsky and A.V. Eremeev

Proposition 2. The components of Q(t) are bounded as follows:

q
(t)
j ≥ α0j +

j−1∑
i=1

(αij − αi−1,j)q
(t−1)
i + (1 − αj−1,j)q

(t−1)
j (4)

for j = 1, . . . , d, and (4) is an equality in case of step mutation operator.

We can also apply Lemma 1 defining matrix W′′ and vector α′′ as follows:

w′′
ij =

αi,j − αi−1,j , i < j,
1 − αj−1,j , i = j,
0, i > j,

α′′ = (α01, . . . , α0d).

Theorem 3. If A is monotone and α0j > 0 for j = 1, . . . , d, then Q(t) ≥ ζ(t)

where ζ(t) is bounded according to (2) with ζ(0) = Q(0),W = W′′, and α = α′′.

It is easy to verify that 1 = α′′ +1W′′, where 1 = (1, . . . , 1). Thus, naturally,
P{g(t) ∈ Hd} → 1 when t → ∞.

Analogously let us denote

ŵ′′
ij =

βi,j − βi−1,j , i < j,
1 − βj−1,j , i = j,
0, i > j,

β′′ = (β01, . . . , β0d).

Theorem 4. If B is monotone and β0j > 0 for j = 1, . . . , d, then Q(t) ≤ ζ(t)

where ζ(t) is bounded according to (3) with ζ(0) = Q(0),W = Ŵ′′, and β = β′′.

2.1 Comparison of the (1+1)-ES with the (1,λ)-ES

The superiority of the (1+1)-ES over the (1,λ)-ES in case of monotone step
mutation has been mentioned above and now it will be formally supported. To
compare the performance of both algorithms here we will require to have the
same number of evaluations of the fitness function in each of them.

Theorem 5. Suppose that the same step mutation operator with a mono-
tone threshold transition matrix is used in the (1+1)-ES and in the (1,λ)-ES.
If Q(0) ≥ P (0) then Q(tλ) ≥ P (t) for any t.

Proof. It is sufficient to give a proof for t = 1, since the statement for the
general case will follow by induction on t.

a) Consider the moment when k offspring of b(0) have been generated and
let b(1,k) denote an offspring with the highest fitness among them. Let us first
assume that b(0) and g(0) are fixed so that b(0) ∈ Hi \ Hi+1 and g(0) ∈ Hi \ Hi+1
for some i. Then for the (1,λ)-ES for arbitrary j = 1 . . . d we have:

P{b(1,k) 6∈ Hj} = P{b(1,k−1) 6∈ Hj}P{Mut(b(0)) 6∈ Hj}. (5)

On Performance Estimates for Two Evolutionary Algorithms 167

Now for the (1+1)-ES if j ≤ i then P{g(k) 6∈ Hj} = 0, and if j > i then

P{g(k) 6∈ Hj} = P{g(k−1) ∈ Hi \ Hj}×

P{Mut(g(k−1)) 6∈ Hj |g(k−1) ∈ Hi \ Hj }. (6)

Assume that P{b(1,k−1) 6∈ Hj} ≥ P{g(k−1) 6∈ Hj}, and thus,
P{b(1,k−1) 6∈ Hj} ≥ P{g(k−1) ∈ Hi \ Hj}. From the monotonicity of
threshold transition matrix we obtain P{Mut(b(0)) 6∈ Hj} ≥
P{Mut(g(k−1)) 6∈ Hj |g(k−1) ∈ Hi \ Hj}. Hence, by induction on k, using
(5) and (6), we conclude that P{b(1,k) 6∈ Hj} ≥ P{g(k) 6∈ Hj} for all k = 1, ..., λ.

b) To prove that Q(λ) ≥ P (1) for arbitrary initial distribution with P (0) =
Q(0) we use the total probability formula, the step mutation definition and the
conclusion of the case a):

P{b(1) 6∈ Hj} =
d∑

i=0

P{b(1) 6∈ Hj |b(0) ∈ Hi \ Hi+1}(p(0)
i − p

(0)
i+1) ≥

d∑
i=0

P{g(λ) 6∈ Hj |g(0) ∈ Hi \ Hi+1}(q(0)
i − q

(0)
i+1) = P{g(λ) 6∈ Hj}. (7)

c) In general, when Q(0) ≥ P (0) let us recall that in case of step mutation we
can consider P (1) as a function on vector P (0). By (7) we have Q(λ) ≥ P (1)(Q(0)),
and due to nonnegativity of the multipliers of probabilities p

(t−1)
1 , ..., p

(t−1)
d in (1),

which is an equality in our case, we conclude that P (1)(Q(0)) ≥ P (1)(P (0)). tu
In [3] we showed that the bit-flip mutation operator for the ONEMAX fitness

function is an example of a monotone step mutation operator. Analogous result
has been obtained there for a family of vertex cover problems of special structure.
Of course the situation when we have a monotone step mutation operator is not
likely to occur while solving difficult optimization problems, unless we use some
”artificial” mutation, especially adjusted for the particular problem instance. For
example, if the the set of fitness levels Φ0, ..., Φd includes all possible values of
the fitness function, then existence of a local optimum (which is not global) in
terms of Hamming distance, implies that the bit-flip mutation is not a monotone
step mutation operator (with respect to the corresponding subsets H1, ..., Hd).

However the step mutation operators may be considered as convenient theo-
retical constructions since for any given problem and mutation operator Mut, a
monotone step mutation operator Mut′ can be constructed to have the thresh-
old transition probabilities equal to the monotone lower bounds of Mut. Then
Mut′ may be viewed as a realization of the worst-case situation for a given set
of lower bounds. In this respect Theorem 5 shows that the best possible lower
bound on P (t) for the (1,λ)-ES within our framework is not better than the best
lower bound on Q(t) for the (1+1)-ES.

A similar result to Theorem 5 can be also obtained to show that the GA
based on mutation and selection does not ”outperform” the (1, λ)-ES in terms
of probability vectors if a monotone step mutation operator is used.

168 P.A. Borisovsky and A.V. Eremeev

3 Some Connections with Complexity Theory

The computational complexity theory has been a source of numerous pessimistic
results related to optimization algorithms (see e.g. [6,7]), in particular, it is
shown that there are some classes of combinatorial optimization problems for
which even computing good approximate solutions is NP -hard. In this section
we are going to consider the a priori lower bounds for transition probabilities
with respect to hardness of finding the approximate solutions. While doing this
we shall use the notation analogous to the one in [8]. Recall that Σ denotes the
alphabet {0, 1}. By Σ∗ we denote the set of all strings with symbols from Σ.

Definition 1. An NP maximization problem Pmax is a triple Pmax =
(I, Sol, fx), where I ⊆ Σ∗ is the set of instances of Pmax and:

1. I is recognizable in polynomial time.
2. Given an instance x ∈ I, Sol(x) ⊆ Σ∗ denotes the set of feasible solutions

of x. Given x and y the decision whether y ∈ Sol(x) may be done in polynomial
time, and there exists a polynomial h such that given any x ∈ I and y ∈ Sol(x),
|y| ≤ h(|x|). (Without loss of generality in what follows we assume that the
equality |y| = h(|x|) holds for any x ∈ I and y ∈ Sol(x).)

3. Given an instance x ∈ I and y ∈ Sol(x), fx(y) is a positive integer
objective function (to be maximized), which is computable in polynomial time.

A similar definition may be given for NP minimization problems, and all
the following statements could be properly adjusted for the minimization case
as well. Here we will consider the maximization problems for convenience. The
optimal objective function value for x is denoted by f∗

x = maxy∈Sol(x) fx(y).
We have made no specific assumptions concerning the method of encoding

the solutions in genotype strings. Given the encoding scheme for the feasible
solutions of an NP maximization problem, one can use the string y as a genotype
with the fitness function identical to fx(y) on set Sol(x) and equal to 0 on all
other genotypes from Σh(|x|). For simplicity the representation with mapping
y(g) ≡ g will be assumed below (the same way we could consider a wider class
of representations with the mappings computable in polynomial time).

Definition 2. Given an instance x of an NP maximization problem and
y ∈ Sol(x), the performance ratio of y with respect to x is R(x, y) = f∗

x/fx(y).

Definition 3. Let Pmax be an NP maximization problem and let T be an algo-
rithm that for any instance x of Pmax such that Sol(x) 6= ∅, returns a feasible
solution T (x) in polynomial time. Given a function r : Z+ → [1,∞), T is called
an r-approximation algorithm for Pmax if the performance ratio of T (x) with
respect to x is such that R(x, T (x)) ≤ r(|x|). The solution T (x) is called an
r(|x|)-approximate solution then.

Producing for any instance x ∈ Pmax such solution y that fx(y) ≥ f∗
x/r(|x|)

(provided that Sol(x) 6= ∅) is called approximation of Pmax within a factor r. For

On Performance Estimates for Two Evolutionary Algorithms 169

example it is proven that the maximum cut problem is NP -hard to approximate
within a factor 1.012, approximation of the maximum clique problem within
|V |1−ε is most likely to be impossible (where |V | is the number of vertices in
graph and ε > 0 is an arbitrary constant), etc. For more details see e.g. [6].

We will also need the formal definitions of a randomized algorithm and of
class BPP of languages recognizable with bounded probability in polynomial
time (see e.g. [4]). By a randomized algorithm we mean an algorithm which may
be executed by a probabilistic Turing machine, i.e. the Turing machine which
has a special state for ”tossing a coin”. When the machine enters this state it
receives a bit which is 0 with probability 1/2 and 1 with probability 1/2. A
polynomial-time probabilistic Turing machine is a probabilistic Turing machine
which always halts after a polynomial number of steps.

Definition 4. BPP is the class of languages L ⊆ Σ∗ for which there exists a
polynomial-time probabilistic Turing machine M , such that:
1) For all x ∈ L holds P{Mgives an output 1} ≥ 3/4.
2) For all x 6∈ L holds P{Mgives an output 0} ≥ 3/4.

Studying the complexity of mutation operators with certain a priori lower
bounds for transition probabilities we will consider the possibility of implement-
ing the mutation by a polynomial-time randomized algorithm. The following
supplementary result will be of use.

Lemma 2. Let Pmax be an NP maximization problem and the approximation
of Pmax within a factor r is NP -hard. Then unless NP ⊆ BPP , no polynomial-
time randomized algorithm obtains the r-approximate solutions to all instances x
of Pmax with probability more than 1/poly(|x|), where poly(|x|) is a polynomial
in the length of input x. (The proof is omitted for brevity.)

The conjecture NP 6⊆ BPP is equivalent to NP 6= RP and widely believed to
be true [9] (here RP denotes the class of languages L recognizable by polynomial-
time probabilistic Turing machine with the probability of error equal to zero for
inputs x 6∈ L and not more than 1

2 if x ∈ L).
Assuming r = 1 in Lemma 2 we see that for any NP -hard NP maximization

problem most likely there are no randomized polynomial-time algorithms finding
the optimum with a probability bounded below by a positive constant.

Using Lemma 2 we can give a pessimistic estimate of the probability of
obtaining ”good” solutions by a mutation operator computable in polynomial
time, when the genotype under mutation represents a relatively ”poor” solution.

Theorem 6. Suppose that Pmax is an NP maximization problem, the approxi-
mation of Pmax within a factor r is NP -hard, and there is an r′-approximation
algorithm for it. Then unless NP ⊆ BPP , no polynomial-time mutation operator
exists such that for some polynomial poly(|x|) for all instances x there would be
monotone transition bounds with Φi ≤ f∗

x/r′, Φj ≥ f∗
x/r and αij ≥ 1/poly(|x|).

170 P.A. Borisovsky and A.V. Eremeev

Proof. Consider a polynomial-time randomized algorithm which obtains an
approximate solution y by the r′-approximation algorithm, and applies the
mutation operator to genotype g = y. Now since g ∈ Hi there must exist
such k, i ≤ k ≤ d that g ∈ Hk\Hk+1. Due to monotonicity of the transition
bounds, αkj ≥ αij ≥ 1/poly(|x|). Thus Lemma 2 yields the required statement. tu

For example setting r = 1 here we conclude that for any NP -hard NP
maximization problem most likely no polynomial-time mutation operator exists
to guarantee for all instances x the monotone transition bounds with Φi ≤ f∗

x/r′,
Φd = f∗

x unless αid is a quickly vanishing function of |x|.
Theorem 6 suggests that solving the NP -hard problems one should not ex-

pect to be able to find polynomial-time mutation operators with monotone lower
bounds much better than the guaranteed performance bounds of deterministic
polynomial-time algorithms (unless NP ⊆ BPP).

4 Conclusions

In this paper we presented the lower and upper bounds for probability of obtain-
ing solutions of sufficient quality for the (1,λ)-ES and the (1+1)-ES evolutionary
strategies. In terms of these probabilities the algorithm (1+1)-ES is proved to
be always at least as good as the (1,λ)-ES when a step mutation operator with
monotone threshold transition matrix is used. Finally, provided that the conjec-
ture NP 6⊆ BPP holds, the best possible lower bounds on transition probability
for polynomial-time mutation operator are shown to approach zero in many
cases, when dealing with NP -hard combinatorial optimization problems.

Further research is expected to address the estimation of the average number
of iterations until the (1+1)-ES obtains the optimum. Besides that it will be
interesting to study some benchmark optimization problems in the framework
used in this paper.

References

1. Bäck, T., Schwefel H.-P.: An overview of evolutionary algorithms for parameter
optimization, Evolutionary Computation, 1 (1) (1993) 1–23

2. Rechenberg I.: Evolutionsstrategie’94. Formann-Holzboog Verlag, Stuttgart (1994)
3. Eremeev A.V.: Modeling and Analysis of Genetic Algorithm with Tournament Selec-

tion. Proc. of Artificial Evolution Conference (AE’99). Lecture Notes in Computer
Science, Vol. 1829. Springer Verlag (2000) 84–95

4. Motwani, R. and Raghavan, P.: Randomized Algorithms. Cambridge University
Press (1995)

5. Rudolph, G.: Finite Markov Chain Results in Evolutionary Computation: A Tour
d’Horizon, Fundamenta Informaticae 35 (1-4) (1998) 67–89

6. Arora, S., Lund, C.: Hardness of approximations. Approximation Algorithms for NP-
Hard Problems. Ed. by S.D.Hochbaum. PWS Publishing Company, (1995) 399–446

7. Garey, M.R. and Johnson, D.S.: Computers and intractability. A guide to the theory
of NP -completeness. W.H. Freeman and Company, San Francisco (1979)

On Performance Estimates for Two Evolutionary Algorithms 171

8. Ausiello, G., Protasi, M.: Local search, reducibility and approximability of NP -
optimization problems. Information Processing Letters, 54 (1995) 73–79

9. Ko, K.: Some observations on the probabilistic algorithms and NP -hard problems,
Information Processing Letters, 14 (1982) 39–43

A Contribution to the Study of the Fitness
Landscape for a Graph Drawing Problem

Rémi Lehn and Pascale Kuntz

IRIN – Université de Nantes – France

Abstract. These past few years genetic algorithms and stochastic hill-
climbing have received a growing interest for different graph drawing
problems. This paper deals with the layered drawing of directed graphs
which is known to be an NP-complete problem for the arc-crossing min-
imization criterium. Before setting out a (n+1)th comparison between
meta-heuristics, we here prefer to study the characteristics of the arc-
crossings landscape for three local transformations (greedy switching,
barycenter, median) adapted from the Sugiyama heuristic and we pro-
pose a descriptive analysis of the landscape for two graph families. First,
all the possible layouts of 2021 small graphs are generated and the op-
tima (number, type, height, attracting sets) are precisely defined. Then,
a second family of 305 larger graphs (up to 90 vertices) is examined
with one thousand hill-climbers. This study highlights the diversity of
the encountered configurations and gives leads for the choice of efficient
heuristics.

1 Introduction

The problem of drawing a graph G is generally set as a combinatorial optimiza-
tion problem: producing a layout of G on a given support (grid, ...) according
to a drawing convention (layered drawing, ...) that optimizes some measurable
aesthetics (e.g. arc-crossing or arc-length minimization). Unfortunately, numer-
ous criteria lead to NP-complete problems for general graphs, and aesthetic
requirements often conflict which each other. The importance of the problem
in numerous application fields, in particular in Computer Aided Design and
more recently for Web visualization, has stimulated the development of various
heuristics from classical divide-and-conquer approaches to meta-heuristics (see
the recent survey in [1]).

Among the meta-heuristics, Genetic Algorithms (GA) and Evolutionary Al-
gorithms (EA) seem to have attracted a particular attention these past few
years. Indeed, several developments can be found in the literature for differ-
ent graph characteristics and drawing constraints: directed graphs ([2], [3], [4],
[5],[6]), undirected graphs ([7],[8], [9],[10], [11], [12]), interactive layouts [3], dy-
namic layouts [13]. The comparisons either with problem-specific heuristics or
other meta-heuristics (simulated-annealing, ...) show that GAs are particularly
promising for this class of problems.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 172–181, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A Contribution to the Study of the Fitness Landscape 173

Yet, a recent empirical comparison [12] has shown that Stochastic Hill Climb-
ing (SHC) may sometimes outperform EA for the undirected graph layout on a
grid. This work is along the same line as other comparative studies of these two
approaches for combinatorial optimization problems [14][15] [16] which have fol-
lowed the seminal work of Mitchell et al [17] with hill climbing. They show that
some revised versions of the simple basic SHC may lead to significantly better
results than GA or EA. However, most authors recognize that these comparisons
closely depend on the implementation of these techniques.

Instead of setting out an (n + 1)th comparison, we here prefer to tackle the
problem at the root by studying the features of the arc-crossing landscape. We
focus on a type of layout: the layered drawing of directed graphs where vertices
are arranged in vertical layers and arcs are represented by line segments. In
this case, the arc-crossing number does not depend on the precise position of
the vertices but only on the ordering within each layer. Although this problem
seems a priori easier than the general problem of minimizing arc crossings on
a plane, it remains NP-complete even if there are only two layers [18]. The
most widely used optimization techniques have been developed in the so-called
Sugiyama-heuristic for drawing directed acyclic graphs [19]. As they allow to
define local transformations on the graph, they have recently been adapted to
GA for building mutation operators [6], [13].

In this paper, we analyze the arc-crossing landscape for these transforma-
tions. It is well-known that the structures of the landscapes influence the per-
formances of the search for the optimal solutions, and several techniques have
been proposed in the literature to define their features (e.g. [20] for a recent
overview). Numerous authors introduce a measure of correlation between fitness
values on the landscape. It allows to assess the smoothness or the ruggedness
of a landscape and often aims at characterizing the ability of a GA to solve the
problem. But, instead of comparing such measures whose interpretation for real-
life problems may be questionable, we thought it better to start our landscape
investigation by a descriptive analysis. First, we study all the possible layouts
for a given transformation of 2021 ”small” graphs and precisely define the op-
tima (number, type, height, attracting sets). Then, we extend our analysis to a
set of 300 larger graphs (with a maximum of 93 vertices). As, in this case, an
exhaustive examination is beyond reach in a reasonable computation time, we
resort to one thousand hill-climbers to mine the landscape structures.

2 Definition of a Local Transformation Landscape

In the definition of a fitness landscape proposed by Jones [21][22] which is now
taken up by many authors, three components are essential: a solution coding,
a mapping that associates each solution with a numerical value (fitness func-
tion) and an operator that defines a neighborhood relationship within the set of
solutions.

We here restrict ourselves to the study of arc-crossing landscapes associated
with some local transformations. Let G = (V, E) be an acyclic digraph, l1, ..., lK

174 R. Lehn and P. Kuntz

be a set of K layers for the layout and ΩG be the set of all layered drawing of
G for a given distribution of the vertex set on these layers. The ”fitness” value
f(LG

i) of any drawing LG
i ∈ ΩG (figure 1) is the number of arc-crossings on

LG
i . A neighbor of LG

i is a layout L̃G
i of G deduced from LG

i by a local operator
(greedy switching, barycenter, median) described below. The interest of these
operators is that they can be used for local optimization in an SHC or in multi-
start hill-climbing, as well as in GA combined with a bitflip operator to introduce
a local improvement in the “mutation” phase -in the sense of a hybridization
strategy with a local search.

LGj =
b

c

d

e

f

g

h

l1 l2 l3
a

arc crossing f(LGj) = 1.

Fig. 1. A layered drawing of a graph.

2.1 Local Transformations

Each local operator is here defined for any layer lk of a layout LG
i of ΩG . Let

us denote by σk the vertex ordering on lk.
Greedy switching (S)

The basic idea of this heuristic is to switch adjacent pairs of vertices on lk
when this exchange makes the arc-crossing number decrease. More precisely, all
the vertices of lk are sequentially scanned and two adjacent vertices are permuted
whenever the fitness of the layout associated with this new ordering is improved.
Barycenter (B)

Roughly speaking, a vertex is repositioned at the average position of its
neighbors. Let u be a vertex on lk and Nk+1(u) (resp. Nk−1(u)) be the set of its
neighbors on the adjacent layer lk+1 (resp. lk−1). The average position avg(u)
of its neighbors is defined by

avg(u) =
1

|Nk+1(u)| + |Nk−1(u)|

 ∑

v∈Nk−1(u)

σk−1(v)
nk−1

+
∑

v∈Nk+1(v)

σk+1(v)
nk+1

where nk−1(resp. nk+1) is the number of vertices on lk−1 (resp. lk+1). These
ratio are introduced to normalize the vertex position on each layer according to
their cardinality. For instance, in figure 2, Nk−1(u) = {a, b, c} and Nk+1(u) =
{d, e, f, g} and avg(u) = 0.62 .

The average position is computed for each vertex of lk and the local trans-
formation B is the new vertex ordering σ′

k obtained after sorting the average
values {avg(u); u ∈ lk} (σ′

k(u) > σ′
k(v) if avg(u) > avg(v)). This transformation

is applied on LG
i only if it improves the fitness.

Median (M)
This operator is very close to the barycenter. Let us recall that a median of a

set of sorted numbers -by decreasing or increasing order- is the number m so that

A Contribution to the Study of the Fitness Landscape 175

lklk-1 lk+1

sk-1 sk sk+1

1

2

3

4

1

2

3

1

2

3

4

5

a

b

c

d

e

f

g

u

nk−1 = 4, nk = 3, nk+1 = 5,
| Nk−1(u) |= 3, | Nk+1(u) |= 4.

avg(u) = 1
3+4

(1+2+4
4 + 1+3+4+5

5

)
= 0.62.

sorted adjacent vertices positions :
(1

5 ,
1
4 ,

2
4 ,

3
5 ,

4
5 ,

4
4 ,

5
5

)
.

med(u) = 3
5 = 0.6.

Fig. 2. Barycenter and median : example.

half of the numbers are smaller than m and the other half are greater than m. If
the neighbors of u ∈ lk on lk−1 (resp. lk+1) are v1, v2, ..., vp (resp. w1, w2, ..., wq)
then the median position med(u) of u is the median of the following sorted val-
ues

{
σk−1(v1)

nk−1
, σk−1(v2)

nk−1
, ...,

σk−1(vp)
nk−1

, σk+1(w1)
nk+1

, σk+1(w2)
nk+1

, ...,
σk+1(wq)

nk+1

}
. The median

position is computed for each vertex of lk. And as previously, the local trans-
formation M is the new vertex ordering σ′

k obtained after sorting the median
values {med(u); u ∈ lk}:σ′

k(u) > σ′
k(v) if med(u) > med(v).

2.2 First Characteristics

A local operator O acts on a layout LG
i of ΩG to produce a new layout L̃G

i . The
set N(LG

i) of the neighbors of LG
i is composed of the layouts of ΩG which are

obtained from LG
i by applying O once, and we denote by ΩG

O the set of all the
layouts deduced from one another with O. This set is similar to the vertex set
of the graph with characterizes a landscape in the definition proposed by Jones
[21], but we here restrict ourselves to local transformations which improve the
fitness. A local optimum (here a minimum) of the landscape is a layout LG

i ∈ ΩG
O

s.t. f(LG
i) ≤ f(LG

j) for LG
j ∈ N(LG

i) and a global optimum is a layout L̂G ∈ ΩG
O

s.t. f(L̂G) ≤ f(LG
i) for LG

i ∈ ΩG
O.

Before getting into details, we can even deduce three characteristics of the
landscapes associated with the operators S, B and M: 1) there can be some
local optima (figures 3a. and 3b.); 2) due to symmetries in the layouts, the
global optimum is not necessarily unique; 3) there are layouts for which different
transformations improve the fitness in the same way (figure 3c.).

It is clear that, for this drawing problem, the fitness landscape is multimodal
in the general case. But now different questions arise: are the local optima (resp.
global optima) numerous ? what is the quality of the local optima ? what is the
size of the basins of attraction ?

3 Exhaustive Exploration for Small Graphs

Let D be the set of acyclic digraphs which are not trees, and so that each arc
is incident to vertices on adjacent layers and

∏K
k=1 nk! ≤ 2000 where nk is the

176 R. Lehn and P. Kuntz

a

b

c h

d

e

g

f

i

j

a

b

c

d

e

f

g

i

h

j

e

d

c

f

h

g

a

b

S1

S2

S3

S4

S5

L0
G

L1
G

L2
G

e f

h

g

a

b

e

g

a

b

c

d

f

h

g

a

b c

L3
G

L4
G

L5
G

e

d

c g

a

b e

d

c

h

a

b

f=3

f=2

f=2

f=0

f=1

f=1

h

f

c

d

g

f

h

f

e

d

c.

a. b.
a. Local optimum for S, B and M.
b. Global optimum.

c. Two transformations (greedy switching) S1 and S2 can be applied on LG0
leading to two layouts LG1 and LG2 with the same fitness. However a global
optimum LG3 can be reached from LG1 whereas any S transformation on LG2
leads to a local optimum (LG4 or LG5) only.

Fig. 3. A local optimum for the three local transformations and equivalent local trans-
formations on a layout.

vertex number on the layer k and K the maximum number of layers, we have
analyzed all the possible layouts for 2021 different graphs from D, and for the
study of local and global optima we restrict ourselves to the greedy switching
operator S. The average number of explored layouts for each graph is equal to
(
∑2021

i=1
∏Ki

ki=1 nki
!)/2021 ' 917.

3.1 Global and Local Optima

Even for these small graphs, there is a local optimum in 70% of the cases. The
mean number of local optima is equal to 25.2 and that of the global optima
is equal to 92.9. This value partly results from the numerous symmetries of
the graphs. It is very important to note that the distribution of the optima
greatly varies from graph to graph: the standard deviation of the number of
local optima (resp. global optima) is equal to 31.9 (resp. 264.5). However, there
is no correlation between the number of local optima and the number of global
optima (the correlation coefficient ρ ' −0.16).

In an optimization perspective, it is important to know whether the lo-
cal optimum values are close or not to the global optimum values. Let f(LG

i)
(resp. f(L̂G)) be the arc-crossing number on a layout LG

i associated with a lo-
cal optimum (resp. any global optimum) and f(LG

w) the arc-crossing number
of the worst layout, then the relative height h(LG

i) of a local optimum LG
i is

f(LG
i) = 1 − f(LG

i)−f(L̂G)
f(LG

w)−f(L̂G)
. Intuitively, if h(LG

i) is very close to 1, then the local

optimum LG
i can be considered as a ”good” solution.

A Contribution to the Study of the Fitness Landscape 177

0

5

10

15

20

25

30

35

40

60 70 80 9050

% of graphs in range

100 no local

% relative height of local optima
optima

3.51%
1.29%

30%

8.56%

32.3%

24.3%

0

5

10

15

20

25

30

35

40

20 30 40 50 60 70 80 90

0.30% 1.19%
2.92%

6.98%

9.85%

13.7%

21.7%

13.3%

30%

no local100
optima

% basins of attraction sets

% of graphs in range

a. Relative height of local optima. b. Size of the global optima attraction sets.

Fig. 4. Relative height of local optima and size of the global optima attraction sets.

3.2 Global Optimum Attracting Sets

The basin of attraction b(L̂G
j) of a global optimum L̂G

j is the set of layouts
of ΩG

S which can be reached from L̂G
j by a descent method: b(L̂G

j) = {LG
0 ; ∃

LG
1 , ..., LG

n−1 ∈ ΩG
S with LG

i ∈ N(LG
i+1) and f(LG

i) < f(LG
i+1) ∀i = 0, n} where

LG
n = L̂G

j (e.g. [20]). In practice, starting from a global optima, we look for its
successive neighbors while the fitness strictly decreases.

The basins of attraction b(L̂G) of the set LG of all global optima L̂G = {L̂G
1 ,

L̂G
2 , ..., L̂G

p } is the set b(L̂G
1)∪b(L̂G

2)∪ ... ∪b(L̂G
p) of layouts which can be reached

from any global optimum L̂G
1 , L̂G

2 , ..., L̂G
p . The relative size s(L̂G) of b(L̂G) is

defined by s(L̂G) =| b(L̂G) | / | ΩG
S |. Note that for the operator S, ΩG

S = ΩG

and then | ΩG
S |= ΠK

k=1nk!.
On average the basins of attraction sets represent 83.1% of the lanscape and

this average drops to 75.9% if we disregard cases where there are global optima
only. However, there are large disparties among the graphs (figure 4b.): 30% of
the graphs with one local optimum at least have s(L̂G) < 70%, and 70% have
s(L̂G) ≥ 70%.

4 Exploration with a Set of Hill-Climbers

As the computation time quickly becomes prohibitive for an exhaustive explo-
ration of larger graphs, we resort to an extended multi-start hill-climbing to
discover the main characteristics of the fitness landscape. A set of one thousand
layouts1 is randomly generated, and each layout is improved by an iterative
application of an operator O: O is applied on each layer l1, ...lK of a random
layout LG

i ∈ ΩG
0 taken one after the other and this loop starts again until the

1 This number has been empirically fixed after some experiments; it has to be con-
firmed with statistical tests.

178 R. Lehn and P. Kuntz

fitness does not move any more. In this case, the term ”best solution” refers to
the best layouts found by the set of hill-climbers and we improperly call ”local
optima” the other layouts on which the hill-climbers converge. Moreover, as we
cannot now compute the exact basins of attraction, we only retain the proportion
nh(L̂G)/1000 of hill-climbers which reach a best solution.

Unfortunately, as far as we know, there is no benchmark base of large size
well-adapted to our problem, therefore, our experiments are here concerned
with a set of 305 graphs built like in the previous section but larger (with∏K

k=1 nk! ≤ 1014). We present results where the operator O=S+M+B is the
successive application on each layer of S then of M and then B2.

There are some differences with the previous results due to the graph sizes
but the main tendencies are confirmed. Here, 72.14% of the graphs have at least
a local optimum with an average equal to 551.19. This means that, on average,
among the 1000 climbers a little more than half reach a local optimum and a little
less than half find a best solution. However, there are very important differences
between graphs: the standard deviation of the global optimum number is equal to
354.27 and the histogram (figure 5) shows that the distribution of the proportion
of hill-climbers reaching a global optimum is spread out.

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900

10.1%
12.1%

10.5%
9.18%

7.54%
5.57%

7.21%
5.25%

1.64%
2.95%

27.87%

1000 all of
them

% of graphs in range

number of hill climbers reaching a best solution

Fig. 5. Number of hill climbers reaching a best solution.

5 Discussion

It is now well-known for some combinatorial optimization problems that the
instance characteristics may vary a lot from one to another (e.g. [23] for the
quadratic assignment problem), and that consequently the heuristic perfor-
mances closely depend on the processed instance. Our study leads to similar
results for a graph drawing problem. It is obvious that a descent method or a
2 The mean computation time is equal to 33m. 14s. (CPU time, i686 433MHz 128MB,

Linux 2.2.5, perl version 5.005 03)

A Contribution to the Study of the Fitness Landscape 179

simple multi-start hill-climbing is sufficient for landscapes with no, or few, local
optima. But, for the other cases analyzed above, they are numerous local optima
with a high relative height and the basins of attraction of the global optima are
rather extensive. Such characteristics could justify the choice of hill-climbing
approaches for these landscapes. Nevertheless, some problem-specific remarks
can inflect this conclusion. Due to the high relative height of the majority of local
optima, SHCs are a priori expected to reach solutions of ”good” quality quickly.
However, recent psychological experiments have confirmed the importance of
the arc-crossing criterium for drawing intelligibility [24], and the addition of
just a few crossings can notably disturb the readability of the layouts in some
cases (e.g. when they are in the middle of the visual support on which the user
focuses). Consequently, for this problem, local optima may easily be associated
with debased solutions in terms of usefulness.

L

LG
1

LG
2

LG
4 LG

5

LG
3

LG
0

LG
0LG

0global optimum

local optimum

attracting set of a global optimum

attracting set of a local optimum

layout of figure 3c.

Fig. 6. Fitness graph for the 72 possible layouts of the graph on figure 3c. for the
operator S.

1 2

j

k

l

m

n

i

h

a

b

c

d

e

g

f

f

g

j

k

l

m

n

i

h

b

a

c

d

e

c

e

j

k

l

m

n

i

h

g

f

d

b

a

k

l

m

n

i

h

j
a

b

c

d

e

g

f

a d

f

g

j nb

h

i

l

k

m

c

e

(1)

(2)

(3) (4) (5)

1 Combination of the two layouts (1) and (2) giving a new
layout (3).

2 Combination of the two layouts (3) and (4) giving a new
layout (5).

Fig. 7. Reconstruction by recombination.

180 R. Lehn and P. Kuntz

To study this multimodality more precisely, the definition of the fitness land-
scape based on graphs [21] is very convenient. Let us recall that the vertex set is
the set ΩG

O of all the layouts deduced from one another with an operator O and
the arcs represent these deductions. For very small graphs this “fitness graph”
can be entirely drawn. The example given figure 6 shows that, for the majority of
the layouts, different local transformations can lead to a better drawing : for this
very simple instance the average vertex degree is 2.05 and the standard deviation
is 1.15. In particular, due to the highly combinatorial structure of the landscape,
the basins of attraction of global and local optima often have a non-empty in-
tersection. Consequently, starting from a layout in the basin of attraction of a
global optima (e.g. LG

0 on figure 6) the probability of reaching a local optimum
(e.g. LG

4 on figure 6) is not nil. The strongly combinatorial structure of the land-
scape associated with local optima close in value to the global ones lead to think
that the probability for a hill-climbing approach -in particular an SHC- to be
stuck on a local optimum is no more negligible.

In this paper we have been focusing on landscapes associated with operators
of local transformations only. It is clear that a similar study should be carried
out for the crossover landscapes. Different operators adapted from the “ordering
genetic algorithms”, can be envisaged (e.g. [13]). Roughly speaking, a nice prop-
erty of the layered drawing problem for the GAs seems to be the condition of
reconstruction by recombination (e.g. [25]): the combination of two solutions, or
sub-solutions, can lead to a better solution and not necessarily to a worst one.
This condition is illustrated on an example in figure 7 but more general cases
remain to be studied.

References

1. G. Di-Battista, P. Eades, R. Tamassia, and I.-G. Tollis. Graph drawing – Algo-
rithms for the visualization of graphs. Prentice-Hall, 1999.

2. L.-J. Groves, Z. Michalewicz, P.-V. Elia, and C.-Z. Janikow. Genetic algorithms
for drawing directed graphs. In Proc. of the 5th Int. Symp. on Methodologies for
Intelligent Systems, pages 268–276. Elsevier, 1990.

3. T. Masui. Graphic object layout with interactive genetic algorithms. In Proc. of
the 1992 IEEE Workshop on Visual Languages, pages 74–80. IEEE Comp. Soc.
Press, 1992.

4. E. Makinen and M. Sieranta. Genetic algorithms for drawing bipartite graphs. Int.
J. of Computer Mathematics, 53(3-4):157–166, 1994.

5. A. Ochoa-Rodr̀ıguez and A. Rosete-Suàrez. Automatic graph drawing by genetic
search. In Proc. of the 11th Int. Conf. on CAD, CAM, Robotics and Manufactories
of the Future, pages 982–987, 1995.

6. J. Utech, J. Branke, H. Schmeck, and P. Eades. An evolutionary algorithm for
drawing directed graphs. In Proc. of the Int. Conf. on Imaging Science, Systems
and Technology, pages 154–160. CSREA Press, 1998.

7. C. Kosak, J. Marks, and S. Shieber. A parallel genetic algorithm for network-
diagram layout. In Proc. of the 4th Int. Conf. on Genetic Algorithms, pages 458–
465. Morgan-Kaufmann, 1991.

A Contribution to the Study of the Fitness Landscape 181

8. C. Kosak, J. Marks, and S. Shieber. Automating the layout of network diagrams
with specified visual organization. In IEEE Transactions on System, Man and
Cybernetics, volume 24, pages 440–454, 1994.

9. A. Rosete and A. Ochoa. Genetic graph drawing. In Proc. of the 13th Int. Conf.
on Appl. of Artificial Intelligence in Engineering, 1998.

10. D. Kobler and A. Tettamanzi. Recombination operators for evolutionary graph
drawing. In Proc. of Parallel Problem Solving from Nature PPSN-V, volume 1498
of Lect. Notes in Comp. Sc., pages 988–997. Springer-Verlag, 1998.

11. A. Rosete-Suarez, M. Sebag, and A. Ochoa-Rodriguez. A study of evolutionary
graph drawing. Rapport de Recherche 1228, LRI, UMR 8623, Bat. 490, Université
Paris-Sud XI, 91405 Orsay-CEDEX, France, Septembre 1999.
http://www.lri.fr/˜rosette-type.html.

12. A. Rosete-Suárez, A. Ochoa-Rodŕıguez, and M. Sebag. Automatic graph drawing
and stochastic hill climbing. In Proc. of the Genetic and Evolutionary Conf.,
GECCO’99, volume 2, pages 1699–1706. Morgan Kaufmann, 1999.

13. P. Kuntz, R. Lehn, and H. Briand. Dynamic rule graph drawing by genetic search.
In Proc. of the IEEE Int. Conf. on System Man and Cybernetics, 2000.

14. S. Baluja. An empirical comparison of seven iterative and evolutionary heuristics
for static functions of optimization. In Proc. of the 11th Int. Conf. on System
Engineering, pages 692–697. Univ. of Nevada, 1996.

15. A. Juels and M. Wattenberg. Hillclimbing as a baseline method for the evaluation
of stochastic optimization algorithms. In D.S. Touretsky and al, editors, Advances
in Neural Information Processing Systems, pages 430–436. MIT Press, 1995.

16. O.J. Sharpe. Towards a rational methodology for using evolutionary search algo-
rithms. PhD thesis, Univ. of Sussex, Brighton, UK, 2000.

17. M. Mitchell, J. Holland, and S. Forrest. When will a genetic algorithm outperform
hill climbing ? In J. Cowan, G. Tesauro, and J. Alspector, editors, Advances in
Neural Information Processing Systems. Morgan Kauffman, 1994.

18. P. Eades and N. Wormald. Edge crossings in drawings of bipartite graphs. Algo-
rithmica, 11:379–403, 1994.

19. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical systems. IEEE Trans. Sys. Man and Cybernetics, 11(2):109–125, 1981.

20. V.K. Vassilev. Fitness Landscapes and Search in the Evolutionary Design of Digital
Circuits. PhD thesis, Napier Univ., UK, 2000.

21. T.-C. Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis,
University of New Mexico, Alburquerque, 1995.

22. T. Jones and S. Forrest. Genetic algorithms and heuristic search. In Santa Fe
Institute Tech. Report 95-02-021. Santa Fe Institute, 1995.

23. E. Taillard. Comparison of iterative searches for the quadratic assignment problem.
Location Science, 3:87–105, 1995.

24. Purchase H. Which aesthetic has the greatest effect on human understanding ? In
Proc. Graph Drawing’97, volume 1353 of Lect. Notes in Comp. Sc., pages 248–261.
Springer Verlag, 1997.

25. D.-E. Goldberg. Genetic algorithms in search, optimization and machine learning.
Addison-Wesley, 1989.

Evolutionary Game Dynamics in Combinatorial
Optimization: An Overview

Marcello Pelillo

Dipartimento di Informatica
Università Ca’ Foscari di Venezia

Via Torino 155, 30172 Venezia Mestre, Italy

Abstract. Replicator equations are a class of dynamical systems devel-
oped and studied in the context of evolutionary game theory, a discipline
pioneered by J. Maynard Smith which aims to model the evolution of
animal behavior using the principles and tools of noncooperative game
theory. Because of their dynamical properties, they have been recently
applied with significant success to a number of combinatorial optimiza-
tion problems. It is the purpose of this article to provide a summary and
an up-to-date bibliography of these applications.

1 Replicator Equations and Their Properties

Consider a large, ideally infinite population of individuals belonging to the same
species which compete for a particular limited resource, such as food, territory,
etc. In evolutionary game theory [1,2], this kind of conflict is modeled as a game,
the players being pairs of randomly selected population members. In contrast
to traditional application fields of game theory, such as economics or sociology,
players here do not behave “rationally,” but act instead according to a pre-
programmed behavior pattern, or pure strategy. Reproduction is assumed to
be asexual, which means that, apart from mutation, offspring will inherit the
same genetic material, and hence behavioral phenotype, as its parent. Let J =
{1, · · · , n} be the set of pure strategies and, for all i ∈ J , let xi(t) be the relative
frequency of population members playing strategy i, at time t. The state of the
system at time t is simply the vector x(t) = (x1(t), · · · , xn(t))T , which is clearly
constrained to lie in the standard simplex:

Sn =
{
x ∈ IRn : xi ≥ 0 ∀i ∈ J, eT x = 1

}
.

Here and in the sequel, the letter e is reserved for a vector of appropriate length,
consisting of unit entries (hence eT x =

∑
i xi).

One advantage of applying game theory to biology is that the notion of
“utility” is much simpler and clearer than in human contexts. Here, a player’s
utility can simply be measured in terms of Darwinian fitness or reproductive
success, i.e., the player’s expected number of offspring. Let W = (wij) be the
n × n fitness (or payoff) matrix. Specifically, for each pair of strategies i, j ∈ J ,
wij represents the payoff of an individual playing strategy i against an opponent

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 182–192, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Evolutionary Game Dynamics in Combinatorial Optimization 183

playing strategy j. Without loss of generality, we shall assume that the fitness
matrix is nonnegative, i.e., wij ≥ 0 for all i, j ∈ J . At time t, the average payoff
of strategy i is given by:

πi(t) =
n∑

j=1

wijxj(t) (1)

while the mean payoff over the entire population is
∑n

i=1 xi(t)πi(t).
In evolutionary game theory the assumption is made that the game is played

over and over, generation after generation, and that the action of natural selec-
tion will result in the evolution of the fittest strategies. If successive generations
blend into each other, the evolution of behavioral phenotypes can be described
by the following continuous-time replicator equations [1,2]:

ẋi(t) = xi(t)

πi(t) −

n∑
j=1

xj(t)πj(t)

 (2)

where a dot signifies derivative with respect to time. The basic idea behind
this model is that the average rate of increase ẋi(t)/xi(t) equals the difference
between the average fitness of strategy i and the mean fitness over the entire
population. It is straightforward to show that the simplex Sn is invariant under
equation (2), i.e. any trajectory starting in Sn will remain in Sn.

Similar arguments provide a rationale for the following discrete-time dynam-
ics, assuming non-overlapping generations, which can be obtained from (2) by
setting 1/∆t =

∑n
j=1 xj(t)πj(t):

xi(t + ∆t) =
xi(t)πi(t)∑n

j=1 xj(t)πj(t)
(3)

Because of the non-negativity of the fitness matrix W and the normalization
factor, this system too makes the simplex Sn invariant.

Equations (2) and (3) arise independently in different branches of theoret-
ical biology [1]. In population ecology, for example, the famous Lotka-Volterra
equations for predator-prey systems turn out to be equivalent to the continuous-
time dynamics (2), under a simple barycentric transformation and a change in
velocity. In population genetics they are known as selection equations [3]. In this
case, each xi represents the frequency of the i-th allele Ai and the payoff wij is
the fitness of genotype AiAj . Here the fitness matrix W is always symmetric.

The following result is known in mathematical biology as the fundamen-
tal theorem of natural selection [3,1,2] and, in its original form, traces back to
R. A. Fisher [4].

Theorem 1. If W is symmetric then the population’s average fitness xT Wx is
strictly increasing along any non-constant trajectory of replicator equations (2)
and (3), and any such trajectory converges to a stationary point.

184 M. Pelillo

Because of their dynamical properties, replicator dynamics have been recently
applied with significant success to a number of combinatorial optimization prob-
lems. It is the purpose of this article to provide a summary and an up-to-date
bibliography of these applications.

2 Maximum Clique Problems

Let G = (V, E) be an undirected graph, where V = {1, · · · , n} is the set of
vertices and E ⊆ V × V is the set of edges. The order of G is the number of its
vertices, and its size is the number of edges. Two vertices i, j ∈ V are said to be
adjacent if (i, j) ∈ E. The adjacency matrix of G is the n × n symmetric matrix
AG = (aij) defined as aij = 1 if (i, j) ∈ E, and aij = 0 otherwise.

A subset C of vertices in G is called a clique if all its vertices are mutually
adjacent. i.e., for all i, j ∈ C A clique is said to be maximal if it is not contained
in any larger clique, and maximum if it is the largest clique in the graph. The
clique number, denoted by ω(G), is defined as the cardinality of the maximum
clique. The maximum clique problem is to find a clique whose cardinality equals
the clique number. It is known to be NP -hard for arbitrary graphs and so is
the problem of approximating it within a constant factor. We refer to [5] for a
recent survey of results concerning algorithms, complexity and applications of
this problem.

In 1965, Motzkin and Straus [6] established a remarkable connection between
the maximum clique problem and a certain quadratic programming problem.
Consider the following quadratic function, called the Lagrangian of G:

fG(x) = xT AGx (4)

and let x∗ be a global maximizer of fG on Sn, n being the order of G. In [6] it
is proved that the clique number of G is related to fG(x∗) by the formula:

ω(G) =
1

1 − fG(x∗)
. (5)

Additionally, it is shown that a subset of vertices C is a maximum clique of
G if and only if its characteristic vector xC , which is the vector of Sn defined
as xC

i = 1/|C| if i ∈ C and xC
i = 0 otherwise, is a global maximizer of fG

on Sn. In [7,8], the Motzkin-Straus theorem has been extended by providing a
characterization of maximal cliques in terms of local maximizers of fG on Sn.

Once that the maximum clique problem is formulated in terms of maximizing
a quadratic polynomial over the standard simplex, the use of replicator dynamics
naturally suggests itself [9,10]. In fact, consider a replicator system with fitness
matrix defined as:

W = AG .

From the fundamental theorem of natural selection, we know that the replica-
tor dynamical systems, starting from an arbitrary initial state, will iteratively

Evolutionary Game Dynamics in Combinatorial Optimization 185

maximize the Lagrangian fG in Sn, and will eventually converge to a local max-
imizer which, by virtue of the Motzkin-Straus formula provides an estimate of
the clique number of G. Additionally, if the converged solution happens to be
a characteristic vector of some subset of vertices of G, then we are also able to
extract the vertices comprising the clique from its nonzero components. Clearly,
in theory there is no formal guarantee that the converged solution will be a global
maximizer of fG.

In [9,10], experiments with the previous approach over thousands of randomly
generated graphs are presented. The results obtained suggests that the basins
of attraction of global maximizers are quite large, and frequently the algorithm
converges to one of them. The approach was found to be competitive with more
sophisticated neural network heuristics, both in terms of quality of solutions and
speed.

One drawback associated with the original Motzkin-Straus formulation, how-
ever, relates to the existence of spurious solutions, i.e., maximizers of fG which
are not in the form of characteristic vectors [8]. In principle, spurious solutions
represent a problem since, while providing information about the cardinality of
the maximum clique, they do not allow us to easily extract its vertices. This
problem has recently been solved by Bomze [11]. Consider the following regular-
ized version of function fG:

f̂G(x) = xT AGx +
1
2
xT x (6)

which is obtained from (4) by substituting the adjacency matrix AG of G with

ÂG = AG +
1
2
In

where In is the n×n identity matrix. Unlike the Motzkin-Straus formulation, it
can be proved that all maximizers of f̂G on Sn are strict, and are characteristic
vectors of maximal/maximum cliques in the graph [11].

Theorem 2. Let C be a subset of vertices of a graph G, and let xC be its
characteristic vector. Then, C is a maximum (maximal) clique of G if and only
if xC is a global (local) maximizer of f̂G in Sn. Moreover, all local (and hence
global) maximizers of f̂G over Sn are strict.

Preliminary experiments with this regularized formulation (6) on random
graphs are reported in [11], and a more extensive empirical study on DIMACS
benchmark graphs is presented in [12]. The emerging picture is the following.
The solutions produced by the replicator models are typically very close to the
ones obtained using more sophisticated continuous-based heuristics. Moreover,
the original version of the Motzkin-Straus problem performs slightly better than
its regularized counterpart, but the former often returns spurious solutions. This
may be intuitively explained by observing that, since all local maxima of f̂G are
strict, its landscape is certainly less smoothed than the one associated to the non-
regularized version. This therefore enhances the tendency of local optimization
procedures to get stuck into local maxima.

186 M. Pelillo

In order to study the effects of varying the starting point of clique finding
replicator dynamics, Bomze and Rendl [13] implemented various sophisticated
heuristics and compared them with the usual (less expensive) strategy of starting
from the simplex barycenter. Surprisingly, they concluded that the amount of
sophistication seems to have no significant impact on the quality of the solutions
obtained. Additionally, they showed that using (Runge-Kutta discretizations of)
the continuous-time dynamics (2) instead of (3) does not improve efficiency. This
analysis indicates that to improve the performance of replicator dynamics on the
maximum clique problem one has necessarily to resort to some escape strategies.
Various attempts along this direction can be found in [11,14,15,16].

Recently, the Motzkin-Straus theorem has been generalized to the weighted
case [7,17]. Let G = (V, E,w) be a weighted graph, where V = {1, · · · , n} is
the vertex set, E ⊆ V × V is the edge set and w ∈ IRn is the weight vector,
the i-th component of which corresponds to the weight assigned to vertex i. It
is assumed that wi > 0 for all i ∈ V . Given a subset of vertices C, the weight
assigned to C is defined as

W (C) =
∑
i∈C

wi .

A maximal weight clique C is one that is not contained in any other clique having
weight larger than W (C). Since we are assuming that all weights are positive, it
is clear that the concepts of maximal clique and maximal weight clique coincide.
A maximum weight clique is one having largest total weight, and the maximum
weight clique problem is to find one such clique (see [5] for a recent review).
The classical (unweighted) version of the maximum clique problem arises as a
special case when all vertices have the same weight. Hence the maximum weight
clique problem has at least the same computational complexity as its unweighted
counterpart.

Given a weighted graph G = (V, E,w), let N (G,w) be the class of n × n
symmetric matrices M = (mij)i,j∈V defined as mij ≥ mii + mjj if (i, j) /∈ E
and mij = 0 otherwise, and mii = 1

2wi
for all i ∈ V , and consider the program:

minimize g(x) = xT Mx
subject to x ∈ Sn .

(7)

Also, for a given subset of vertices C, denote by xC(w) its weighted characteristic
vector, which is the vector in Sn with coordinates xC

i (w) = wi/W (C) if i ∈ C
and xC

i (w) = 0 otherwise. The following theorem is the weighted counterpart of
Theorem 2 [17].

Theorem 3. Let C be a subset of vertices of a weighted graph G = (V, E,w),
and let xC(w) be its characteristic vector. Then, for any matrix M ∈ N (G,w),
C is a maximum (maximal) weight clique of G if and only if xC(w) is a global
(local) solution of program (7). Moreover, all local (and hence global) solutions
of (7) are strict.

Evolutionary Game Dynamics in Combinatorial Optimization 187

The previous result suggests using replicator equations to approximately
solve the maximum weight clique problem. Experiments with this approach
on both random graphs and DIMACS benchmark graphs are reported in [17].
Weights were generated randomly in both cases. The results obtained with repli-
cator dynamics (3) were compared with those produced by a very efficient max-
imum weight clique algorithm of the branch-and-bound variety. The algorithm
performed remarkably well especially on large and dense graphs, and it was
typically an order of magnitude more efficient than its competitor.

3 Graph Isomorphism

Given two graphs G′ = (V ′, E′) and G′′ = (V ′′, E′′), an isomorphism between
them is any bijection φ : V ′ → V ′′ such that (i, j) ∈ E′ ⇔ (φ(i), φ(j)) ∈ E′′, for
all i, j ∈ V ′. Two graphs are said to be isomorphic if there exists an isomorphism
between them. The graph isomorphism problem is therefore to decide whether
two graphs are isomorphic and, in the affirmative, to find an isomorphism. This
is one of those few combinatorial optimization problems which still resist any
computational complexity characterization [18,19]. The current belief is that it
lies strictly between the P and NP -complete classes.

The association graph of G′ = (V ′, E′) and G′′ = (V ′′, E′′) is the undirected
graph G = (V, E) where

V = V ′ × V ′′

and

E = {((i, h), (j, k)) ∈ V × V : i 6= j, h 6= k and (i, j) ∈ E′ ⇔ (h, k) ∈ E′′} .

The following easily proven result establishes an equivalence between the
graph isomorphism problem and the maximum clique problem [20].

Theorem 4. Let G′ = (V ′, E′) and G′′ = (V ′′, E′′) be two graphs of order n,
and let G be the corresponding association graph. Then, G′ and G′′ are isomor-
phic if and only if ω(G) = n. In this case, any maximum clique of G induces an
isomorphism between G′ and G′′, and vice versa.

This, together with Theorems 1 and 2, allows one to use replicator dynamics
as a heuristic for finding isomorphisms between G′ and G′′. This approach has
been tested over hundreds of random 100-vertex graphs with expected densities
ranging from 1% to 99%. Except for very sparse and very dense instances, the al-
gorithm was always able to obtain a correct isomorphism very efficiently. In terms
of quality of solutions, the result compare favorably with those obtained using
more sophisticated state-of-the-art deterministic annealing heuristics which, in
contrast to replicator dynamics, are explicitly designed to escape from poor local
solutions. As far as computational time is concerned, replicator dynamics turned
out to be significantly faster.

188 M. Pelillo

In [20] experiments were also done using an exponential version of replicator
equations, which arises as a model of evolution guided by imitation [2]. The
extensive experiments conducted show that this dynamics may be considerably
faster and even more accurate than the standard, first-order model.

The approach just described is general and can easily be extended to deal
with subgraph isomorphism or relational structure matching problems. Prelim-
inary experiments, however, seem to indicate that local optima may represent
a problem here, especially in matching sparse and dense graphs. In these cases
escape procedures like those presented in [11,14,15,16] would be helpful.

4 Subtree Isomorphism

Let T1 = (V1, E1) and T2 = (V2, E2) be two rooted trees. Any bijection φ :
H1 → H2, with H1 ⊆ V1 and H2 ⊆ V2, is called a subtree isomorphism if it
preserves the adjacency and hierarchical relationships between the vertices and,
in addition, the subgraphs obtained when we restrict ourselves to H1 and H2
are trees. The former condition amounts to stating that, given i, j ∈ H1, we
have that i is the parent of j if and only if φ(i) is the parent of φ(j). A subtree
isomorphism is maximal if there is no other subtree isomorphism φ′ : H ′

1 →
H ′

2 with H1 a strict subset of H ′
1, and maximum if H1 has largest cardinality.

The maximal (maximum) subtree isomorphism problem is to find a maximal
(maximum) subtree isomorphism between two rooted trees. This is a problem
solvable in polynomial time [18].

Let i and j be two distinct vertices of a rooted tree T , and let i =
x0x1 . . . xn = j be the (unique) path joining them. The path-string of i and
j, denoted by str(i, j), is the string s1s2 . . . sn on the alphabet {−1, +1} where,
for all k = 1 . . . n, si = lev(xk)− lev(xk−1). By convention, when i = j we define
str(i, j) = ε, where ε is the null string (i.e., the string having zero length).

The tree association graph (TAG) of two rooted trees T1 = (V1, E1) and
T2 = (V2, E2) is the graph G = (V, E) where

V = V1 × V2

and, for any two vertices (i, h) and (j, k) in V , we have

((i, h), (j, k)) ∈ E ⇔ str(i, j) = str(h, k) .

The following theorem establishes a one-to-one correspondence between the max-
imum subtree isomorphism problem and the maximum clique problem [21].

Theorem 5. Any maximal (maximum) subtree isomorphism between two rooted
trees induces a maximal (maximum) clique in the corresponding TAG, and vice
versa.

Theorem 5 provides a formal justification for applying replicator dynamics
to find maximal subtree isomorphisms. In [21] this approach has been applied
in computer vision to the problem of matching articulated and deformed visual

Evolutionary Game Dynamics in Combinatorial Optimization 189

shapes described by “shock” trees, an abstract representation of shape based
on the singularities arising during a curve evolution process. The experiments,
conducted on a number of shapes representing various object classes, yielded
very good results. The system typically converged towards the globally optimal
solutions in only a few seconds, and compared favorably with another powerful
tree matching algorithm.

In many practical applications the trees being matched have vertices with
an associated vector of symbolic and/or numeric attributes. The framework just
described has also been extended in a natural way for solving attributed tree
matching problems [21].

5 Multi-population Models

The single-population replicator equations discussed so far can easily be general-
ized to the case where interactions take place among n ≥ 2 individuals randomly
drawn from n distinct populations [1,2]. In this case, the continuous-time dy-
namics (2) becomes

ẋµ
i (t) = xµ

i (t)

(
πµ

i (t) −
∑

ν

xν
i (t)πν

i (t)

)
, (8)

and its discrete-time counterpart is

xµ
i (t + ∆t) =

xµ
i (t)πµ

i (t)∑
ν xν

i (t)πν
i (t)

. (9)

The function π can either be linear, as in (1), or can take a more general
form. If there exists a polynomial F such that

πµ
i =

∂F

∂xµ
i

,

then it can be proven that F strictly increases along any trajectory of both
dynamics. Note that these dynamics work in a product of standard simplices.

Mühlenbein et al. [22] used multi-population replicator equations to approx-
imately solve the graph partitioning problem, which is NP -hard [18]. Given a
graph G = (V, E) with edge weights wij , their goal was to partition the vertices
of G into a predefined number of clusters in such a way as to maximize the
overall intra-partition traffic

F =
∏
µ

Kµ ,

where

Kµ =
∑

i

∑
j

wijx
µ
i xµ

j

190 M. Pelillo

is the intra-partition traffic for cluster µ. Here, xµ
i can be interpreted as the

probability that vertex i belongs to cluster µ.
By putting

πµ
i =

2F
∑

j wijx
µ
j

Kµ

the replicator equations seen above will indeed converge toward a maximizer of
F . However, in so doing the system typically converges towards an interior at-
tractor, thereby giving an infeasible solution. To avoid this problem, Mühlenbein
et al. [22] put a “selection pressure” parameter S on the main diagonal of the
weight matrix, and altered it during the evolution of the process. Intuitively,
S = 0 has no influence on the system. Negative values of S prevent the vertices
to decide for a partition, whereas positive values force the vertices to take a de-
cision. The proposed algorithm starts with a negative value of S, and makes the
discrete-time dynamics (9) evolve. After convergence, if an infeasible solution
has been found, S is increased and the algorithm is started again. The entire
procedure is iterated until convergence to a feasible solution. A similar, but more
principled, strategy for the maximum clique problem can be found in [15]. The
results presented in [22] on a particular problem instance are fairly encouraging.
However, more experiments on larger and diverse graphs are needed to fully
assess the potential of the approach.

Multi-population replicator models have also been used in [22,23] to solve the
traveling salesman problem, which asks for the shortest closed tour connecting
a given set of cities, subject to the constraint that each city be visited only
once. The results presented on small problem instances, i.e., up to 30 cities, are
encouraging but it seems that they do not scale well with the size of the problem.

6 Conclusions

Despite their simplicity and inherent inability to escape from local solutions,
replicator dynamics have proved to be a useful heuristic for attacking a number of
combinatorial optimization problems. They are completely devoid of operational
parameters, which typically require a lengthy, problem-dependent tuning phase,
and are especially suited for parallel (analog) hardware implementation.

Due to lack of space we cannot discuss recent developments aimed at improv-
ing their performance, and simply refer the reader to the original papers [14,15,
16,24,25]. We also refer to [26] for intriguing connections among replicator equa-
tions, majorization theory and genetic algorithms.

References

1. J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics.
Cambridge University Press, Cambridge, UK, 1998.

2. J. W. Weibull. Evolutionary Game Theory. MIT Press, Cambridge, MA, 1995.

Evolutionary Game Dynamics in Combinatorial Optimization 191

3. J. F. Crow and M. Kimura. An Introduction to Population Genetics Theory. Harper
& Row, New York, 1970.

4. R. A. Fisher. The Genetical Theory of Natural Selection. Oxford University Press,
London, UK, 1930.

5. I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique
problem. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial
Optimization (Suppl. Vol. A), pages 1–74. Kluwer, Boston, MA, 1999.

6. T. S. Motzkin and E. G. Straus. Maxima for graphs and a new proof of a theorem
of Turán. Canad. J. Math., 17:533–540, 1965.

7. L. E. Gibbons, D. W. Hearn, P. M. Pardalos, and M. V. Ramana. Continuous
characterizations of the maximum clique problem. Math. Oper. Res., 22:754–768,
1997.

8. M. Pelillo and A. Jagota. Feasible and infeasible maxima in a quadratic program
for maximum clique. J. Artif. Neural Networks, 2:411–420, 1995.

9. M. Pelillo. Relaxation labeling networks for the maximum clique problem. J. Artif.
Neural Networks, 2:313–328, 1995.

10. M. Pelillo and I. M. Bomze. Parallelizable evolutionary dynamics principles for
solving the maximum clique problem. In H.-M. Voigt, W. Ebeling, I. Rechen-
berg, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature—PPSN
IV, pages 676–685. Springer-Verlag, Berlin, 1996.

11. I. M. Bomze. Evolution towards the maximum clique. J. Glob. Optim., 10:143–164,
1997.

12. I. M. Bomze, M. Pelillo, and R. Giacomini. Evolutionary approach to the maximum
clique problem: Empirical evidence on a larger scale. In I. M. Bomze, T. Csendes,
R. Horst, and P. M. Pardalos, editors, Developments in Global Optimization, pages
95–108. Kluwer, Dordrecht, The Netherlands, 1997.

13. I. M. Bomze and F. Rendl. Replicator dynamics for evolution towards the maxi-
mum clique: Variations and experiments. In R. De Leone, A. Murĺı, P. M. Pardalos,
and G. Toraldo, editors, High Performance Algorithms and Software in Nonlinear
Optimization, pages 53–67. Kluwer, Dordrecht, The Netherlands, 1998.

14. I. M. Bomze. Global escape strategies for maximizing quadratic forms over a
simplex. J. Glob. Optim., 11:325–338, 1997.

15. I. M. Bomze, M. Budinich, M. Pelillo, and C. Rossi. A new “annealed” heuristic
for the maximum clique problem. In P. M. Pardalos, editor, Approximation and
Complexity in Numerical Optimization: Continuous and Discrete Problems, pages
78–95. Kluwer, Dordrecht, The Netherlands, 2000.

16. I. M. Bomze and V. Stix. Genetic engineering via negative fitness: Evolutionary
dynamics for global optimization. Ann. Oper. Res., 89:279–318, 1999.

17. I. M. Bomze, M. Pelillo, and V. Stix. Approximating the maximum weight clique
using replicator dynamics. IEEE Trans. Neural Networks, 11(6):1228–1241, 2000.

18. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, San Francisco, CA, 1979.

19. D. S. Johnson. The NP-completeness column: An ongoing guide. J. Algorithms,
9:426–444, 1988.

20. M. Pelillo. Replicator equations, maximal cliques, and graph isomorphism. Neural
Computation, 11(8):2023–2045, 1999.

21. M. Pelillo, K. Siddiqi, and S. W. Zucker. Matching hierarchical structures using
association graphs. IEEE Trans. Pattern Anal. Machince Intell., 21(11):1105–1120,
1999.

22. H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer. Evolution algorithms in
combinatorial optimization. Parallel Computing, 7:65–85, 1988.

192 M. Pelillo

23. M. Pelillo. Relaxation labeling processes for the traveling salesman problem. In
Proc. Int. J. Conf. Neural Networks, pages 2429–2432, Nagoya, Japan, 1993.

24. A. Menon, K. Mehrotra, C. K. Mohan, and S. Ranka. Optimization using replica-
tors. In Proc. 6th. Int. Conf. Genetic Algorithms, pages 209–216. Morgan Kauf-
mann, 1995.

25. C. Rossi. A replicator equations based evolutionary algorithm for the maximum
clique problem. In Congress on Evolutionary Computation, pages 1565–1570, 2000.

26. A. Menon, K. Mehrotra, C. K. Mohan, and S. Ranka. Replicators, majorization and
genetic algorithms: New models and analytical tools. In Proc. FOGA’96—Found.
of Genetic Algorithms, Aug. 1996.

A Parallel Hybrid Heuristic for the TSP

Ranieri Baraglia1, José Ignacio Hidalgo2, and Raffaele Perego1

1 CNUCE - Institute of the Italian National Research Council
Via Alfieri 1, 56010 S. Giuliano Terme, Pisa (Italy)

{Ranieri.Baraglia, Raffaele.Perego}@cnuce.cnr.it
2 Dpto. Arquitectura Computadores y Automatica

Universidad Complutense, Madrid 28040
hidalgo@dacya.ucm.es

Abstract. In this paper we investigate the design of a coarse-grained
parallel implementation of Cga-LK, a hybrid heuristic for the Traveling
Salesman Problem (TSP). Cga-LK exploits a compact genetic algorithm
in order to generate high-quality tours which are then refined by
means of an efficient implementation of the Lin-Kernighan local search
heuristic. The results of several experiments conducted on a cluster
of workstations with different TSP instances show the efficacy of the
parallelism exploitation.

Keywords: Parallel algorithms, TSP, compact genetic algorithm, Lin-
Kernighan algorithm, hybrid GA.

1 Introduction

The Traveling Salesman Problem (TSP) is the problem of finding the shortest
closed tour through a given set of cities visiting each city exactly once. Thus,
given a set of cities C = {c1, c2, ..., ck}, for each pair (ci, cj), i 6= j, let d(ci, cj)
be the distance between city ci and cj . Solving the TSP entails finding a permu-
tation π′ of the cities (cπ′(1), ..., cπ′(k)), such that

k∑
i=1

d(cπ′(i), cπ′(i+1)) ≤
k∑

i=1

d(cπ(i), cπ(i+1)) ∀π 6= π′, (k + 1) ≡ 1 (1)

In the symmetric TSP d(ci, cj) = d(cj , ci),∀i, j, while in the asymmetric TSP
this condition is not satisfied. In this work we consider the symmetric TSP.

Since the TSP is probably the most well-known NP-hard combinatorial op-
timization problem, researchers have proposed many heuristics for searching the
space of all permutations π. Problem-independent heuristics such as simulated
annealing (SA) [1] and genetic algorithms (GA) [2,3] perform quite poorly with
this particular problem. They require high execution times for solutions whose
quality is not comparable with those achieved in much less time by their domain-
specific local search counterparts. Domain-specific heuristics such as 2-Opt [4],

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 193–202, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

194 R. Baraglia, J.I. Hidalgo, and R. Perego

3-Opt [5], and Lin-Kernighan (LK) [6] are effective. In particular LK is consid-
ered to be the heuristic that leads to the best solutions. Efficient implementations
have been devised for LK which take just a few seconds to compute a high-quality
solution for problems with hundreds of cities [7,8].

Several published results demonstrate that combining a problem-independent
heuristic with a local search method is a viable and effective approach for finding
high-quality solutions of large TSPs. The problem-independent part of the hy-
brid algorithm drives the exploration of the search space focusing on the global
optimization task, while the local search algorithm allows to search in depth the
subregions of the solution space.

In [9] the Chained local optimization algorithm is proposed. It exploits a
special type of 4-opt moves under the control of a SA mechanism to escape from
the local optima found with LK. In [10] genetic operators to search the space of
the local optima determined with LK are proposed.

Martina Georges-Schleuter experimented with the exploitation of simple k-
Opt moves within her Asparagos96 parallel genetic algorithm [11]. She concluded
that, for large problem instances, the strategy of producing many fast solutions
might be almost as effective as using powerful local search methods with fewer
solutions.

In this paper we propose a coarse-grained parallel implementation of Cga-
LK, a previously proposed hybrid heuristic for the TSP which exploits a compact
genetic algorithm (Cga) in order to generate high-quality tours which are then
refined by means of the Lin-Kernighan local search heuristic. The parallel im-
plementation allowed us to enhance the encouraging results obtained with the
sequential version of Cga-LK [12,13].

The rest of the paper is organized as follows: Section 2 gives a brief introduc-
tion to the Cga. Section 3 describes the parallel implementation of Cga-LK, and
discusses the experimental results. Finally, Section 4 outlines some conclusions.

2 The Compact Genetic Algorithm

The Cga does not manage a population of solutions but only mimics its exis-
tence [14]. The Cga represents the population by means of a vector of values
pi ∈ [0, 1],∀i = 1, . . . , l, where l is the number of alleles needed to represent
the solutions. Each value pi indicates the proportion of individuals in the sim-
ulated population which has a 0 or 1 in the ith locus of their representation.
By treating these values as probabilities, new individuals can be generated and,
based on their fitness, the probability vector can be updated in order to favor
the generation of better individuals.

The values for probabilities pi are initially set to 0.5 to represent a randomly
generated population in which the value for each allele has equal probability.
At each iteration the Cga generates two individuals on the basis of the current
probability vector and compares their fitness. Let W be the representation of
the individual with a better fitness and L the individual whose fitness is worse.

A Parallel Hybrid Heuristic for the TSP 195

The two representations are used to update the probability vector at step k + 1
in the following way:

pk+1
i =

pk
i + 1/n if wi = 1 ∧ li = 0

pk
i − 1/n if wi = 0 ∧ li = 1

pk
i if wi = li

(2)

where n is the dimension of the population simulated, and wi (li) is the value of
the ith allele of W (L). The Cga ends when the values of the probability vector
are all equal to 0 or 1. At this point vector p represents the solution obtained.

In order to represent a population of n individuals, the Cga updates the
probability vector by a constant value equal to 1/n. Only log2 n bits are thus
needed to store the finite set of values for each pi. The Cga therefore requires l ·
log2 n bits with respect to the n·l bits needed by a classic GA. Larger populations
can be thus exploited without significantly increasing memory requirements, but
only slowing Cga convergence. This peculiarity makes the use of Cga attractive to
address problems for which the huge memory requirements of GAs is a constraint.

On order-one problems the Cga and the simple GA with uniform crossover
are approximately equivalent in terms of solution quality and in the number of
function evaluations needed. To solve higher than order-one problems GAs with
both higher selection rates and larger population sizes have to be used [15]. The
Cga selection rate can be increased by adopting the following mechanism: (I)
generate at each iteration s individuals from the probability vector; (II) choose
among the s individuals the one with best fitness; (III) compare the individual
with best fitness with the other s − 1 individuals and update the probability
vector according to (2). Such an increase on the selection rate helps the Cga to
converge to better solutions since it increases the survival probability of higher-
order building blocks.

3 A Parallel Hybrid Heuristic for the TSP

Cga-LK combines a Cga with Chained LK 1, an efficient implementation of LK
proposed by Applegate Bixby, Chvatal, and Cook [8]. In Cga-LK the Cga is
used to explore the more promising part of the TSP solution space in order to
generate “good” initial solutions which are refined with Chained LK. The refined
solutions are also exploited to improve the quality of the simulated population as
the execution progresses. A detailed description of the sequential implementation
of Cga-LK can be found in [12]. Here we will concentrate the attention on the
parallelism exploitation.

The coarse-grained parallelization model [16,17] was used to design the par-
allel version of Cga-LK. According to this model the whole population is divided
into a few demes, which evolve in parallel. Each deme is assigned to a different
1 This routine is available in the CONCORDE library at

url http://www.keck.caam.rice.edu/concorde.

196 R. Baraglia, J.I. Hidalgo, and R. Perego

processor and the evolution process takes place only among individuals belong-
ing to the same deme. This feature means that a greater genetic diversity can
be maintained with respect to the exploitation of a panmitic population, thus
improving the solution space exploration. Since the size of the demes is smaller
than the population used by the correspondent serial GA, in general, a parallel
GA converges faster. Moreover, it is also true that the quality of the solution
might be poorer than that of the sequential case. Therefore, in order to improve
the deme genotypes, a migration operator that periodically exchanges the best
solutions among different demes is used. Depending on the migration opera-
tor chosen we can distinguish between the island model and the stepping stone
model. In the island model migration occurs among every deme, while in step-
ping stone model the migration occurs only between neighboring demes. Studies
have shown that there are two critical factors [18]: the number of solutions mi-
grated each time and the interval time between two consecutive migrations. A
large number of migrants leads to the behavior of the island model similar to
the behavior of a panmitic model. A few migrants prevent the GA from mixing
the genotypes, and thus reduce the possibility to bypass the local optima inside
the islands. Implementations of coarse grained parallel GAs can be found in [18,
19,20,21,22,23].

To implement Cga-LK the island model was adopted. Moreover, Cga-LK
exploits the MPI message-passing library [24], and the SPMD programming
model [25]. According to this programming model all the processing nodes run
the same code which simulates a different population. We can consider each sim-
ulated population elaborated in parallel an island of the same larger population.
To improve the sub-population genotypes, a migration operator that periodically
exchanges the best solution among different islands was adopted.

To extend the Cga to the TSP, we considered the frequencies of the edges
occurring in the simulated population. A k×k triangular matrix of probabilities
P was used to store these frequencies. Each element pi,j , i > j, of P represents the
proportion of individuals whose tour contains edge (ci, cj). If n is the population
dimension, our Cga thus requires (k2/2) · log2 n bits to represent the population,
compared with the k · n log2 k bits required by a classical GA. Figure 1 shows
the pseudo-code of our parallel Cga-LK. Its main functions are discussed in the
following.

After setting the MPI environment, the matrix P is initialized. To this end,
first we randomly generate a tour to which the Chained LK routine is applied
to carry out a local optimum. Then the probability values associated to all the
edges belonging to the local optimum are increased by 1/n. This procedure is
iteratively applied n times to represent in P the whole simulated population.

To differentiate its behavior each parallel process uses a different seed (loc-
al seed) for the pseudo-random generation. It is obtained by adding to the same
seed (global seed) the process identifier.

At each generation k of Cga-LK, a single individual L (current tour) is
generated from the probability matrix. To this end a greedy algorithm is used. A
starting city ca is randomly selected and inserted in the tour V. Then, another

A Parallel Hybrid Heuristic for the TSP 197

Program Par-Cga-LK
begin

/* Setting of the MPI environment, me is the process identifier */
MPI_Init(...);
MPI_Comm_rank(MPI_COMM_WORLD,&me);
/* Initialization of the probability matrix P */
local_seed := global_seed + me;
Initialize(P, local_seed);
best_tour_length = MAX_INT;
generations := 0;
repeat

generations := generations + 1;
current_tour := Generate(P);
/* Apply Chained LK algorithm */
optimized_tour := Chained_LK(current_tour);
optimized_tour_length := Tour_length(optimized_tour);
Update(P,optimized_tour,current_tour);

/* Store the best tour found so far */
if (optimized_tour_length < best_tour_length) then

count := 0;
best_tour_length := optimized_tour_length;
best_tour := optimized_tour;

end if
count := count + 1;

if (mod(generations, F_mig) = 0) then
/* Perform migration */
MPI_Allreduce(best_tour,best_global_tour,.......)
if (best_global_tour = termination_signal) then

Output_Results();
exit;

else
Update(P,best_global_tour, best_tour);

end if
end if

until (Local_Termination());

MPI_Allreduce(termination_signal,.....);
Output_Results();

end

Fig. 1. Pseudo-code of the parallel Cga-LK.

198 R. Baraglia, J.I. Hidalgo, and R. Perego

city cb 6∈ V is randomly chosen. City cb is inserted in V as successor of ca with
probability pa,b (i.e. the probability associated to edge (ca, cb)). Otherwise cb is
discarded and the process is repeated by choosing another city not belonging
to V. Clearly, this process may fail to find the successor of some city ca. This
takes place when all the cities not already inserted in the current tour have been
analyzed, but the probabilistic selection criterion failed to choose one of them. In
this case the city cb successor of ca is selected according to the following formula:

b = argmax{pa,j : cj ∈ {c1, c2, . . . , ck} \ V } (3)

When (3) is satisfied by several cities, i.e. edges (ca, cj) have the same probability
for different cities cj 6∈ V, the city which minimizes the distance d(ca, cj) is
selected. The generation process ends when all the cities have been inserted in
V, and a feasible tour has been thus generated.

The current tour is then used as the starting solution for the Chained LK
routine which produces an individual W (optimized tour). Then the probabil-
ity matrix is updated comparing current tour with optimized tour as follows:

pk+1
i,j =

pk
i,j + 1

n if (ci, cj) ∨ (cj , ci) ∈ W and (ci, cj) ∨ (cj , ci) 6∈ L

pk
i,j − 1

n if (ci, cj) ∨ (cj , ci) ∈ L and (ci, cj) ∨ (cj , ci) 6∈ W

pk
i,j otherwise

(4)

Every F mig generations a migration of individuals among different islands
takes place to improve sub-population genotypes. The function MPI Allreduce
provides an efficient way to perform migration. It implements an all-to-all re-
duction operation where the tour achieving minimal length (best global tour)
is broadcast to all the processes. The global optimum found so far is then used
to update the probability matrix local to all the processes. The migration mech-
anism is used also to manage distributed termination. To this purpose, when a
process reaches the termination condition, it broadcasts a termination signal
which is intercepted by the other processes that accordingly terminate their exe-
cution. Local termination is decided when a threshold is reached on the number
of generations performed without an improvement of the best solution achieved,
or on the elapsed execution time.

3.1 Experimental Results

The parallel Cga-LK algorithm was tested on some TSP instances defined in
TSPLIB [26]. We used instances: att532, gr666, rat783, pr1002 which have
optimal solutions equal to 27686, 294358, 8806, 259045, respectively. The exper-
iments were conducted on a cluster of three Linux Pentium II 200 MHz PCs
with 128 Mbytes of memory, and each test was repeated ten times to obtain
an average behavior. Each Cga-LK process simulates a population of 128 in-
dividuals. In all the tests performed the parallel Cga-LK algorithm carried out

A Parallel Hybrid Heuristic for the TSP 199

solutions with optimal length, independently from the parallelism degree and the
migration frequency exploited. To make the algorithm performance evaluation
independent from the computer architecture used, the comparison of the results
obtained on each test was based on the number of generations performed. Fig-
ure 2 shows the average number of generations required to get the optimal tour
as a function of the number of parallel processes used, for different values of the
migration parameter. As it can be seen from the plots, the average number of
generations required by the parallel algorithm to get the optimal tour is always
lower than in the sequential case. Moreover, such number, in general decreases
when the number of processes increases. With regard to the migration parame-
ter, on smaller TSP instances a low value seems to work better than a large one,
while on larger instances it affects slightly the results achieved. For the same
tests, Figure 3 shows the minimal number of generations needed to achieve opti-
mal solutions. Also in this case the benefits of parallelism exploitation are clear.
The parallel algorithm always needs a lower number of iterations to obtain the
optimal solution than those needed by the sequential version of the algorithm.

40

60

80

100

120

140

160

180

200

1 10

G
en

er
at

io
ns

Number of processes

Average number of generations for F_mig=4

Rat783
Pr1002
Gr666
Att532

40

60

80

100

120

140

160

180

200

1 10

G
en

er
at

io
ns

Number of processes

Average number of generations for F_mig=8

Rat783
Pr1002
Gr666
Att532

40

60

80

100

120

140

160

180

200

1 10

G
en

er
at

io
ns

Number of processes

Average number of generations for F_mig=16

Rat783
Pr1002
Gr666
Att532

40

60

80

100

120

140

160

180

200

1 10

G
en

er
at

io
ns

Number of processes

Average number of generations for F_mig=32

Rat783
Pr1002
Gr666
Att532

Fig. 2. Average number of generations required to carry out the optimal tour of various
TSP instances as a function of the migration parameter and the number of parallel
processes used.

200 R. Baraglia, J.I. Hidalgo, and R. Perego

20

40

60

80

100

120

140

160

1 10

G
en

er
at

io
ns

Number of processes

Minimum number of generations for F_mig=4

Rat783
Pr1002
Gr666
Att532

20

40

60

80

100

120

140

160

1 10

G
en

er
at

io
ns

Number of processes

Minimum number of generations for F_mig=8

Rat783
Pr1002
Gr666
Att532

20

40

60

80

100

120

140

160

1 10

G
en

er
at

io
ns

Number of processes

Minimum number of generations for F_mig=16

Rat783
Pr1002
Gr666
Att532

20

40

60

80

100

120

140

160

1 10

G
en

er
at

io
ns

Number of processes

Minimum number of generations for F_mig=32

Rat783
Pr1002
Gr666
Att532

Fig. 3. Minimum number of generations required to carry out the optimal tour of
various TSP instances as a function of the migration parameter and the number of
parallel processes used.

4 Conclusions

In this paper we proposed a coarse-grained parallel hybrid heuristic to solve
TSP. It combines a compact genetic algorithm to generate high-quality tours
which are then refined by means of the Lin-Kernighan local search heuristic.
The refined solutions are also exploited to improve the quality of the simulated
population as the execution progresses. The parallel algorithm was implemented
according to the SPMD programming paradigm by using the MPI message-
passing library. Our parallel algorithm was evaluated on medium TSP instances.
The results achieved were satisfactory if compared to those obtained by the
sequential version of the algorithm on the same instances. The average number of
generations required by the parallel algorithm to get the optimal tour was always
lower than in the sequential case. As future work we plan to investigate either
the behavior of the parallel algorithm on large TSP instances and extensions of
the hybrid approach to solve other optimization problems.

Acknowledgments. This work was supported by the Italian National Research
Council and the Spanish Government, Grant TYC 1999-0474.

A Parallel Hybrid Heuristic for the TSP 201

References

1. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated anneal-
ing. Science, 220:671–680, 1983.

2. J. Grefenstette, R. Gopal, B. Rosimaita, and D. van Gucht. Genetic algorithms
for the traveling salesman problem. In Proceedings of the International Conference
on Genetics Algorithms and their Applications, pages 160–168, 1985.

3. H. C. Braun. On solving traveling salesman problems by genetic algorithm. In
H. P. Schwefel and R. Männer, editors, Parallel Problem Solving from Nature,
volume 496 of Lecture Notes in Computer Science, pages 129–133, Berlin, 1991.
Springer-Verlag.

4. G. A. Croes. A method for solving traveling salesman problems. Operations Re-
search, 6:791–812, 1958.

5. S. Lin. Computer solution of the traveling salesman problem. Bell System Technical
Journal, 44:2245–2269, 1965.

6. S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling
salesman problem. Operations Research, 21:498–516, 1973.

7. D. S. Johnson and L. A. McGeoch. Local Search in Combinatorial Optimization,
chapter The Traveling Salesman Problem: A Case Study in Local Optimization.
John Wiley and Sons, New York, 1996.

8. D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding tours in the tsp.
Preliminary chapter of a planned monograph on the TSP, available at URL:
http://www.caam.rice.edu/˜keck/reports/lk_report.ps, 1999.

9. O. Martin and S.W.Otto. Combining simulated annealing with local search heuris-
tic. To appear on Annals of Operation Research.

10. P. Merz and B. Freisleben. Genetic local search for the TSP: New results. In Pro-
ceedings of the 1997 IEEE International Conference on Evolutionary Computation,
pages 159–163, Indianapolis, USA, 1997. IEEE press.

11. M. Gorges-Schleuter. Asparagos96 and the travelling salesman problem. In
T. Bäck, editor, Proceedings of the Fourth International Conference on Evolution-
ary Computation, pages 171–174, New York, IEEE Press, 1997.

12. R. Perego R. Baraglia, J. I. Hidalgo. A hybrid approach for the TSP combining
genetics and the Lin-Kerninghan local search. Technical Report CNUCE-B4-2000-
007, CNUCE - Institute of the Italian National Research Council, 2000.

13. R. Perego R. Baraglia, J. I. Hidalgo. A hybrid approach for the Traveling Salesman
Problem. submitted paper.

14. G. Harik, F. Lobo, and D. Goldberg. The compact genetic algorithm. IEEE
Transactions on Evolutionary Computation, 3(4):287–297, 1999.

15. D. Thierens and D. Goldberg. Mixing in genetic algorithms. In S. Forrest, editor,
Proceedings of the Fifth International Conference on Genetic Algorithms, pages
38–45, San Mateo, CA, 1993. Morgan Kaufmann.

16. E. Cantu-Paz. A survey of parallel genetic algoritms. Technical Report 97003,
University of Illinois at Urbana-Champaign, Genetic Algoritms Lab. (IlliGAL),
http://gal4.ge.uiuc.edu/illigal.home.html, July 1997.

17. M. Tomassini. A survey of genetic algorithms. Technical Report 95/137, De-
partment of Computer Science, Swiss Federal Institute of Technology, Lausanne,
Switzerland, July 1995.

18. P. Grosso. Computer Simulations of Genetic Adaptation: Parallel Subcomponent
Interaction in a Multilocus Model. PhD thesis, University of Michigan, 1985.

202 R. Baraglia, J.I. Hidalgo, and R. Perego

19. R. Tanese. Parallel genetic algorithms for a hypercube. In Proceedings of the Sec-
ond International Conference on Genetic Algorithms, pages 177–183. L. Erlbaum
Associates, 1987.

20. R. Tanese. Distribuited genetic algorithms. In Proceedings of the Third Interna-
tional Conference on Genetic Algorithms, pages 434–440. M. Kaufmann, 1989.

21. S. Cohoon, J. Hedge, S. Martin, and D. Richards. Punctuated equilibria: a parallel
genetic algorithm. IEEE Transaction on CAD, 10(4):483–491, April 1991.

22. C. Pettey, M. Lenze, and J. Grefenstette. A parallel genetic algorithm. In Proceed-
ings of the Second International Conference on Genetic Algorithms, pages 155–161.
L. Erlbaum Associates, 1987.

23. H. Muhlenbein, M. Schomisch, and J. Born. The parallel genetic algorithm as
function optimizer. Parallel Computing, 17:619–632, 1991.

24. W. Gropp, E. Lusk, and A. Skjellum. Using MPI. Massachusetts Institute of
Technology, 1999.

25. D. E. Culler and J. P. Singh. Parallel Computer Architecture a Harware/Sotware
Approach. Morgan Kaufmann Publishers, Inc., 1999.

26. G. Reinelt. TSPLIB—A traveling salesman problem library. ORSA Journal on
Computing, 3:376–384, 1991.

Effective Local and Guided Variable
Neighbourhood Search Methods for the

Asymmetric Travelling Salesman Problem

Edmund K. Burke, Peter I. Cowling, and Ralf Keuthen

Automated Scheduling, Optimization, and Planning Group (ASAP),
School of Computer Science & IT,

University of Nottingham,
Jubilee Campus,

Nottingham, NG8 1BB, UK
{ekb, pic, rxk}@cs.nott.ac.uk
http://www.asap.cs.nott.ac.uk

Abstract. In this paper we present effective new local and variable
neighbourhood search heuristics for the asymmetric Travelling Salesman
Problem. Our local search approach, HyperOpt, is inspired by a heuristic
developed for a sequencing problem arising in the manufacture of printed
circuit boards. In our approach we embed an exact algorithm into a lo-
cal search heuristic in order to exhaustively search promising regions of
the solution space. We propose a hybrid of HyperOpt and 3-opt which
allows us to benefit from the advantages of both approaches and gain
better tours overall. Using this hybrid within the Variable Neighbour-
hood Search (VNS) metaheuristic framework, as suggested by Hansen
and Mladenović, allows us to overcome local optima and create tours of
very high quality. We introduce the notion of a “guided shake” within
VNS and show that this yields a heuristic which is more effective than
the random shakes proposed by Hansen and Mladenović. The heuristics
presented form a continuum from very fast ones which produce reason-
able results to much slower ones which produce excellent results. All of
the heuristics have proven capable of handling the sort of constraints
which arise for real life problems, such as those in electronics assembly.

1 Introduction

The Travelling Salesman Problem (TSP) is one of the best studied combinato-
rial optimization problems of our time. The TSP consists of a set of n cities
{1, 2, . . . , n}, associated with a cost matrix (cij), with i, j ∈ {1, 2, . . . , n}, defin-
ing the travelling costs between cities i and j. The aim of the TSP is to determine
a tour of minimum cost visiting each city exactly once and returning to the start-
ing city. In the case that the travelling cost from city i to city j is not necessarily
equal to the travelling cost from j to i we speak of an asymmetric TSP (ATSP).

Symmetric TSPs (STSPs), especially Euclidean problems where cities lie in
a two dimensional plane and use the Euclidean distance metric, have been very
well researched in the literature [1][2] and fast and powerful heuristic approaches

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 203–212, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

204 E.K. Burke, P.I. Cowling, and R. Keuthen

have been proposed [3][4]. The ATSP has been less well studied and the heuristic
approaches proposed so far do not match their symmetric counterparts in effec-
tiveness. Many heuristics that are successful for symmetric instances cannot be
applied efficiently to asymmetric problems.

The heuristic approaches for the ATSP can be loosely divided into two
groups. The first group contains the constructive approaches which create a fea-
sible tour from scratch. These include the well known Nearest Neighbour, Nearest
Insertion and Multiple Fragment (often referred to as Greedy) algorithms [2][3][5]
as well as some approaches based on the Assignment Problem (AP)[6]. The As-
signment Problem is equivalent to finding a minimum weight matching of the
bipartite graph formed by repeating each vertex on both sides of the bipartition
and orienting all directed edges in the original city graph in the same direction.
This represents a generalization of the ATSP with either a tour or a minimum
cycle cover as solution. The Repeated Assignment Algorithm is one of these algo-
rithms [7]. It is based on the solutions of the assignment problem where an AP
algorithm is repeatedly applied until a valid tour is found. Patching Algorithms,
are also based on minimum cycle covers where the cycles are repeatedly patched
(combined) to create a tour. Various patching strategies, like the Karp-Steele
Patching heuristic [8], Greedy Karp-Steele Patching or Contract-or-Patch [9]
have been suggested in the literature. A truncated branch-and-bound subtour
elimination procedure has been introduced in [10].

The second group includes the local search heuristics 3-opt [5], the Kanel-
lakis and Papadimitriou algorithm [11], which is based on the successful Lin-
Kernighan heuristic for the STSP [4], and their variants. Further approaches
to extend local search either by restarting (iterative or chained approaches) or
evolutionary algorithms [12] have been suggested in the literature as well. It has
been shown in [13] that an ATSP of n cities can be transformed to a symmetric
problem of 3n cities. However, since many industrial applications of the TSP
are asymmetric further research is necessary and good heuristic approaches are
desirable, especially those that can handle the additional constraints that arise
in industrial ATSP applications. These applications range from problems in flow
shop scheduling [11][14], steel hot strip mill scheduling [15], to sequencing prob-
lems for numerically controlled punch press [16] or drilling machines [17] where
the asymmetry of the problem occurs due to asymmetry in machine set ups.

The heuristics we describe were inspired by such an industrial application
arising in the manufacture of printed circuit boards [18][19]. This application
concerns the movement of a placement head for a numerically controlled compo-
nent placement machine. The placement head moves between a feeder magazine,
where the electronic components are stored, and placement locations on the cir-
cuit board. When considering placement locations as cities and the movement
times between two placement locations as the distance, this sequencing prob-
lem can be modelled as a TSP. However, since different component types are
usually assigned to different feeder slots in the magazine, the head movement
time between two placement locations is dependent on the movement direction,
making the problem asymmetric. The machine we were considering in [18][19] is

Effective Local and Guided Variable Neighbourhood Search Methods 205

equipped with multiple placement heads. This allows the machine to pick up as
many components as heads are available from the feeder magazine, move back
to the circuit board and place them without having to return to the feeder mag-
azine. This feature inspired our heuristic approach where an exact algorithm is
used to ensure optimality of these small pick-and-place subsequences. The op-
timal subsequences are then re-embedded into the original placement sequence.
The resulting heuristic represents a novel approach where an exact algorithm is
used within the framework of a local search heuristic.

This paper is structured as follows. In the next section we introduce our new
heuristic approaches. First we are going to describe the HyperOpt approach for
the asymmetric Travelling Salesman Problem. We then propose an approach
which is a hybrid of HyperOpt and 3-opt, to benefit from the advantages of
both methods. Then we introduce Variable Neighbourhood Search (VNS), as de-
scribed by Hansen and Mladenović in [20][21], and show how the hybrid method
proposed earlier can be used efficiently for local search in a VNS framework. We
further introduce guided shakes to accelerate convergence for our VNS approach
gaining tours of near optimal quality for the test instances considered. The third
section presents the computational results for the ATSP. In the last section we
present the conclusions we have drawn from our experiments and give a brief
insight into planned future research.

2 Heuristic Methods for the ATSP

In this section we propose new heuristic approaches for the ATSP based on local
search. The local search routine we introduce is based on splitting the original
problem into small subproblems which are then solved to optimality using an
exact algorithm. We discuss advantages and disadvantages of this approach in
comparison to local search 3-opt for the ATSP, and introduce a hybrid between
3-opt and our new approach. In order to enable local search to create solutions
of very high quality we demonstrate how this hybrid approach can be embed-
ded efficiently into the Variable Neighbourhood Search metaheuristic framework
proposed by Hansen and Mladenović in [20][21]. We further investigate how the
“shaking” process of the Variable Neighbourhood Search method can be guided
using information gained in a phase of pre-processing to improve the metaheuris-
tics performance and find solutions of near optimal quality.

2.1 Local Search for the ATSP

HyperOpt belongs to the class of local improvement algorithms which, start-
ing from an initial solution, repeatedly perform tour modifications for as long
as improvements can be found. A variant of the algorithm described here has
already been applied successfully to very large instances of the Euclidean Trav-
elling Salesman Problem. This variant compares well to established local search
approaches such as 2- and 3-opt [1][3].

206 E.K. Burke, P.I. Cowling, and R. Keuthen

The basic idea of HyperOpt local search for the ATSP is as follows. Starting
from an initial tour, first two hyperedges are defined by the cities p0 and q0 and
their h successors in the tour, as illustrated in Fig. 1(a). Next all inner edges of
the hyperedges are removed from the tour leaving only the starting and finishing
cities of each hyperedge attached to the tour, Fig. 1(b). The unconnected cities
are then reconnected to the rest of the tour optimally using a dynamic program-
ming algorithm. This feature of our local search routine, which we refer to as
a HyperOpt move, was introduced to ensure optimality of the small pick-and-
place sequences arising for multi-headed placement machines. Since the number
of placement heads available is limited in practice (it typically lies between 2
and 4) enforcing optimality on these small pick-and-place sequences is compu-
tationally still tractable. Two possible outcomes of an asymmetric HyperOpt
move with h = 4 are shown in Fig. 1(c) and (d). The orientation of the fixed
tour segments is not changed, since evaluating the impact of such a change has
time complexity O(n), and is very expensive in comparison to the evaluation of
a HyperOpt move which requires (2h− 2)2 · 2(2h−2) iterations, and is thus inde-
pendent of n. Computational results of the HyperOpt approach with parameter
h taking values of 3 and 4 will be discussed later in Section 3.

q
0

p
0

a)

q
0

0
p

b)

q
0

0
p

c)

q
0

0
p

d)

Fig. 1. HyperOpt move

An obvious drawback of the HyperOpt approach for the ATSP is its inability
to reorder tour segments involving more than h−1 successive cities. However, Hy-
perOpt can perform complex reorderings of the unconnected cities which would
be difficult to find using other approaches. In order to overcome this problem we
suggest a hybrid of HyperOpt with the simplest tour segment reordering algo-
rithm for the TSP, 3-opt [5]. Having deleted 3 edges from an ATSP tour, there is
only one way to reconnect which does not reverse any tour segments, illustrated
in Fig. 2 below.

In our hybrid approach we first choose a hyperedge with starting city p0 and
evaluate the possible HyperOpt moves involving this hyperedge. If no improve-
ment is found the tour is searched for an improving 3-opt move involving the
edge connecting p0 and its successor. In section 3 we discuss the computational
results achieved by this hybrid approach for 3- and 4-HyperOpt.

To keep computational time low we made use of implementation techniques
which proved to work well for local search approaches for the TSP [1][3]. Instead
of a steepest descent approach, where the best move for a given tour is performed,

Effective Local and Guided Variable Neighbourhood Search Methods 207

q
r 0

0
p

0

a)

q
r 0

0
p

0

b)

q
r 0

0
p

0

c)

Fig. 2. 3-opt move for ATSPs

we successively select one hyperedge and evaluate for it all possible HyperOpt
moves. When one or more improving moves are found, the best move is chosen
and performed. The same low cost approach is taken when the tour is searched
for a 3-opt move. To further speed up the heuristic approaches we made use of a
stack to store hyperedges which are to be searched for improving moves [3][22].
Starting with a stack consisting of all available hyperedges in the tour, only
hyperedges which have been affected by a HyperOpt or 3-opt move are stored
on this stack and will be considered in later iterations. The aim of this approach,
similar to the no-look-bits of [3], is to avoid the re-evaluation of moves which
have been unsuccessful in previous iterations.

2.2 Variable Neighbourhood Search

In this section we propose an efficient variant of the Variable Neighbourhood
Search heuristic proposed by Hansen and Mladenović [20][21]. This extends the
work in [22] for symmetric TSPs and in [19] for electronic assembly. We introduce
the notion of guided shakes for Variable Neighbourhood Search methods as a
method to restart local search in order to overcome local optima, improving on
the performance of random shaking strategies suggested in the original work by
Hansen and Mladenović [20][21].

The aim of Variable Neighbourhood Search approaches is to avoid poor local
optima by systematically changing neighbourhood in order to explore an increas-
ingly larger region of the solution space. Hansen and Mladenović suggest various
VNS strategies for a wide range of combinatorial optimization problems [20][21].
The VNS strategy we consider here is given in Fig. 3. The major difference be-
tween our approach and the VNS approach proposed by Hansen and Mladenović
in [20][21] lies in the change of neighbourhoods used to restart the local search.
Once a heuristic has been chosen for local search and an initial tour has been
determined, the pivotal component of VNS is the shaking process. In contrast
to the random shakes proposed by Hansen and Mladenović for the STSP we sug-
gest a different strategy which guides the shakes based on information gained
about the tour prior to the first shake.

Immediately after the first local search has been performed a list of suspect
hyperedges is determined which we will use in our shakes. The quality of a
hyperedge H = (p0, p1, . . . , ph) is estimated by

208 E.K. Burke, P.I. Cowling, and R. Keuthen

h−1∑
i=0

cpi,pi+1 − min
q∈{1,2,...,n}

(cpi,q),

where a high value indicates a hyperedge of poor quality. We store the n
3 hyper-

edges having the highest value in the list of low quality hyperedges.
For shaking we have chosen a variant of the HyperOpt neighbourhood. In-

stead of two hyperedges, three hyperedges are removed from the tour and the
tour is restored in a random fashion. Reversal of a tour segment is avoided as
otherwise too much information from the tour may be destroyed. An illustration
of this shaking strategy is shown in Fig. 4.

Choose Neighbourhood Structures {N1, ..., Nm};
Select Local Search procedure;
Create an initial tour T;
Set: T ∗ = T, k = 1;
Do{

Apply Local Search procedure to T;
IF (length(T) < length(T ∗))

Set: T ∗ = T, k = 1;
ELSE{ Set T = T ∗;

IF (k < m)
Set k = k + 1;

}
Shake Tour T using neighbourhood Nk;

} Until stopping criterion is met;
OUTPUT best found tour: T ∗;

Fig. 3. Variable Neighbourhood Search

To guide the shaking process and destroy segments of the tour of low qual-
ity, one of the hyperedges we shake is chosen at random from the list of low
quality hyperedges. The remaining two hyperedges for shaking are then selected
randomly out of the set of 20 nearest neighbours of the starting city of the low
quality hyperedge.

To prevent the local search from falling back to a local optimum visited
earlier, the length of the hyperedges used for shaking starts at k = (h + 1),
where h denotes the neighbourhood size used for the local search HyperOpt.
When local search does not lead to an improvement in tour quality, the length
of the shaking hyperedges k is increased by one and the tour is abandoned. In
order not to destroy too much of the current tour and considering the size of the
test problems we bounded the maximal length of shaking hyperedges by 5 for
instances of less than 50 cities and by 6 otherwise.

For local search we have chosen the HyperOpt/3-opt hybrid with HyperOpt
parameter h = 3 which provided the best compromise between high quality tours

Effective Local and Guided Variable Neighbourhood Search Methods 209

 hyperedges to shake on deleting hyperedges random reconnection

Fig. 4. Schema of a hyper-shake

and low computing time. The implementation of this approach is as described
earlier except that we are also using nearest neighbour lists in order to keep
computing times low. This means that for HyperOpt as well as 3-opt, we are
not considering all possible moves but only a subset of nearest neighbours. This
subset consists of the 20 nearest neighbours to and from each city. As a stopping
criterion for VNS we limit the number of shakes performed by VNS to the number
of cities of the problem.

3 Computational Results

In this section we apply our local and Variable Neighbourhood Search meth-
ods to all 27 ATSP instances in Reinelts Travelling Salesman Problem library
TSPlib [23]. The solution quality of the heuristic approaches is expressed in per-
cent excess over optimum. Seven of the instances ftv90, ftv100 up to ftv160
represent submatrices of problem ftv170. The largest instances provided by
TSPlib, rbg323 up to rbg458, represent stacker crane problems [5] . However,
the performance of the heuristics for the 27 instances should provide us with
a good indication of their ability to find good solutions for other ATSPs. To
construct initial solutions from which local search is started, we have chosen the
Nearest neighbour heuristic [2]. This lead on the average to solutions of bet-
ter quality for all the heuristic approaches considered here than the Multiple
Fragment (Greedy) algorithm [3].

All the heuristic calculations we refer to below have been carried out on a
Pentium II 400 MHz PC with 128 Mb memory running a Linux 2.2.13 kernel.
The algorithms were coded in C++ using the GNU g++ compiler with -O2
compiler option. The computational results given in Table 1 show the average
excess over optimum and average CPU-time over 10 runs for each problem, using
different Nearest Neighbour starting tours and different seeds for the randomized
VNS heuristics.

The first column of Table 1 lists the names of the TSPlib instances considered,
where the number indicates the problem size except for problem class ftv for
which this number is equal to #cities− 1. Because of space limitations we used
the following abbreviations. HO is used to abbreviate HyperOpt where the num-
ber preceding HO indicates the parameter h used. The 3-opt/HyperOpt hybrid

210 E.K. Burke, P.I. Cowling, and R. Keuthen

approaches are christened HY where the preceding number again indicates pa-
rameter h used in HyperOpt. As above VNS abbreviates Variable Neighbourhood
Search using the random shaking strategy proposed by Hansen and Mladenović
[20][21], while GVNS indicates the use of our VNS strategy which uses guided
shakes. Both VNS strategies considered here use HY3 for local search.

Out of the five local search approaches 3opt, 3HO, 4HO, HY3 and HY4 we can
see that the hybrid approaches HY yield significantly better results for nearly all
problems, significantly outperforming its constituent heuristics 3-opt and Hy-
perOpt (HO). The fastest hybrid approach HY3 outperforms 3-opt on the average
by about 0.7% while the much slower hybrid HY4 can improve on this by another
percent gaining an average excess rate over all instances of about 5%.

Table 1. Computational Results

Excess in % over optimum CPU-times in sec.
TSP 3opt 3HO 4HO HY3 HY4 VNS GVNS 3opt 3HO 4HO HY3 HY4 VNS GVNS
br17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.05 0.01 0.16 1.31 1.25
ft53 7.13 12.31 7.16 5.57 4.37 0.33 0.12 0.09 0.14 1.05 0.28 1.16 10.6 10.6
ft70 3.06 3.74 2.51 2.32 1.81 0.23 0.13 0.22 0.23 1.62 0.50 2.00 20.3 20.8
ftv33 5.81 9.24 5.33 4.76 4.90 0.12 0.29 0.02 0.05 0.29 0.07 0.33 3.21 3.23
ftv35 2.89 4.96 3.68 3.99 3.04 0.33 0.09 0.02 0.05 0.33 0.08 0.36 3.20 3.36
ftv38 3.20 5.73 4.95 5.04 4.36 0.66 0.37 0.03 0.06 0.47 0.08 0.50 3.57 3.45
ftv44 6.29 6.83 5.40 4.86 3.67 1.02 0.60 0.05 0.09 0.51 0.14 0.58 4.96 4.92
ftv47 5.02 10.48 6.70 4.87 3.23 0.20 0.10 0.06 0.11 0.72 0.16 0.91 5.52 5.58
ftv55 7.08 10.14 7.13 6.35 6.16 0.24 0.08 0.10 0.13 0.95 0.23 0.94 7.05 6.58
ftv64 7.10 10.99 7.48 5.09 4.18 0.54 0.44 0.16 0.18 1.14 0.32 1.33 10.5 10.6
ftv70 8.15 11.33 8.28 8.17 6.47 0.81 0.82 0.19 0.23 1.50 0.48 1.75 12.5 12.7
ftv90 14.02 21.33 16.85 15.34 10.84 0.30 0.32 0.37 0.34 2.39 0.66 2.93 19.8 18.9
ftv100 10.91 10.50 11.42 8.78 9.09 0.46 0.41 0.50 0.49 2.96 1.02 3.45 23.9 22.3
ftv110 12.72 16.76 13.19 10.09 9.67 1.36 1.48 0.65 0.58 3.12 1.18 3.75 28.0 28.4
ftv120 11.78 16.52 11.02 10.93 8.01 1.13 0.63 0.84 0.53 3.96 1.44 4.77 32.5 31.6
ftv130 10.19 19.95 13.00 12.11 8.91 1.66 1.09 1.13 0.85 5.03 1.74 6.42 36.1 34.1
ftv140 12.20 14.80 12.97 11.31 9.84 1.45 0.98 1.41 0.91 6.26 2.31 7.71 40.7 40.1
ftv150 9.52 15.44 13.60 10.75 9.49 2.03 1.23 1.73 1.01 7.10 2.86 9.05 45.5 45.9
ftv160 14.65 17.77 12.50 11.71 9.68 3.02 2.41 2.25 1.38 8.48 3.88 10.1 50.7 49.9
ftv170 11.64 19.73 17.01 11.85 9.45 2.07 1.83 2.71 1.48 8.82 4.50 11.8 55.5 54.4
kro100 7.07 8.61 7.72 5.16 3.71 0.81 0.78 0.61 0.56 3.37 1.15 4.32 24.6 24.0
pr43 0.29 0.34 0.47 0.19 0.19 0.01 0.01 0.04 0.08 0.50 0.12 0.56 4.22 4.25
rbg323 0.33 1.75 0.82 0.42 0.39 0.09 0.08 23.0 5.87 32.3 27.0 49.6 280.1 282.2
rbg358 1.00 2.14 1.76 0.82 0.98 0.04 0.08 32.3 5.54 37.7 36.0 62.0 306.5 300.1
rbg403 0.08 0.20 0.17 0.07 0.09 0.00 0.00 47.3 7.34 50.4 49.0 82.7 288.6 284.6
rbg443 0.09 0.11 0.04 0.04 0.05 0.00 0.00 63.1 11.1 53.5 63.5 90.6 347.0 338.6
ry48p 4.27 3.01 2.99 2.65 2.77 0.28 0.28 0.06 0.10 0.69 0.16 0.78 5.29 4.97
av. 6.78 9.43 7.19 6.04 5.01 0.71 0.54 – – – – – – –

We can see that both VNS approaches, the random shaking strategy (VNS)
suggested by Hansen and Mladenović [20][21] and our guided VNS approach,

Effective Local and Guided Variable Neighbourhood Search Methods 211

are capable of improving significantly on the results gained by pure local search,
gaining average excess rates of well below 1%. For nearly all instances our guided
VNS (GVNS) produced tours of same or better quality than the original, random
VNS strategy (VNS). The guided restart mechanism of GVNS enabled the heuristic
to create tours with an average excess rate of about 0.5% which represents a
major improvement over the excess rates gained by all of the other heuristic
approaches. In particular for the “hard” instances (ftv170 and its subproblems)
which proved difficult for the local search guided VNS was able to produce tours
of good quality.

4 Conclusions

In this paper we presented heuristic approaches which embed an exact algorithm
within the framework of a local search heuristic for the asymmetric Travelling
Salesman Problem. This approach, HyperOpt, was inspired by a problem arising
in electronics manufacture and is a development of heuristics that have previ-
ously been applied successfully to electronics manufacture as well as symmetric
TSPs [19][22]. We further proposed a hybrid of HyperOpt with the well known
3-opt local search technique in order to benefit from the advantages of both ap-
proaches, yielding a fast, effective approach which is significantly greater than
the sum of its parts.

The computational results are encouraging. The HyperOpt/3-opt hybrid ap-
proaches proved able to find tours of better or same quality than 3-opt for nearly
all of the 27 test problems considered in this paper. We further used the fastest
HyperOpt/3-opt hybrid as a local search heuristic in a Variable Neighbourhood
Search framework, as suggested by Hansen and Mladenović [20][21], and show
how we may use a “guided shakes” strategy to improve on the random shakes in
[20][21]. This metaheuristic approach yields very good results with an average
excess rate over optimum of about 0.5% for the test problems considered here.
We think that this approach represents a powerful method to determine near op-
timal solutions for asymmetric TSPs. All our approaches have shown themselves
robust enough to handle a wide range of constraints such as occur in industrial
problems.

References

1. Johnson, D.S., McGeoch, L.A.: The travelling salesman problem: A case study. In:
Aarts, E.H.L. and Lenstra, J.K. (eds.): Local Search in Combinatorial Optimiza-
tion. John Wiley & Sons, New York (1997) 215–310

2. Reinelt, G.: The travelling salesman: Computational solutions for TSP applica-
tions. Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg New
York (1994)

3. Bentley, J.L.: Fast algorithms for geometric traveling salesman problems. ORSA
Journal on Computing, 4 (1992) 387–411

4. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the travelling sales-
man problem. Operat. Res. 21 (1973) 498–516

212 E.K. Burke, P.I. Cowling, and R. Keuthen

5. Lawler, E.J., Lenstra, J.K., Rinnoy Kan, A.H.G., Shmoys, D.B.: The travelling
salesman problem: A guided tour of combinatorial optimization. Wiley, New York
(1985)

6. Martello, S., Toth, P.: Linear assignment problems. Annals of Discrete Mathematics
31 (1987) 259–282

7. A. Frieze A., Galbiati, G., Maffioli, F: On the worst-case performance of some
algorithms for the asymmetric traveling salesman problem. Networks 12 (1982)
23–39

8. Karp, R.M.: A patching algorithm for the nonsymmetric traveling salesman prob-
lem. SIAM Journal on Computing 8 (1979) 561–573

9. Glover, F., Gutin, G., Yeo, A., Zverovich, A.: Construction heuristics for the asym-
metric TSP. European Journal of Operational Research 129 (2000) 555-568

10. Zhang, W.: Depth-first branch-and-bound versus local search: A case study. In:
Proceedings of the 17th National Conference on Artificial Intelligence (AAAI 2000),
Austin, TX, USA (2000) 260–266

11. Kanellakis, P.C., Papadimitriou, C.H.: Local search for the asymmetric traveling
salesman problem. Oper. Res. 28 (1980) 1086–1099

12. Merz, P., Freisleben, B.: Genetic local search for the TSP: New results. In: Pro-
ceedings of the 1997 IEEE International Conference on Evolutionary Computation
(1997) 159–164

13. Papadimitriou, C.H., Steiglitz, K.: The complexity of local search for the traveling
salesman problem. SIAM Journal on Computing 6 (1977) 76–83

14. Pekney, J.F., Miller, D.L.: Exact solution of the no-wait flowshop scheduling prob-
lem with a comparison to heuristic methods. Computers & Chemical Engineering
15 (1991) 741–748

15. Cowling, P.I.: Optimization in steel hot rolling. In: Optimization in Industry. John
Wiley & Sons, Chichester, England, (1995) 55–66

16. Kolohan, F., Liang, M.: A tabu search approach to optimization of drilling opera-
tions. Comp. in Eng. 31 (1996) 371–374

17. Walas, R.A., Askin, R.G.: An algorithm for NC turret punch press tool location
and hit sequencing. IIE Transactions 16 (1984) 280–287

18. Burke, E.K., Cowling, P.I., Keuthen, R.: New models and heuristics for component
placement in printed circuit board assembly. In: Proceedings of the 1999 Interna-
tional Conference on Information, Intelligence and Systems (ICIIS99), Bethesda,
MD, USA. IEEE Computer Society Press, (1999) 133–140

19. Burke, E.K., Cowling, P.I., Keuthen, R.: Effective heuristic and metaheuristic ap-
proaches to optimize component placement in printed circuit board assembly. In:
Proceedings of the Congress on Evolutionary Computation CEC2000, San Diego,
CA, USA. IEEE Computer Society Press, (2000) 301–308

20. Hansen, P., Mladenović, N.: An introduction to variable neighborhood search. In: S.
Voss, S. Martello, I.H. Osman and C. Roucairol (eds.): Meta-Heuristics: Advances
and Trends in Local Search Paradigms for Optimization, pages 433-458, Kluwer
Academic Publishers, Boston, MA (1999)

21. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applica-
tions. In: Invited papers at Euro XVI. Brussels, Belgium, (1998)

22. Burke, E.K., Cowling, P.I., Keuthen, R.: Embedded local search and variable neigh-
borhood search heuristics applied to the travelling salesman problem. University
of Nottingham, Technical Report (2000)

23. Reinelt, G.: TSPLIB - A travelling salesman problem library. ORSA-Journal of
the Computing 3 (1991) 376–384

Pheromone Modification Strategies for Ant
Algorithms Applied to Dynamic TSP

Michael Guntsch and Martin Middendorf

Institute for Applied Computer Science and Formal Description Methods,
University of Karlsruhe, D-76135 Karlsruhe, Germany
{guntsch,middendorf}@aifb.uni-karlsruhe.de

Abstract. We investigate strategies for pheromone modification of ant
algorithms in reaction to the insertion/deletion of a city of Traveling
Salesperson Problem (TSP) instances. Three strategies for pheromone
diversification through equalization of the pheromone values on the edges
are proposed and compared. One strategy acts globally without consid-
eration of the position of the inserted/deleted city. The other strate-
gies perform pheromone modification only in the neighborhood of the
inserted/deleted city, where neighborhood is defined differently for the
two strategies. We furthermore evaluate different parameter settings for
each of the strategies.

1 Introduction

Dynamic optimization problems play an important role in practical applications
and are a challenging field for optimization methods. Problem instances that may
change over time require that optimization methods adapt the solution to the
changing optimum. One key aspect is whether solutions found for older stages
of a problem instance can be re-used to quickly find a new good solution after
the problem has changed.

In this paper we investigate several strategies for ant algorithms applied to
optimization problems with changing instances (see [1,2] for an overview of ant
algorithms). So far, the only dynamic problems that have been studied with ant
algorithms are routing problems in communication networks where the traffic in
the network continually changes (e.g. [3,4]), but no explicit reaction occurring
to a single change.

In this paper we study a dynamic problem were a change occurs at a certain
time point and the ant algorithm reacts explicitly to this change. In particular,
we study an ant algorithm for a Traveling Salesperson Problem (TSP) where an
instance may change through the deletion or insertion of a city. Ant algorithms
have been applied successfully for the static TSP problem by several authors
[5,6,7,8,9,10]. In Bonabeau et al. [1], it is suggested that ant algorithms should
in general exhibit particularly good performance for dynamic versions of TSP,
however they did not confirm this.

The simplest way to handle the change of a problem instance would be to
restart the ant algorithm after the change has occurred. However, if one assumes

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 213–222, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

214 M. Guntsch and M. Middendorf

that the change of the problem is relatively small, it is likely that the new
optimum will be in some sense related to the old one, and it would probably be
beneficial to transfer knowledge from the old optimization run to the new run.
On the other hand, if too much information is transferred, the run basically starts
near a local optimum, and will be stuck there. Thus, a reasonable compromise
between these two opposing approaches has to be found. Based on this general
idea, we propose and test three different strategies to make ant algorithms more
suitable for the optimization in dynamic environments.

The paper is structured as follows: in Section 2, we introduce the ant algo-
rithm used. In Section 3, the three strategies for modifying the values in the
pheromone matrix are described. These approaches are examined empirically in
Section 4. The paper concludes with a summary and ideas for future work in
Section 5.

2 Ant Algorithms

The general approach of our algorithm for the TSP follows the ant algorithm of
Dorigo et al. [9]. In every generation each of m ants constructs one tour through
all the given n cities. Starting at a random city an ant selects the next city
using heuristic information as well as pheromone information, which serves as a
form of memory by indicating which choices were good in the past. The heuristic
information, denoted by ηij , and the pheromone information, denoted by τij , are
indicators of how good it seems to move from city i to city j. The heuristic value
is ηij = 1/dij where dij is the distance between city i and city j.

With probability q0, where 0 ≤ q0 < 1 is a parameter of the algorithm, an
ant at city i chooses next city j from the set S of cities that have not been visited
so far which maximizes [τij]

α [ηij]
β , where α and β are constants that determine

the relative influence of the heuristic values and the pheromone values on the
decision of the ant. With probability 1 − q0 the next city is chosen according to
the probability distribution over S determined by

pij =
[τij]

α [ηij]
β

∑
h∈S [τih]α [ηih]β

Before doing global pheromone update some of the old pheromone is evaporated
on all edges according to

τij 7→ (1 − ρ) · τij

where parameter ρ determines the evaporation rate. For pheromone update an
elitist strategy is used where one elitist ant updates pheromone along the best
solution found so far, i.e. for every city i some amount of pheromone is added to
element (i, j) of the pheromone matrix when j is the successor of i in the so far
best found tour. Observe that pheromone is added to exactly two edges incident
to a node i. The amount of pheromone added is ρ/4, that is

τij 7→ τij +
1
4
ρ

Pheromone Modification Strategies for Ant Algorithms 215

The same is done also for the best solution found in the current generation.
For initialization we set τij = 1/(n − 1) for every edge (i, j). Observe, that

for every city i the sum of the pheromone values on all incident edges is one,
which is not changed by the pheromone update.

3 Pheromone Modification Strategies

In this section we introduce three strategies for modifying the pheromone infor-
mation in reaction to a change of the problem instance, i.e. the insertion or dele-
tion of a city. The difficulty with modifying the pheromone information is to find
the right balance between resetting enough information to give the search pro-
cess the flexibility to find a new, good solution for the changed problem instance,
and keeping enough of the old information to speed up the process of finding
this solution. Resetting information is achieved by equalizing the pheromone
values to some degree, which effectively reduces the influence of experience on
the decisions an ant makes to build a solution.

Strategies for the modification of pheromone information have been proposed
before to counteract stagnation of ant algorithms. The approach used by Gam-
bardella et al. [11] was to reset all elements of the pheromone matrix to their
initial values. Stützle and Hoos [10] suggested to increase the pheromone values
proportionately to their difference to the maximum pheromone value.

Similar to these approaches, we propose a global pheromone modification
strategy which reinitializes all the pheromone values by the same degree. This
method will be called the “Restart-Strategy”. The Restart-Strategy is limited,
however, because it does not take into account where the change of the problem
instance actually occurred. Often, good solutions to the changed instance will
differ only locally from good solutions to the old one. Therefore, the most ex-
tensive resetting of pheromone values would need to occur in the close vicinity
of the inserted/deleted city. In this spirit, we define two more locally oriented
update strategies, each based on one of the factors contributing to an ant’s local
decisions. The “η-Strategy” uses heuristic based information, distances between
cities in this case, to decide to what degree equalization is done on the pheromone
values on all edges incident to a city j. The “τ -Strategy” uses pheromone based
information, i.e. the pheromone values on the edges, to define another concept
of “distance” between cities. Equalization of pheromone values is then again
performed to a higher degree on the edges of “closer” cities.

All our strategies work by distributing a reset-value γi ∈ [0 : 1] to each city
i. These reset-values are then used to reinitialize the pheromone values on edges
incident to i according to the equation

τij 7→ (1 − γi)τij + γi
1

n − 1
(1)

In case of a problem with symmetric η-values like Euclidean TSP, the average of
the reset-values (γi + γj)/2 is used instead of γi in equation 1 for modifying the
pheromone value on the edge connecting cities i and j. An inserted city i always

216 M. Guntsch and M. Middendorf

receives an unmodifiable reset-value of γi = 1, resulting in all incident edges to
i having the initial pheromone value of 1/(n − 1). We will now describe in more
detail how the different strategies assign the values γi.

3.1 Restart

The Restart-Strategy assigns each city i the strategy-specific parameter λR ∈
[0, 1] as its reset-value:

γi = λR. (2)

3.2 η-Strategy

In the η-Strategy, each city i is given a value γi proportionate to its distance
from the inserted/deleted city j. This distance dη

ij is derived from ηij in such a
way that a high ηij implies a high dη

ij and that scaling the η-values has no effect:

dη
ij = 1 − ηavg

λE · ηij

with ηavg = 1
n(n−1)

∑n
i=1
∑

k 6=i ηik and the strategy-specific parameter λE ∈
[0,∞) scaling the width of the distance-cone. A city i then receives

γi = max(0, dη
ij). (3)

3.3 τ -Strategy

The τ -Strategy uses a distance measure based on pheromone information to
calculate the reset-values. The pheromone-distance dτ

ik between two cities i and
k is basically defined as the maximum over all paths Pik from i to k of the
product of pheromone-values on the edges in Pik. To enable an equal treatment
of symmetric as well as asymmetric problems and to have all distances be able
to attain any value of [0, 1], the pheromone-values on the edges are scaled by the
maximum possible pheromone value on an edge τmax

1. Formally,

dτ
ik = max

Pik

∏
(x,y)∈Pik

τxy

τmax
.

For the case of insertion, we set the pheromone value of the edges to the two
closest cities, i.e. those with the highest value for ηij , to τmax during the ap-
plication of this strategy, since the new city does not yet have any pheromone
information. The pheromone-distance multiplied with a strategy-specific param-
eter λT ∈ [0,∞), with the result limited to 1 for application of equation 1, is the
reset-value for a city i if j is inserted/deleted:

γi = min(1, λT · dτ
ij) (4)

Pheromone Modification Strategies for Ant Algorithms 217

Visualization of ETA-Strategy

 0.8
 0.6
 0.4
 0.2

Visualization of TAU-Strategy

 0.9
 0.8
 0.7
 0.6
 0.5
 0.4
 0.3
 0.2
 0.1

(a) η-Strategy, λE = 1 (b) τ -Strategy, λT = 1

Fig. 1. Visualization of reset-value distribution for (a) the η-Strategy and (b) the τ -
Strategy after the deletion of city (5,4), with the best path found by the ant algorithm
on the 10x10 grid before the change depicted in the background.

To give an illustration of how the η- and τ -Strategies work, we used a 10x10
grid of cities ((0,0) to (9,9)) with Euclidean distances to visualize how the dis-
tribution of reset-values takes place. The best path found before the deletion
of city (5,4) at iteration 300 is shown in the background. One can see clearly
in Figure 1 (a) that the distribution for the η-Strategy is proportionate to Eu-
clidean distance, while 1 (b) shows that the τ -Strategy tends to distribute along
the path.

4 Empirical Evaluation

We evaluated the three strategies proposed in Section 3 on the Euclidean TSP
eil101 from the TSP-LIB [13]. Insertion and deletion of a city were evaluated
either after 250 iterations (del250, ins250) or after 500 iterations (del500, ins500).
Insertion was done by reinserting a city that was removed before the algorithm
started. The total runtime of all test runs was 1500 iterations. To eliminate
a possible bias by the position of the inserted/deleted city, all test results are
averaged over the insertion respectively deletion of all 101 cities.

The parameter values of the ant algorithm were m = 10 ants, α = 1, β = 5,
q0 = 0.5, and ρ = 0.01. The heuristic weight of β = 5 has been used by several
authors (e.g. [5,12]) for TSP. We also performed all tests with β = 1 and q0 ∈
{0.0, 0.9}, with equivalent or worse performance. The elitist ant was dropped
when the insertion/deletion occurred, and redetermined in the first iteration
thereafter.

1 τmax is 0.5 for symmetric and 1.0 for asymmetric TSP.

218 M. Guntsch and M. Middendorf

To obtain an understanding for the total amount of equalization done in the
pheromone matrix we measure the average row-/column-entropy E:

E =
1

n log n

n∑
i=1

n∑
j=1

−τij log(τij)

of the pheromone matrix for each iteration of every run. E is normalized to be
in [0,1] independently of n. The entropy of the pheromone matrix was also used
by Merkle et al. in [14] as a measure for the behavior of ant algorithms.

In the following we concentrate on the results for the deletion of a city since
the results for insertion were quite similar. For all three strategies we tested the
influence of the λ parameters (i.e. λR, λE , λT) which influence the height of
the reset-values. We compare the best solutions of the ant algorithm when using
a specific strategy for different λ-parameter values at 5, 50, and 250 iterations
after the change has occurred, and the final results after 1500 iterations.

660

680

700

720

740

0 5 10 15 20

T
ou

rle
ng

th

ResetValue

q0=0.5, Del-250 Comparison of different ResetValues for ETA-Distrib @ 255,300,500,1500

It. 255
It. 300
It. 500

It. 1500

660

680

700

720

740

0 5 10 15 20

T
ou

rle
ng

th

ResetValue

q0=0.5, Del-500 Comparison of different ResetValues for ETA-Distrib @ 505,550,750,1500

It. 505
It. 550
It. 750

It. 1500

(a) del250, best solution (b) del500, best solution

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

E
nt

ro
py

ResetValue

q0=0.5, Del-250 Entropy Comparison of different ResetValues for ETA-Distrib @ 255,300,500,1500

It. 255
It. 300
It. 500

It. 1500

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

E
nt

ro
py

ResetValue

q0=0.5, Del-500 Entropy Comparison of different ResetValues for ETA-Distrib @ 505,550,750,1500

It. 505
It. 550
It. 750

It. 1500

(c) del250, entropy (d) del500, entropy

Fig. 2. Best results and entropy of η-Strategy with λE ∈ [0 : 16] on del250, del500.

Figure 2 shows the results obtained by the η-Strategy for parameter-values
of λE ∈ [0 : 20] in 0.5 to 1.0 increments. As can be seen, a higher value of λE

Pheromone Modification Strategies for Ant Algorithms 219

entails a worse starting solution and a better final solution, the latter however
holding only for λ ≤ 8, after which no significant difference between the final
tourlengths exists. This suggests that “good” values for λE are not too large.
The respective entropy-curves asymptotically approach their maximum value of
1 after the turning point around λE = 2. In conformity with the development of
the best solution, the difference in entropy for λE > 8 is only marginal.

660

680

700

720

740

0 0.5 1 1.5 2 2.5 3 3.5 4

T
ou

rle
ng

th

ResetValue

q0=0.5, Del-250 Comparison of different ResetValues for TAU-Distrib @ 255,300,500,1500

It. 255
It. 300
It. 500

It. 1500

660

680

700

720

740

0 0.5 1 1.5 2 2.5 3 3.5 4

T
ou

rle
ng

th

ResetValue

q0=0.5, Del-500 Comparison of different ResetValues for TAU-Distrib @ 505,550,750,1500

It. 505
It. 550
It. 750

It. 1500

(a) del250, best solution (b) del500, best solution

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

E
nt

ro
py

ResetValue

q0=0.5, Del-250 Entropy Comparison of different ResetValues for TAU-Distrib @ 255,300,500,1500

It. 255
It. 300
It. 500

It. 1500

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

E
nt

ro
py

ResetValue

q0=0.5, Del-500 Entropy Comparison of different ResetValues for TAU-Distrib @ 505,550,750,1500

It. 505
It. 550
It. 750

It. 1500

(c) del250, entropy (d) del500, entropy

Fig. 3. Best results and entropy of τ -Strategy with λT ∈ [0 : 4] on del250, del500.

The results for the τ -Strategy with λT ∈ [0 : 4], in increments of 0.25 to 0.5,
are shown in Figure 3. The results for a deletion after 250 iterations are somewhat
similar to those for the η-Strategy, but a deletion after 500 iterations leads to
different results. This is due to the mechanism of pheromone-based distances
that is used by the τ -Strategy, which leads to τij

τmax
→ 1 and therefore dτ

ij → 1
for advanced iterations. It seems that here the τ -Strategy is quite efficient when
λT ≈ 1. In this case not too much pheromone is reset so that the results are good
even at iteration 505, but enough to be comparable to a total reinitialization (see
Figure 4) after 1500 iterations.

The results for the Restart-Strategy are shown in Figure 4, with λR ∈ [0 : 1]
in 0.025 to 0.1 increments. Similarly to the η-Strategy, the two cases del250 and

220 M. Guntsch and M. Middendorf

660

680

700

720

740

0 0.2 0.4 0.6 0.8 1

T
ou

rle
ng

th

ResetValue

q0=0.5, Del-250 Comparison of different ResetValues for RESTART-Distrib @ 255,300,500,1500

It. 255
It. 300
It. 500

It. 1500

660

680

700

720

740

0 0.2 0.4 0.6 0.8 1

T
ou

rle
ng

th

ResetValue

q0=0.5, Del-500 Comparison of different ResetValues for RESTART-Distrib @ 505,550,750,1500

It. 505
It. 550
It. 750

It. 1500

(a) del250, best solution (b) del500, best solution

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
nt

ro
py

ResetValue

q0=0.5, Del-250 Entropy Comparison of different ResetValues for RESTART-Distrib @ 255,300,500,1500

It. 255
It. 300
It. 500

It. 1500

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
nt

ro
py

ResetValue

q0=0.5, Del-500 Entropy Comparison of different ResetValues for RESTART-Distrib @ 505,550,750,1500

It. 505
It. 550
It. 750

It. 1500

(c) del250, entropy (d) del500, entropy

Fig. 4. Best results and entropy of Restart-Strategy with λR ∈ [0 : 1] on del250, del500.

del500 look almost identical , with a slightly higher entropy- and worse solution-
level for del250. For λR ≤ 0.5 the solution quality is roughly the same as before
the change 50 iterations after the deletion has occurred. For higher λR the trade-
off of worse solution quality in the beginning for a better solution quality in the
end holds up to λr ≈ 0.9, after which virtually all information is reset and the
ant algorithm needs more time to “rediscover” a good solution.

Now, the goal is to find an optimal parameter for each of the strategies and
compare their performance. However, determining which parameter is best is
not possible without knowledge of how many iterations after the change the
best found solution is needed. Figure 5 (a)-(c) shows which parameter for each
individual strategy resulted in the best average solution over the indicated num-
ber of iterations after the deletion. If we assume that the probability for needing
the new best solution at a specific iteration is equal for all iterations between
the change and iteration 1500, then we only need the rightmost value in each
of these subfigures to determine the best λ-setting (i.e. for del250 λE = 7.5,
λT = 1.0, and λR = 0.85).

Subfigure 5 (d) shows the curve for each strategy with their respective optimal
parameter for del250. As can be seen, the τ -Strategy performs best immediately
after the change while the η- and Restart-strategy sacrifice good immediate

Pheromone Modification Strategies for Ant Algorithms 221

performance for a better solution quality towards the end. This fact also results
in the latter two strategies having a slightly better average solution quality
over the 1250 iterations considered (η-Strategy : 660.396 and Restart-Strategy :
660.316 vs. τ -Strategy : 661.674).

0

1

2

3

4

5

6

7

8

400 600 800 1000 1200 1400

P
ar

am
et

er
 w

ith
 b

es
t a

vg
. S

ol
ut

io
n

Iterations after Change

ETA, Del, q0=0.5

Change @ 250
Change @ 500

0

0.5

1

1.5

2

400 600 800 1000 1200 1400

P
ar

am
et

er
 w

ith
 b

es
t a

vg
. S

ol
ut

io
n

Iterations after Change

TAU, Del, q0=0.5

Change @ 250
Change @ 500

(a) η-Strategy (b)τ -Strategy

0

0.2

0.4

0.6

0.8

1

400 600 800 1000 1200 1400

P
ar

am
et

er
 w

ith
 b

es
t a

vg
. S

ol
ut

io
n

Iterations after Change

RESTART, Del, q0=0.5

Change @ 250
Change @ 500

660

680

700

720

740

0 200 400 600 800 1000 1200 1400

T
ou

rle
ng

th

ResetValue

Del-250 Comparison of all strategies with respective best parameter, q0 = 0.5

RESTART-0.85
ETA-7.5
TAU-1.0

(c) Restart-Strategy (d) “best” parameters

Fig. 5. Figures (a)-(c) show which parameter had the best average solution how many
iterations after the deletion, (d)-(f) compares the three strategies for their respective
best parameter λ for del250.

5 Conclusion and Future Work

In this paper, we have proposed three parameterized strategies for Ant Colony
Optimization algorithms to deal with dynamic TSP instances. In particular, we
suggested two approaches to locally reset the pheromone matrix after a change.
Different parameters for the individual strategies were evaluated, and suggestions
made as to which parameters seem better suited than others.

In summary, the η- and Restart-Strategies perform best, closely followed by
the τ -Strategy. We expect the very good performance of the Restart-Strategy
to be due to the singular insertion/deletion performed and plan to verify this in

222 M. Guntsch and M. Middendorf

future work by examining environments where multiple insertions and deletions,
exclusively as well as in combination with one another, occur. Furthermore,
we will implement and analyze combinations of the proposed strategies. Since
at least some of the results depended upon the state of convergence of the ant
algorithm, using the entropy of the pheromone matrix or parts thereof as a guide
for choosing a parameter also seems justified.

References

1. E. Bonabeau, M. Dorigo, G. Theraulaz: Swarm Intelligence: From Natural to Ar-
tificial Systems, Oxford University Press, New York, 1999.

2. M. Dorigo, G. Di Caro, “The ant colony optimization meta-heuristic”, in D. Corne,
M. Dorigo, F. Glover (Eds.), New Ideas in Optimization, McGraw-Hill, 11-32, 1999.

3. G. Di Caro, M. Dorigo, “AntNet: Distributed Stigmergetic Control for Communi-
cations Networks,” Journal of Artificial Intelligence Research, 9: 317-365, 1998.

4. R. Schoonderwoerd, O. Holland, J. Bruten, L. Rothkrantz, “Ant-based Load Bal-
ancing in Telecommunications Networks,” Adaptive Behavior, 1996.

5. B. Bullnheimer, R.F. Hartl, C. Strauss, “A New Rank Based Version of the Ant
System - A Computational Study,” CEJOR, 7: 25-38, 1999.

6. M. Dorigo, “Optimization, Learning and Natural Algorithms (in Italian),” PhD
Thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy, pp.140, 1992.

7. M. Dorigo, L. M. Gambardella, “Ant-Q: A Reinforcement Learning approach to
the traveling salesman problem,” Proceedings of ML-95, Twelfth Intern. Conf. on
Machine Learning, Morgan Kaufmann, 252-260, 1995.

8. M. Dorigo, and L.M. Gambardella, “Ant colony system: A cooperative learning
approach to the travelling salesman problem,” IEEE TEC, 1: 53-66, 1997.

9. M. Dorigo, V. Maniezzo, A. Colorni, “The Ant System: Optimization by a Colony
of Cooperating Agents,” IEEE Trans. Systems, Man, and Cybernetics – Part B,
26: 29-41, 1996.

10. T. Stützle, H. Hoos, “Improvements on the ant system: Introducing MAX(MIN)
ant system,” in G. D. Smith et al. (Eds.), Proc. of the International Conf. on Ar-
tificial Neutral Networks and Genetic Algorithms, Springer-Verlag, 245-249, 1997.

11. L.-M. Gambardella, E. D. Taillard, M. Dorigo, “Ant Colonies for the Quadratic
Assignment Problem,” Journal of the Operational Research Society, 50: 167-76,
1999.

12. T. Stützle, H. Hoos, “MAX-MIN Ant System,” Future Generation Computer Sys-
tems, 16: 889-914, 1999.

13. http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/
14. D. Merkle, M. Middendorf, H. Schmeck, “Ant Colony Optimization for Resource-

Constrained Project Scheduling,” Proc. GECCO-2000, 893-900, 2000.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 223-232, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Conventional and Multirecombinative
Evolutionary Algorithms for the Parallel Task

Scheduling Problem

Susana Esquivel, Claudia Gatica, and Raúl Gallard

Laboratorio de Investigación y Desarrollo en Inteligencia Computacional,
 Universidad Nacional de San Luis, Argentina

{esquivel, crgatica, rgallard}@unsl.edu.ar

Abstract. The present work deals with the problem of allocating a number of
non identical tasks in a parallel system. The model assumes that the system
consists of a number of identical processors and that only one task may be exe-
cuted on a processor at a time. All schedules and tasks are nonpreemptive. Gra-
ham’s [1] well-known list scheduling algorithm (LSA) is contrasted with differ-
ent evolutionary algorithms (EAs), which differ on the representations and the
recombinative approach used. Regarding representation, direct and indirect rep-
resentation of schedules are used. Concerning recombination, the conventional
single crossover per couple (SCPC) and a multiple crossover per couple
(MCPC) are used [2]. Outstanding behaviour of evolutionary algorithms when
contrasted against LSA was detected. Results are shown and discussed.

1 Introduction

The problem of how to find a schedule on m > 2 processors of equal capacity that
minimises the whole processing time of independent tasks has been shown as
belonging to the NP-complete class [3]. Parallel task scheduling is important from
both the theoretical and practical points of view [4], [3], [5], [6], [7], [8]. From the
theoretical viewpoint, it is a generalisation of the single machine scheduling problem.
From the practical point of view the occurrence of resources in parallel is common in
real world. Evolutionary algorithms have also been used to solve scheduling prob-
lems, [3], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18].
In Uniform Memory Access (UMA) multiprocessors, a dynamic scheduling of paral-
lel processes is provided. Nevertheless, there are many reasons for applying static
scheduling. First, static scheduling sometimes results in lower execution times than
dynamic scheduling. Second static scheduling allows only one process per processor,
reducing process creation, synchronisation and termination overhead. Third, static
scheduling can be used to predict speedup that can be achieved by a particular parallel
algorithm on a target machine, assuming that no preemption of processes occur.
A parallel program is a collection of tasks, some of which must be completed before
others begin. In a deterministic model, the execution time for each task and the prece-
dence relations between them are known in advance. This information is depicted in a
directed graph, usually known as the task graph. In Fig. 1 different tasks graphs are
shown. Even if the task graph is a simplified representation of a parallel program

224 S. Esquivel, C. Gatica, and R. Gallard

execution, (e.g., overheads due to interrupts for accessing resources are ignored) it
provides a basis for static allocation of processors. A schedule is an allocation of tasks
to processors, which can be depicted by a Gantt chart. In a Gantt chart, the initiation
and ending times for each task in the available processors are indicated and the
makespan (total execution time of the parallel program) of the schedule can be easily
derived. Other performance variables, such as individual processor utilisation or
evenness of load distribution [19] can be considered. Some simple scheduling prob-
lems can be solved to optimality in polynomial time while others can be computation-
ally intractable. As we are interested in the scheduling of arbitrary tasks graphs onto a
reasonable number of processors we would be content with polynomial time sched-
uling algorithms that provide good solutions even though optimal ones can not be
guarantee.

The paper is organised as follows. Section 2 describes the List Scheduling Algorithm
and some of its anomalies are indicated. Section 3 deals with evolutionary approaches
to the problem including a brief description of the MCPC multirecombinative ap-
proach. Section 4 shows experiments and results and section 5 present the conclusions
and future work.

2 The List Scheduling Algorithm (LSA)

For a given list of tasks ordered by priority, it is possible to assign tasks to processors
by always assigning each available processor to the first unassigned task on the list
whose predecessor tasks have already finished execution.
Let us denote,

T={T1,....,Tn} a set of tasks,
��7� (0, �) a function which associates an execution time to each task,

� a partial order in T and
L a priority list of tasks in T.

Each time a processors is idle, it immediately removes from L the first ready task; that
is, an unscheduled task whose ancestors under � have all completed execution. In the
case that two or more processors attempt to execute the same task, the one with low-
est identifier succeeds and the remaining processors look for another adequate task.
Using this heuristic, contrary to the intuition, some anomalies can happen. For exam-
ple, increasing the number of processors, decreasing the execution times of one or
more tasks, or eliminating some of the precedence constraints can actually increase
the makespan

3 Evolutionary Approaches for the Task Scheduling Problem

We devised different evolutionary approaches to task scheduling. First, we addressed
two representation schemes: direct and indirect [20], [21]. Then we addressed two
recombinative approaches: SCPC and MCPC.

Conventional and Multirecombinative Evolutionary Algorithms 225

Fig. 1. Some of the task graphs used for testing

T3/1

T1/2

T2/3 T4/2

T5/3 T6/3

T8/1

T7/1

G1

T7/4

T8/4

T2/1

T1/2

T3/1

T4/1

T9/8

T5/3

T6/3

 T7/3

T8/3

G3

T2/2

T1/3

T3/2

T4/2

T9/9

T5/4

T6/4

G2

T1/3

T2/2

T3/2

T4/2

T9/9

T5/4

T6/4

T7/4

T8/4

G4

G5

T1/7

T2/7

T3/7

T10/15

T5/3

T4/2

T6/2

T8/8

T7/2 T9/8

G6

T1/5

T10
/ 2

T13
 / 9

T4/9

T12
/ 2

T6/3

T5/7

T

T9/9

T8/6

T7/8

T3/8

T11
/ 5

226 S. Esquivel, C. Gatica, and R. Gallard

3.1 Direct Representation of Solutions

Here we propose to use a schedule as a chromosome. A gene in the chromosome is
represented by the following four-tuple:

<task_id, proc_id, init_time, end_time >
where, task_id, identifies the task to be allocated; proc_id, identifies the processor
where the task will be allocated; init_time, is the commencing time of the task_id in
proc_id, end_time, is the termination time of the task_id in proc_id. The precedence
relation described in the task graph can be properly represented in the corresponding
precedence matrix A, where element aij is set to 1 if task i precedes task j, otherwise it
is set to 0.

With this structure the list of the corresponding predecessor tasks is easily retrieved
by entering the column of A indexed by the task_id value. For instance, two schedules
(a) and (b) can be represented by the following two chromosomes Ca and Cb:

This representation has a problem. If we use a conventional crossover such as one
point crossover invalid offspring could be created. For example, if we decided to
apply this operator after the fifth position we would obtain two invalid chromosomes:
Ca’ and Cb’.

Both of them violate the restriction that a processor must process a task at a time.
Genes 5 and 6 in Ca’ and Cb’ describe invalid schedules where the same processor (P1

in case of Ca’ and P2 in case of Cb’) processes two tasks at some time interval.
To remedy this situation, it can either be used penalty functions or repair algorithms.
Penalty functions [10], [22], of varied severity can be applied to invalid offspring in
order to lower their fitness values but allowing them to remain in the population aim-
ing to retain valuable genetic material. Repair algorithms attempt to build up a valid
solution from an invalid one. This approach is embedded in the knowledge-augmented
crossover operator [21] proposed by Bruns.

Here a collision occurs if an operation (task processing) inherited from one
of the parents cannot be scheduled in the specified time interval on the assigned proc-
essor. In this case the processor assignment is unchanged and it is delayed into the
future until the processor is available. In our example, this advanced crossover would
generate the chromosomes that follow:

1,1,0,2 2,1,2,5 3,2,2,3 4,2,3,5 5,1,5,8 6,1,8,11 7,1,11,12 8,2,12,13

1,1,0,2 2,1,2,5 3,2,2,3 4,1,5,7 5,2,5,8 6,2,8,11 7,1,11,12 8,1,12,13

Ca” :

Cb”:

1,1,0,2 2,1,2,5 3,2,2,3 4,2,3,5 5,1,5,8 6,2,5,8 7,1,8,9 8,1,9,10

1,1,0,2 2,1,2,5 3,2,2,3 4,1,5,7 5,2,5,8 6,1,7,10 7,1,10,11 8,2,11,12

Ca :

Cb:

 Ca’ :

 Cb’ :

1,1,0,2 2,1,2,5 3,2,2,3 4,2,3,5 5,1,5,8 6,1,7,10 7,1,10,11 8,2,11,12

1,1,0,2 2,1,2,5 3,2,2,3 4,1,5,7 5,2,5,8 6,2,5,8 7,1,8,9 8,1,9,10

Conventional and Multirecombinative Evolutionary Algorithms 227

As expected, both children have a larger makespan but are still feasible. In Bruns’s
proposed knowledge-augmented crossover, only a child is generated where the part
taken from the first parent builds a consistent schedule. Then the assignment of the
missing tasks is chosen from the second parent maintaining the assignment order and
the processor allocations to tasks. Timing adjustments are included if necessary. The
latter decision can imply, as we have showed, larger makespans for the children.

In our case we adopted an as-soon-as-possible (ASAP) approach similar to
Brun’s proposal but modified to avoid delays, moving the assignment to the earliest
possible time, by random selection of one available processor at the ready time of the
unassigned task. In this way no processor will remain idle if a task is available for
execution and the precedence constraints are satisfied. The available processor is
selected as to minimise assignment changes in the second parent part of the offspring.
In our example this decision provides only one alternative and would give us the
following:

These chromosomes differ from their parents only in the assignments of tasks T7 and
T8. A similar operator, switch processors, was conceived for mutation. If the chromo-
some undergoes mutation then a search is done, from left to right, until one gene is
modified either by choosing an alternative free processor or by moving the assign-
ment ssible time. This would imply modifying subsequent genes of
the ch ate a valid offspring.

3.2 In

Unde
task i
spond

The i
tions
chrom

is ins
some
prece
essor
appro
their

1,1,0,2 2,1,2,5 3,2,2,3 4,2,3,5 5,1,5,8 6,2,5,8 7,1,8,9 8,2,9,10

1,1,0,2 2,1,2,5 3,2,2,3 4,1,5,7 5,2,5,8 6,1,7,10 7,1,10,11 8,1,11,12

Ca’’’ :

Cb’’’:

to the earliest po
romosome to cre
direct Representation of Solutions

r this approach a schedule is encoded in the chromosome in a way such that the
ndicated by the gene position is assigned to the processor indicated by the corre-
ing allele, as shown in Fig. 2:

1 2 3 2 1 3 1 2
 1 2 3 4 5 6 7 8

dea is to use a decoder. A decoder is a mapping from the space of representa-
that are evolved to the space of feasible solutions that are evaluated. Here the
osome gives instructions to a decoder on how to build a feasible schedule.

Regarding the task allocation problem, to build a feasible schedule, a decoder
tructed in the following way: By following the priority list, traverse the chromo-
 and assign the corresponding task to the indicated processor as soon as the
dence relation is fulfilled. Under this approach the restriction on avoiding proc-
 idleness while a task is ready is relaxed. We believe that this less restrictive
ach will contribute to population diversity. One advantage of decoders resides in
ability to create valid offspring even by means of simple conventional operators.

processors �
tasks �

 Fig. 2. Chromosome structure for the task allocation problem

228 S. Esquivel, C. Gatica, and R. Gallard

One disadvantage is a slower evaluation of solutions. Also, simplest mutation opera-
tors can be implemented by a simple swapping of values at randomly selected chro-
mosome positions or by a random change in the allele. The new allele value identifies
any of the involved processors.

3.3 Multiple Crossover Per Couple (MCPC)

Conventional approaches to crossover, independently of the method being used, in-
volve applying the operator only once on the selected parents. Such a procedure is
known as the Single Crossover Per Couple (SCPC) approach. In earlier works we
devised a different approach to crossover which allows multiple offspring per couple,
as often happens in nature. This allowed to deeply explore the recombination possi-
bilities of previously found solutions, and several experiments in which more than one
crossover operation for each mating pair was permitted were implemented. The num-
ber of children per couple was fixed or granted as a maximum number. Different
variants selected the best, a random chosen or all created offspring to be inserted in
the next generation. The idea of MCPC was tested on a set of well-known testing
functions [2] as well as in different single and multiple objective scheduling problems
[23].

4 Experiments and Results

The experiments implemented evolutionary algorithms under SCPC and MCPC with
randomised initial population of size fixed at 50 individuals. Twenty series of ten runs
each were performed on ten testing cases, using elitism. For direct representation
ASAP SCPC and switch-processor mutation were used. For indirect representation
one point crossover and big creep mutation were used. In the case of MCPC, tests
with 2, 3 and 4 crossovers were run and after the multiple crossover operation the best
created child was selected for insertion in the next generation. The maximum number
of generations was fixed at 100, but a stop criterion was used to accept convergence
when after 20 consecutive generations, mean population fitness values differing in e �
0.001 were obtained. Probabilities for crossover and mutation were fixed at conven-
tional values of 0.65 and 0.001, respectively. The ten testing cases were:

1. Task graph G1 (8 tasks, 3 processors).
2. Task graph G2 (9 tasks, 3 processors).
3. Task graph G2 (9 tasks, 4 processors).
4. Task graph G3 (9 tasks, 3 processors, but decreasing task’s duration).
5. Task graph G4 (9 tasks, 3 processors, eliminating precedence constrains).
6. Task graph G5 (10 tasks and 2 processors).
7. Randomly generated task graph G6 (13 tasks and 3 processors).
8. Randomly generated task graph (25 tasks and 5 processors).
9. Randomly generated task graph (50 tasks and 5 processors).
10. Randomly generated task graph (25 tasks and 5 processors).

The first 6 task graphs can be seen in fig. 1. Cases 3 to 5 test the anomalies presented
by Graham’s algorithm. Opposite to other scheduling problems, after an intensive

Conventional and Multirecombinative Evolutionary Algorithms 229

search in the literature we could find few benchmarks. The first 6 cases were ex-
tracted from the literature [1], [24] and they have known optima. Cases 7 to 10 were
generated by random assignment of relations and task durations. Their optimum val-
ues are unknown. Nevertheless, for these cases initial trials were run to determine the
best quasi-optimal solution under the whole set of contrasted heuristics. This value
will be referred in what follows as an estimated optimal value (the best known value
is assumed as optimal).

The following evolutionary algorithms were developed: EA1 (SCPC) and
EA2 (MCPC), both with direct representation, ASAP crossover and switch processor
mutation and EA3 (SCPC) and EA4 (MCPC) both with indirect representation, one
point crossover and big creep mutation.

To measure the quality of solutions provided by the EAs we used:
Ebest: (Abs(opt_val – best value)/opt_val)/100. It is the percentile error of the best
found individual in one run when compared with the known, or estimated, optimum
value opt_val. It gives us a measure of how far are we from that opt_val.
MEbest: is the mean value, over the total number of runs, of the error.
Best: is the best makespan value found throughout all the runs. This value has been
reached by different solutions (schedules).
MBest: is the mean value, over the total number of runs, of the best makespan found
in each run (average best individual).

To measure the versatility of evolutionary algorithms, we used:
Alt: Number of alternative solutions. It is the mean number the distinct alternative
solutions found by the algorithm in one run including optimum and non-optimal solu-
tions.
Opt: Number de optimal solutions. It is the mean number of distinct optimum or
quasi-optimum solutions found by the algorithm in one run.
Totb: Total number of best solutions. It is the mean total number of distinct best
solutions found by the algorithm throughout all runs.

The versatility property shows the EAs inherent ability to provide multiple distinct
solutions and nothing in particular to promote this, such as crowding, have been done.
As with direct representation of solutions the evolutionary algorithms behave simi-
larly but better than with indirect-decode representation, we show here results of EA1
and EA2 only.

Regarding quality of results table 1 shows that MCPC (EA2) outperforms SCPC
(EA1) in each considered performance variable. Also, the average best makespan
throughout all instances of the problem (136.1) is the nearest to the average optimal
value (132.6) provided by any of the contrasted heuristics. Moreover, all the anoma-
lies observed with LSA do not hold when the EA is applied, because: a) when the
number of processors is increased, the minimum (optimum) makespan is also found,
b) when the duration of tasks is reduced, this is reflected in a reduced optimum
makespan and, finally, c) when the number of precedence restrictions is reduced the
optimum makespan is preserved. Also EA1 outperforms LSA (except case 9). This

230 S. Esquivel, C. Gatica, and R. Gallard

fact indicates that the evolutionary algorithm and, specially the multirecombinative
approach, are good alternatives to find good quality results.

Table 1. Quality of solutions (EA1:SCPC – EA2: MCPC, both with direct representation)

Best MBest Ebest MEbestC Otim.
values EA1 EA2 LSA EA1 EA2 EA1 EA2 LSA EA1 EA2

1 9 9 9 9 9 9 0.0 0.0 0.0 0.0 0.0
2 12 12 12 12 12.3 12.1 0.0 0.0 0.0 2.5 0.83
3 12 12 12 15 12 12 0.0 0.0 25.0 0.0 0.0
4 10 10 10 13 10 10 0.0 0.0 30.0 0.0 0.0
5 12 12 12 16 12.1 12.1 0.0 0.0 33.3 0.8 0.83
6 31 31 31 38 33.5 32.4 0.0 0.0 22.58 8.06 4.51
7 30 32 30 33 32.9 32.8 6.66 0.0 10.0 9.66 9.33
8 309 329 331 375 341.6 344.9 6.47 11.7 21.3 10.5 11.61
9 591 615 621 591 639.9 631.3 4.06 5.07 0.0 8.27 6.81

10 310 310 315 412 325.5 337.3 0.0 1.61 32.9 13.7 8.80
Av. 132.6 137.2 136.1 151.4 145.6 143.4 1.71 0.66 17.51 5.35 4.27

Regarding versatility, average results in table 2 show that as expected SCPC provides
a greater number of alternative solutions (Alt) due to its intrinsic genetic diversity.
Regarding the mean number of optimal solutions found in a run (Opt) MCPC pro-
vides a slight superior average behaviour than SCPC, and also found a greater number
of distinct optimal solutions in the whole experiment (Topb).

Table 2. Versatility of solutions (EA1:SCPC – EA2: MCPC, both with direct representation)

Alt Opt TotbCase
LSA EA1 EA2 LSA EA1 EA2 LSA EA1 EA2

1 1 20.9 20.5 1 20.9 20.5 1 194 181
2 1 5.5 3.3 1 1.1 2.1 1 11 21
3 1 5.3 5.9 - 5.3 5.9 - 53 59
4 1 3.1 4.4 - 2.9 4.2 - 29 76
5 1 3.2 2.8 - 1.2 1.4 - 12 14
6 1 8.3 5.8 - 0.1 0.4 - 1 4
7 1 9.9 7.2 - 0 0.1 - 0 1
8 1 19.6 20.4 - 0 0.1 - 0 1
9 1 30.1 20.0 1 0 0 1 0 0

10 1 30.7 13.6 - 0.1 0 - 1 0
Aver. 1 13.66 10.39 0.3 3.16 3.47 0.3 30.1 35.7

A more detailed analysis on each run detected that in most cases alternative solutions
do not include, or include a low percentage, of non optimal alternative solutions. That
means that the final population is composed of many replicas of the optimal solutions
due to a loss of diversity. This fact stagnates the search and further improvements are
difficult to obtain. To avoid this behaviour we currently conduct new experiments
with other multirecombinative approaches.

Conventional and Multirecombinative Evolutionary Algorithms 231

5 Conclusions

In this work we approached allocation of a number of parallel tasks in parallel sup-
porting environments attempting to minimise the makespan. As we are interesting in
scheduling of arbitrary task graphs onto a reasonable number of processors, in many
cases we would be content with polynomial time scheduling algorithms that provide
good solutions even though optimal ones can not be guaranteed. The list scheduling
algorithm (LSA) satisfies this requirement.

Two variants of representations and two approaches of recombination were
undertaken to contrast their behaviour with the LSA. Preliminary results on the se-
lected test suite showed three important facts. Firstly, EAs provide not a single, but a
set of optimal solutions, providing for fault tolerance when system dynamics must be
considered. Secondly, EAs are free of the LSA anomalies. Finally, two variants of
recombination were undertaken SCPC and MCPC for each representation. The be-
haviours of the EAs were similar and all of them showed better results that LSA.

When we compare their performance it is clear that the approaches including
multirecombination behave better than the conventional ones (in both representations)
but yet it would be necessary to continue experimentation with different parameter
settings, self-adaptation of parameters, and contrasting with newer non-evolutionary
heuristics. Current research includes diverse multirecombination schemes and hy-
bridisation of EAs by means of local search applied on different stages of the evolu-
tionary process.

6 References

1. Graham R. L.: Bounds on Multiprocessing Anomalies and Packing Algorithms. Proceed-
ings of the AFIPS 1972 Spring Joint Computer Conference, pp 205-217, (1972).

2. Esquivel S., Leiva A., Gallard R: Multiplicity in Genetic Algorithms to Face Multicriteria
Optimization. Proceedings of the Congress on Evolutionary Algorithms (IEEE), Wash-
ington DC, pp 85 – 90, (1999).

3. Horowitz E. and Sahni S.: Exact and Approximate Algorithms for Scheduling non Identi-
cal Processors. Journal of the ACM, vol. 23, No. 2, pp 317-327, (1976).

4. Ercal F.: Heuristic Approaches to Task Allocation for Parallel Computing. Doctoral Dis-
sertation, Ohio State University, (1988).

5. Reeves C.R., Karatza H.: Dynamic Sequencing of a Multiprocessor System; a
Genetic Algorithnm, Proc. of 1st International Conference on Artificial Neural
Nets and Genetic Algorithms. Springer Verlag (1993).

6. Seredynski F.: Task Scheduling with use of Classifier Systems. AISB. International Work-
shop 1997: Selected Papers, Lecture Notes in Computers Sciences 1305, pp 287 – 306,
Springer, (1997).

7. Tsang E.P.K., Voudouris C.: Fast Local Search and Guided Local Search and their Appli-
cations to British Telecom’s Workforce Scheduling Problem. Operations Research Letters
20 (3), pp 129 –137 (1997)

8. Yue K.K., Lilja D.J.: Designing Multiprocessor Scheduling Algorithms using a Distrib-
uted Genetic Algorithm. Evolutionary Algorithms in Engineering Applications, pp 207 –
222. Springer (1997).

9. Kidwell M. :Using Genetic Algorithms to Schedule Tasks on a Bus-based System. Pro-
ceedings of the 5th International Conference on Genetic Algorithms, pp 368-374, (1993).

232 S. Esquivel, C. Gatica, and R. Gallard

10. Krause M., Nissen V.,: On Using Penalty Functions and Multicriteria Optimization Tech-
niques in Facility Layout. Evolutionary Algorithms for Management Applications, ed J.
Biethahn and V. Nissen (Berling: Springer), pp 153-166, (1995).

11. Lin S-C, Goodman E.D, Punch W.F,: Investigating Parallel Genetic Algorithms on Job
Shop Scheduling Problems. Evolutionary Programming VI, Lecture Notes in Computer
Sciences 1213, pp 383 –393, Springer (1997).

12. Murata T., Ishibuchi H.: Positive and Negative Combinations and Effects of Crossover
and Mutation Operators in Sequencing Problems. Proc. of 1996 IEEE International Con-
ference on Evolutionary Computation, pp 170- 175. IEEE (1996).

13. Sannomiya N., Iima H.: Applications of Genetic Algorithms to Scheduling Problems in
Manufacturing Processing. Proc. of 1996 IEEE International Conference on Evolutionary
Computation, pp 523 – 528, IEEE (1996).

14. Syswerda G.,: Scheduling Optimisation using Genetic Algorithms. Davis, L., Editor,
Handbook of Genetic Algorithms, chapter 21, pp 332 – 349, Van Nostrand Reinhold, New
York, (1991).

15. Yamada T., Nakano R.: Scheduling by Genetic Local Search with Multi-step crossover.
Parallel Problem Solving from Nature, PPSN IV, Lecture Notes in Computer Sciences
1141, pp 960 –969, Springer (1996).

16. Yamada T., Reeves C.R.: Solving the Csum Permutations Flow Shop Scheduling Problem
by Genetic Local Search. ICEC (1998).

17. Yamada, T., Reeves C.R.: Permutation Flow Scheduling by Genetic Local Search. Proc. of
the 2nd International Conference on Genetic Algorithms in Engineering Systems: Innova-
tions and Applications, pp 232 – 238 (1997).

18. Withley D., Starkweather T., Fuquay D’A: Scheduling Problems and Travelling Sales-
man: The Genetic Edge Recombination Operator. Proceedings of the 3th International
Conference on Genetic Algorithms, pp 133-140. Morgan Kaufmann Publishers, Los Altos
CA, (1989).

19. Fox G. C.: A Review of Automatic Load Balancing and Decomposition Methods for the
Hipercube. In M Shultz, ed., Numerical Algorithms for Modern Parallel Computer Archi-
tectures, Springer Verlag, pp 63-76, (1988).

20. Bagchi S., Uckum S., Miyabe Y., Kawamura K.: Exploring Problem Specific Recombina-
tion Operators for Job Shop Scheduling. Proceedings of the 4th International Conference
on Genetic Algorithms, pp 10 – 17 (1991)

21. Bruns R.: Direct Chromosome Representation and Advanced Genetic Operators for Pro-
duction Scheduling. Proceedings of the 5th International Conference on Genetic Algo-
rithms, pp 352-359, (1993).

22. Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Programs. Springer
Verlag, Third, Extended Edition, (1996).

23. Esquivel S., Ferrero S., Gallard R., Alfonso H. Salto C., Schütz M.:Enhanced evolutionary
algorithms for single and multiobjective optimization in the job shop scheduling problem.
To appear in the Knowledge Based System Journal, Elsevier 2001.

24. Pinedo M.,: Scheduling: Theory, Algorithms and Systems. Prentice Hall International
Series in Industrial and Systems Engineering, (1995).

Two-Sided, Genetics-Based Learning to Discover
Novel Fighter Combat Maneuvers

Robert E. Smith1, Bruce A. Dike2, B. Ravichandran3, Adel El-Fallah3, and
Raman K. Mehra3

1 The Intelligent Computing Systems Centre, Bristol, UK, robert.smith@uwe.ac.uk
2 The Boeing Company, St. Louis, MO, USA, bruce.a.dike@boeing.com
3 Scientific Systems, Woburn, MA, USA, {ravi, adel, rkm}@ssci.com

Abstract. This paper reports the authors’ ongoing experience with a
system for discovering novel fighter combat maneuvers, using a genetics-
based machine learning process, and combat simulation. In effect, the
genetic learning system in this application is taking the place of a test
pilot, in discovering complex maneuvers from experience. The goal of
this work is distinct from that of many other studies, in that innovation,
and discovery of novelty (as opposed to optimality), is in itself valuable.
This makes the details of aims and techniques somewhat distinct from
other genetics-based machine learning research.
This paper presents previously unpublished results that show two co-
adapting players in similar aircraft. The complexities of analyzing these
results, given the red queen effect are discussed. Finally, general implica-
tions of this work are discussed.

1 Introduction

New technologies for fighter aircraft are being developed continuously. Often,
aircraft engineers can know a great deal about the aerodynamic performance
of new fighter aircraft that exploit new technologies, even before a physical
prototype is constructed or flown. Such aerodynamic knowledge is available from
design principles, from computer simulation, and from wind tunnel experiments.

Evaluating the impact of new technologies on actual combat can provide
vital feedback to designers, to customers, and to future pilots of the aircraft in
question. However, this feedback typically comes at a high price. While designers
can use fundamental design principles (i.e., tight turning capacity is good) to
shape their designs, often times good maneuvers lie in odd parts of the aircraft
performance space, and in the creativity and innovation of the pilot.

Therefore, the typical process would be to develop a new aircraft, construct a
one-off prototype, and allow test pilots to experiment with the prototype, devel-
oping maneuvers in simulated combat. Clearly, the expense of such a prototype
is substantial. Moreover, simulated combat with highly trained test pilots has a
substantial price tag. Therefore, it would be desirable to discover the maneuver
utility of new technologies, without a physical prototype.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 233–242, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

234 R.E. Smith et al.

The approach that is pursued in the authors’ past work [1,2], and in new
work presented here, an adaptive, machine learning system takes the place of
the test pilot in simulated combat. This approach has several advantages.

As in a purely analytical approach, this approach requires a model. However,
in this case the model need only be accurate for purposes of combat simulation.
It need not present a mathematically tractable form.

Moreover, the approach is similar to that of man-in-the-loop simulation, ex-
cept in this case the machine learning ”pilot” has no bias dictated by past
experiences with real aircraft, no prejudices against simulated combat, and no
tendency to tire of the simulated combat process after hundreds or thousands of
engagements. Also, one overcomes the constraints of real-time simulation.

This paper considers ongoing work in this area in terms of its unique character
as a machine learning and adaptive systems problem. To recognize the difference
between this problem and more typical machine learning problems, one must
consider its ultimate goal. This work is directed at filling the role of test pilot
in the generation of innovative, novel maneuvers. The work is not directed at
online control. That is to say, the machine learning system is not intended to
generate part of an algorithm for controlling a real fighter aircraft. Like the test
pilot in simulated combat, the machine learning system can periodically fail,
without worry that the associated combat failure will result in possible loss of
hardware and personnel. In many ways, the machine learning system is even less
constrained than the test pilot, in that it is more willing to experiment with
maneuvers that would be dangerous in fighter combat with real aircraft. The
goal of this work is the process of innovation and novelty, rather than discovering
optimality.

2 The LCS Used Here

Details of the LCS used here are briefly provided below. For a more detailed
discussion, see previous papers [1][3].

The LCS interacts in simulated, 1-versus-1 combat, through AASPEM, the
Air-to-Air System Performance Evaluation Model. AASPEM is a U.S. Govern-
ment computer simulation of air-to-air combat, and is one of the standard models
for this topic. The classifier actions directly fire effectors (there are no internal
messages).

In our system if no classifiers are matched by the current message, a default
action for straight, level flight is used. There is no “cover” operator [4].

At the end of an engagement, the “measure of effectiveness” score for the
complete engagement is calculated. This score is assigned as the fitness for ev-
ery classifier that acted during the engagement (and to any duplicates of these
classifiers). Note that this score replaces the score given by averaging the par-
ent scores when the GA generated the rule. Thus, rules that do not fire simply
”inherit” the averaged fitness of their GA parents [2].

Our efforts have included an evaluation of different measures of effectiveness
within the genetics-based machine learning system, to determine the relative

Two-Sided, Genetics-Based Learning 235

sensitivity of the process. Initial candidate measures included exchange ratio,
time on advantage, time to first kill, and other relevant variables.

The measure of effectiveness ultimately selected to feedback into the GA
fitness function was based on the following steps. The base score was based on
a linear function of average angular advantage (opponent target aspect angle
minus ownship target aspect angle). To encourage maneuvers that might enable
gun firing opportunities, an additional score was added when the target was
within 5 degrees of the aircraft’s nose. A tax was applied to non-firing classifiers
to discourage the proliferation of parasite classifiers that contain elements of
high-performance classifiers but have insufficient material for activation. All non-
firing classifiers that were identical to a firing classifier were reassigned the firing
classifier’s fitness.

The GA acts at the end of each 30-second engagement. The GA is panmic-
tic (it acts over the entire population). In some of our experiments, the entire
classifier list is replaced each time the GA is applied. This has been surpris-
ingly successful, despite the expected disruption of the classifier list. In recent
experiments, we have used a generation gap of 0.5 (replacing half of the classifier
population with the GA). A new, GA-created classifier is assigned a fitness that
is the average of the fitness values of its “parent” classifiers. The GA used em-
ployed tournament selection, with a tournament size ranging from 2 to 8. Typical
GA parameters are a crossover probability of 0.95, and a mutation rate of 0.02
per bit position. When a condition bit is selected for mutation, it is set to one
of the three possible character values (1, 0, or #), with equal probability. Note
that this actually yields an effective mutation probability of (0.02)(2/3)=0.0133.
Children rules replaced randomly selected rules in the population.

The matching rule with the highest fitness/strength is selected to act deter-
ministically.

We have used a number of starting conditions for the 1-v.-1 combat simula-
tions considered here. The primary source document for these conditions was the
X-31 Project Pinball II Tactical Utility Summary, which contained results from
manned simulation engagements conducted in 1993 at Ottobrunn, Germany [5].
The starting condition we will consider in this paper is the Slow-Speed Line
Abreast (SSLA, where the aircraft begin combat side-by-side, pointing in the
same direction.

3 Two-Sided Learning Results

In recent work with the fighter combat LCS, we have allowed both opponents to
adapt under the action of a GA [3]. This ongoing effort complicates the fighter
combat problem, and the interpretation of simulation results. Because of the red
queen effect [6], the dynamic system created by two players has several possible
attractors. These include fixed points, periodic behaviors, chaotic behaviors,
and arms races. The latter is clearly the behavior we want our simulations to
encourage. Our current results have (qualitatively) shown promise in this area
(i.e., we have seen an escalation of strategies between the two aircraft).

236 R.E. Smith et al.

A number of approaches to two-sided learning have been considered. In each
approach, a “run” consists of 300 simulated combat engagements. Results in this
paper consider the following approach:

Alternate freeze learning with memory (MEM): This learning scheme
can be viewed as an extended version of the ALT learning. At the end of each run,
the results of the 300 engagements are scanned to obtain the highest measure
of effectiveness. The rules from the highest scoring engagement are used for the
frozen strategy in the next run. Furthermore, these rules are memorized and
are added to the population in the upcoming learning sequence runs. Thus, the
system has memory of its previously learned behavior.

3.1 Similar Aircraft (X-31 v. X-31)

This section presents results where two-players in similar aircraft (both X-31s)
co-adapt to one another.

Before examining the results graphically, it is useful to consider the pro-
gression of raw scores observed. These results are shown in Table 1. We will
distinguish the two X-31s by their initial configurations. Relative to their SSLA
starting conditions, we will call the player initially on the right player R and the
player initially on the left player L.

Table 1. Progression of Scores for one player (Player R) in a simulation with two X-31
aircraft co-adapting with LCSs.

Learning Run Best Score of Player R
1 49.53379
2 -38.88130
3 48.49355
4 1.854810
5 72.52103
6 -21.01414
7 87.11726
8 -7.360970
9 79.42159
10 30.43967

Note the nature of this progression. Player R’s relative superiority alternates
as a result of the system’s learning. In other words, the player that is adapting
has a continual advantage. Note that the player’s interactions do not seem to
evolve towards a fix-point compromise, but seem to continue to adapt. This
leaves the possibility of period, chaotic, or (the desirable) arms race behavior.
We can gain some insight by examining plots of the ”best” (learning) player’s
dominance in each run. Note that these are typical results, and that each figure
is shown from a slightly different angle, for clarity.

Two-Sided, Genetics-Based Learning 237

Fig. 1. ”Best” maneuver in learning a) run 1 where Player R is learning and b) run 2
where Player L is learning.

Figure 1 a) shows the ”best” maneuver discovered in learning run 1, where
the player starting on the right (player R) has been learning under the action of
the GA, and player L has followed standard combat logic. This maneuver is best
in the sense of player R’s raw score. Player R has learned to dominate player
L, by staying inside player L’s turning radius, and employing a helicopter gun
maneuver. This is one of the post-stall tactic (PST) maneuvers often discovered
by the LCS in out one-sided learning experiments. Figure 1 b) shows the results
from the next learning run, where player R follows the strategy dictated by the
rules employed in maneuver shown in Figure 1 a). Note the shadow trace of
player L shown at the bottom of this figure. Player L has learned to respond to
player’s R’s helicopter gun maneuver with a J-turn (a turn utilizing Herbst-like
maneuvering) to escape. This is our first evidence of one player trumping the
advanced, PST maneuver learned by its opponent, by learning a PST maneuver
of its own.

238 R.E. Smith et al.

Fig. 2. ”Best” maneuver in learning a) run 3 where Player R is learning and b) run 4
where Player L is learning.

Figure 2 a) shows the response when player R returns to the learning role
in run 3. Player R learns to abandon the helicopter gun maneuver given player
L’s J-turn escape. In this run, both players are exhibiting Herbst or J-turn
type maneuvers. Note that player L, while not learning, remains responsive to
changes in player R’s maneuver, due to activation of different rules at different
times in the run. At this stage, both players have reached similar strategy levels,
by exploiting so-called “out-of-plane” behavior (three-dimensional maneuvering,
with drastic movement out of the common plane the players occupy in space)
. Figure 2 b) shows player L learning to alter the end of its J-turn, such that
it turns to target player R near the end of the maneuver. Note that player R
has clearly remained responsive, despite not learning, and altered part of its
maneuver.

Figure 3 a) shows a much more advanced strategy emerging on the part of
player R, once again in the learning role. This maneuver combines features of a

Two-Sided, Genetics-Based Learning 239

Fig. 3. ”Best” maneuver in learning a) run 5 where Player R is learning and b) run 6
where Player L is learning.

Herbst maneuver (high angles of attack and rolling to rapidly change directions)
and features of a helicopter gun attack (thrust-vectored nose pointing inside the
opponent’s turn). Given this advanced maneuver, player L learns in run 6 to
extend its J-turn, and escape the fight (Figure 3 b)).

In run 7, player R refines its Herbst turn, putting the two players in parallel
PST turns, resulting in a steeply diving chase (Figure 4 a)). In run 8 (Figure 4
b)), player L learns to gain a few critical moments of advantage early in the
maneuver, through a brief helicopter gun attack, before it extending a dive out
of the fight. Note that, as before, player R remains reactive, despite its lack of
learning in this run. In reaction to player L’s early attack, it maintains altitude
to escape, rather than following the parallel diving pursuit shown in Figure 4 a).

240 R.E. Smith et al.

Fig. 4. ”Best” maneuver in learning a) run 7 where Player R is learning and b) run 8
where Player L is learning.

Figure 5 a) shows the emergence of a maneuver where the players swing
and cross one another’s paths in the air, in a complex sort of ”rolling scissors”
maneuver [7]. Note the shadow traces in this plot, and compare the maneuver’s
complexity to that of the diving pursuit shown in Figure 4 a). In Figure 5 b),
player L once again learns to escape player R’s advanced strategy, through a full
inversion in a rolling turn. However, note that player R has remained reactive,
and, despite its lack of learning in this run, executes an effective helicopter gun
attack early in the run.

Throughout these runs, player R (which had the advantage of being ”first to
learn”) assumes a somewhat more aggressive posture. However, note that there
is a definite progression in the complexity of both players’ strategies, in reaction
to each other’s learning. This is the desired ”arms race” behavior that we are
attempting to encourage, such that the system discovers increasingly interesting
and novel maneuver sets.

4 Final Comments

Many conclusions and areas for future investigation can be drawn from the work
presented here. However, as a concluding focus of this paper, one should consider

Two-Sided, Genetics-Based Learning 241

Fig. 5. ”Best” maneuver in learning a) run 9 where Player R is learning and b) run 10
where Player L is learning.

the goal of the LCS approach in the fighter aircraft LCS, as a guideline for future
applications of the LCS, and other adaptive systems technologies. Since there is a
real, quantifiable value to the discovery of innovative, high utility fighter combat
maneuvers, one can concentrate on the exploration and synthesis aspects of the
LCS, without particular consider for the long term stability of any given rule set.
One should not overlook the utility of the LCS approach for generating novel,
innovated approaches to problems. In many domains (like the fighter aircraft
task), such open-ended machine innovation can have a real world, hard-cash
value. The applicability of the adaptive systems approach to such tasks deserves
further consideration.

Acknowledgements. The authors gratefully acknowledge that this work is
sponsored by The United States Air Force (Air Force F33657-97-C-2035 and Air
Force F33657-98-C-2045). The authors also gratefully acknowledge the support
provided by NASA for the early phases of this project, under grant NAS2-13994.

References

1. R. E. Smith and B. A. Dike. Learning novel fighter combat maneuver rules via
genetic algorithms. International Journal of Expert Systems, 8(3):247–276, 1995.

242 R.E. Smith et al.

2. R. E. Smith, B. A. Dike, and Stegmann. Inheritance in genetic algorithms. In
Proceedings of the ACM 1995 Symposium on Applied Computing, pages 345–350.
ACM Press, 1994.

3. R. E. Smith, B. A. Dike, R. K. Mehra, B. Ravichandran, and A. El-Fallah. Classifier
systems in combat: Two-sided learning of maneuvers for advanced fighter aircraft.
Computer Methods in Applied Mechanics and Engineering, 186:421–437, 2000.

4. S. W. Wilson. Zcs: A zeroth-level classifier system. Evolutionary Computation,
2(1):1–18, 1994.

5. P. M. Doane, C. H. Gay, and J. A. Fligg. Multi-system integrated control (music)
program. Technical Report Final Report, Wright Laboratories, Wright-Patterson
AFB, OH, 1989.

6. D. Floriano and S. Nolfi. God save the red queen: Competition in co-evolutionary
robotics. In Proceedings of the Second International Conference on Genetic Pro-
gramming, pages 398–406. MIT Press, 1997.

7. R. L. Shaw. Fighter Combat: Tactics and Maneuvering. United States Naval
Institute Press, 1998.

Generation of Time-Delay Algorithms for
Anti-air Missiles Using Genetic Programming

Henry O. Nyongesa

School of Computing and Management Sciences,
Sheffield Hallam University,

Sheffield S1 1WB,
United Kingdom

HNyongesa@aol.com

Abstract. This paper describes the application of genetic program-
ming to generate algorithms for control of time-delays in anti-air missiles
equipped with proximity fuzes. Conventional algorithms for determining
these delay-times rely on human effort and experience, and are gener-
ally deficient. It is demonstrated that by applying genetic programming
determination of the timing can be automated and made near-optimal.

1 Introduction

In the final stages of an anti-air missile’s engagement with an airborne target,
it is often the case that the missile will pass near the target without physically
hitting it. For this reason missile warheads are equipped with a proximity fuze, a
device which detects the target, and explodes the warhead at a suitable moment
to maximise the probability of destroying the target or disabling vital systems
on the the target. The vulnerability of the target varies along its frame due to
positioning and shielding of components, hence the optimum moment to burst
the warhead depends on many parameters including [1], the velocity of the mis-
sile, the approach angle of the missile relative to the target, miss distance and
direction, orientation of the missile, and kill capacity of the missile warhead
(fragment density and velocity). From the available information, an “optimum”
time can be determined at which to detonate the warhead to maximise the prob-
ability of kill (Pk). As a missile travels past its target, Pk can vary greatly, from
a minimum (≈ 0.0) to a maximum value (≈ 1.0) over relatively very short dis-
tances (typically, 20cm to 30cm), which at supersonic speeds represents a time
period of less than 1 millisecond. Furthermore, the distribution function of Pk
is also greatly multi-modal, such that, over the fly-by distance several Pk peaks
(not necessarily all maximal) are traversed. Therefore, an algorithm for optimal
delay-time algorithm should allow the missile to travel over one or more sub-
optimal peaks before eventually detonating the warhead. Thus, it is required to
model the Pk from the information that is provided.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 243–247, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

244 H.O. Nyongesa

2 Application of GP for a Time-Delay Algorithm

Genetic programming (GP) is a machine learning technique based on the prin-
ciples of natural evolution including survival of the fittest and natural selection.
GP was developed by Koza [2] and has its roots in the better known field of
Genetic Algorithms [3] with which it shares many characteristics. GP has been
chosen for the time-delay problem because it does not rely on human understand-
ing of the complexities of the problem. Secondly, GP is not known to have been
previously applied to this type of problem, although a previous study [4] aplied
it to improve aircraft survivability in an environment with surface-air missile.
GP is also particularly suitable because it is able to evolve explicit mathemati-
cal expressions which can be examined for understandability after the learning
process, unlike alternative learning algorithms such as neural networks.

GP evolution relies on an iterative process of generation and testing of so-
lutions. An initial population of trial algorithms is randomly generated using a
set of functions and a set of terminals, which has been chosen for the problem
at hand. In the present case, the function set F , is a selection of mathematical
functions comprises common arithmetic and trigonometric functions, as shown
in Table 1. The terminal set T , also shown in Table 1, comprises the indepen-
dent variables of the problem, namely, the velocity of the missile v, the approach
angle of the missile relative to the target θ1, miss distance d and miss direc-
tion θ2, and orientation of the missile relative to its velocity vector θ3, and R,
a random constant between 0.0 and +5.0. Each feasible solution is a complex
expression involving parameters of the terminal and function sets, which models
the distribution of Pk.

Table 1. GP Tableau for delay-time problem

Objective: Evolve an algorithm which outputs a delay-time t which max-
imises the Pk for given d, θ1, θ2, θ3

Function Set: F = {+, −, ∗, /, PWR, SIN, COS, EXP}
Terminal Set: T = {v, θ1, θ2, θ3, d, R}
GP
Parameters:

population = 500 × 10 = 5000,
max. generations =250, crossover = 0.8,
reproduction = 0.2, mutation = 0.00,
migration frequency = 5 generations,
migration rate = 5%

Success predi-
cate:

Fitness=0

The evolutionary learning process was carried out to a maximum of 250 gen-
erations, with 10 separate populations. Every fifth generation, the top 5% of the
population from each processor migrated to a neighbouring processor, displacing
the bottom 5%. The evolution process in this study took approximately 2 hours
on a university-network ten processor system, which at the best of times is quite

Generation of Time-Delay Algorithms for Anti-air Missiles 245

slow. However, this in fact is an indication that with superior technology the
learning process is feasible in real-time applications.

3 Simulation Results

The GP system was trained using a dataset of 12,500 combinations of
(v, θ1, θ2, θ3, d), against the delay time t that corresponded to the highest value
of Pk for the given target. Another data set of 12,500 entries was used to test
the evolved algorithms.The data was made available through a Defence estab-
lishment, representing realistic missile end-game scenarios. A demonstration of
the performance of the evolved algorithms are shown in Figures 1 and 1. The
plots show a cross-section of Pk in 3D space for a specific set of v, θ1, θ2, θ3. The
value of the miss distance d was varied, and the required delay-time t determined
by the learned algorithm. The ”color intensity” indicates the values of Pk in the
cross-sectional plane. The curve imposed on each cross-section corresponds to
the time delays determined by the algorithm as d was varied. For example in
Figure 1, with a miss distance of 25cm there are two possible values of time delay
that would result in a high Pk, namely, 10ms ansd 45ms. The value determined
by the algorithm, however, is 45ms.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

delay

m
is

s
di

st
an

ce

Fig. 1. Example 1 of an evolved delay-time curve superimposed on a simulated Pk plot

246 H.O. Nyongesa

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

delay

m
is

s
di

st
an

ce

Fig. 2. Example 2 of an evolved delay-time curve superimposed on a simulated Pk plot

It is shown that the evolved delay time algorithms accurately track the re-
gions of high Pk. However, a root mean square difference (rmsd) between the
actual Pk from the test data and that suggested by the algorithm, is chosen as
a quantitative measure of performance. This was found to be an average of ap-
proximately 0.01%. We can glean that this implies a near-optimal performance
with respect to this type of application.

4 Conclusions

The paper has demonstrated the applicability of GP to an application in a
complex nonlinear environment. While it would appear desirable to incorporate
GP-learning within a missile in order to adapt to real-time changes, this is still
infeasible with the current technologies. However, the study suggests that it is
feasible to evolve time delay algorithms off-line for specific scenarios, which could
then be embedded in missile hardware. Generalisation of this conclusion will
require further research studies of the technique in more realistic environments,
and with practical constraints.

Generation of Time-Delay Algorithms for Anti-air Missiles 247

References

1. G. Payne, “Anti-air lethality modelling,” Military Technology, vol. 19, no. 11, pp.
46–49, 1995.

2. J. R. Koza, Genetic Programming: on the Programming of Computers by Means
of Natural Selection, MIT Press, Cambridge, MA, USA, 1992.

3. J. H. Holland, Adaption in Natural and Artificial Systems, University of Michigan
Press, 1975.

4. F. W. Moore, “Genetic programming solves the three-dimensional missile counter-
measures optimization problem under uncertainty,” in Genetic Programming 1998:
Proceedings of the Third Annual Conference, John R. Koza, et al Eds., University
of Wisconsin, 22-25 July 1998, pp. 242–245, Morgan Kaufmann.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 248-256, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Surface Movement Radar Image Correlation Using
Genetic Algorithm

Enrico Piazza (member, IEEE)

Navia Aviation AS, division NOVA
P.O.Box 1080, 3194 Horten - Norway

enrico.piazza@naviaav.no

Abstract. The goal of this work is to describe an application of Genetic Algorithms
to to a real aeronautical problem involving radar images. The paper presents the
aeronautical problem, the specific implementation of the Genetic Algorithm and
the result of the variation of some of the parameters of the Genetic Algorithm in
term of time employed by the process, and ability to reach a useful solution of the
aeronautical problem in a given time. The aeronautical problem is to find the
position, orientation and dimension of a radar observed target. All the methods
used here involve the correlation between an actual radar image and a template
image. The Genetic Algorithm itself is not standard since it involve a dynamic
computation of the best value for the probability of mutation. The probability of
mutation (Pm) is dynamically adjusted according to the fitness of the best
individual so that a worse fitness gives a greater probability of mutation and a
better individual gives a lower probability of mutation.

Keywords: Radar, Image Correlation, Genetic Algorithms, A-SMGCS, Air Traffic
Control

1 Introduction

Nowadays, because of the ever-growing number of aircraft in controlled areas; the
rising demand for safety of passengers and cargo; and the greater growing
environmental concern, the problem of improving the performance of traditional
Airport Control systems must be faced [1].

Research trend in future years is oriented towards the development of
integrated systems, which collect information coming from various sensors and
distribute it both to ground Air Traffic Controllers and to moving vehicles. The
realisation of a system for the automatic control of airport surface traffic can play an
important role in this context. The systems and procedures that ensure the above could
be included in the "Advanced-Surface Movement Guidance and Control System" (A-
SMGCS).

Despite the new technologies developed to monitor the Airport Surface,
including Global Positioning System (GPS) or Multilateration and co-operative
sensors, the radar will keep its role of main surveillance sensor for many years.

Surface Movement Radar Image Correlation Using Genetic Algorithm 249

The automatic extraction in real time of the target features can be carried out through
innovative approaches to the processing of radar data, based on image processing
techniques.

While the aeronautical problem is to find the position, orientation and
dimension of the observed target, the scope of this work is to show how this can be
done with the use of a Genetic Algorithm. The goal of this work is to present a
Genetic Algorithm and a study of the parameters of the Algorithm in order to use it in
the best possible way.

Previous works have addressed the problem of image matching both with the
use of Genetic Algorithms, for example, in [2] and [3] and without the use of Genetic
Algorithms, for example in [4] and [5]. In both cases neither the direct application to
the aeronautical problem, nor the time requirement was addressed.

2 Test Images

All the methods used here to find the position, orientation and dimension of the
observed target, involve the correlation between an actual radar image and a template
image. In this chapter the radar images and template images are described.

2.1 Radar Images

The images used in this work are radar images obtained by courtesy of Oerlikon
Contraves Italiana SpA. The radar is a prototype operating at 95 GHz, developed by
Oerlikon Contraves Italiana in the framework of the research project on transportation
(PFT2) with a grant awarded by the Italian National Research Council (CNR) [6] [7].

It is important to note that the target echoes, as they appear in a
bidimensional form, do not resemble the targets real shape exactly (See Fig 1a). The
appearance of the target in a 2D radar image, in fact, will strongly depend on its 3D
shape, on the radar resolution and on the position of the target with respect to the
sensor.

The images were recorded at Rome-Fiumicino Airport, Italy in 1997 with
Pulse Repetition Frequency PRF = 2500 Hz, antenna rotation time Tra = 1.81 and
range binary sampling frequency fRBC = 50 MHz [7], leading to dr = 3 m/sample and
da = 0.0796 deg/sweep. They have been resampled on a square grid with a resolution
of 3 m/pixel. As an example, Fig. 1a shows a 65 m long B747 radar image, made by
64 x 64 pixels, sampled at 3.0 m/pixel.

2.2 Template Images

The template T (i, j) is computed from a generic aircraft shape, given a resolution dr, a
scale s, an angle a and a position x , y. Since the Genetic Algorithm is being applied to
airplanes, the scale parameter represent the wingspan or the length of the aircraft in
metres. The heading angle is a value in degrees from north, clockwise. The resolution
is the sampling step in m/pixel.

250 E. Piazza

In order to have a template useful for the Genetic Algorithm, a blur function
is implemented with a simple convolution filter. As an example, Fig. 1b shows a
template made of by 64 x 64 pixels, rotated by 45 degrees, 70 m long, and sampled at
3.0 m/pixel.

(a) (b)
Fig. 1 - (a) Example of B747 radar image 65 m long, made by 64 x 64 pixels, sampled at 3.0
m/pixel. (b) Example of a template 64 x 64 pixel. Template rotated by 45 degrees and 70 m
long, sampled at 3.0 m/pixel.

˝

3 Genetic Algorithms

These kind of Algorithms are said to be generational because the solution is found by
letting a population evolve generation by generation until the best individual is finally
able to perform the given task, or a maximum time is reached.

In this work termination is set after 300 generations or if the best individual
reaches 90% of the best-expected fitness value.

3.1 Creation of Initial Population

The initial population consists of entirely random individuals to avoid convergence to
local optima. The total number of individuals is kept constant over all generations.

3.2 Selection

Selection is the process of choosing individuals for the next generation from the
individuals in the current generation. The selection procedure is a stochastic procedure
that guarantees that the number of offspring of any individual is bound to the expected
number of offspring. The idea is to allocate to each individual a portion of a spinning
roulette wheel, proportional to the individual's relative fitness [8]. The selection used
here is the classic Roulette wheel, where best-fit individuals have a higher probability
of being chosen without any elitist behaviour, that is, the best individuals are not
copied from one generation to the next.

Surface Movement Radar Image Correlation Using Genetic Algorithm 251

3.3 Crossover
Because of the number of parameter involved, the single point crossover operation
may not be useful [9]. So crossover is applied to each sub string corresponding to each
of the parameters. This crossover is similar to the standard single point crossover
operator, but it operates on each parameter. Therefore, there are NP single point
crossover operation taking place between two parents.

3.4 Mutation
The mutation used here is a classic mutation operator in which each bit of each
individual is complemented with a small mutation probability. The classic Genetic
Algorithm implementation uses a fixed mutation-rate. To avoid Genetic Algorithm
stagnation, defined as the number of generations in which the best performer remains
the same [2], the probability of mutation (Pm) is dynamically adjusted according to
the fitness of the best individual so that, a worse fitness gives a greater probability of
mutation and a better individual gives a lower probability of mutation. The used
formula is

Pm(t) = 0.6 (1-max{fitness[population(t)]}).

3.5 Genes Mapping
Genes are 16 bit integer numbers coded with the reflected Grey code. It has the
property that adjacent integer values differ by exactly one bit [8]. As expected, the use
of the reflected Gray code mapping had a positive effect on the generation-to-
generation performance of the Genetic Algorithm, resulting in a better convergence
after a given number of generations.

3.6 Fitness Evaluation
The individual’s fitness is computed at the end of each generation. If an individual was
copied from one generation to another by the selection, crossover and mutation and
remains unchanged, then its fitness is preserved and there is no need to waste
processor time to evaluate it again.

The fitness value of an individual is chosen in the range 0.0 to 1.0 where the
best individuals have higher values.

In order to constrain the range of some of the parameters, the fitness is
chosen to be zero for those individual whose parameter values are out of the allowed
range.

4 Parameter Optimisation

According to the description of the Genetic Functions given above, the Genetic
Algorithm has a number of parameters. Different problems have different sets of
parameters, which lead to the "best" solution. The definition of "best" is often not so
clear. Sometimes it means faster, sometimes it means having a better chance to get to
a valid solution in a given time.

252 E. Piazza

The parameters which are free in the Genetic Functions used in this work,
are:

 - Probability of Crossover (Pc);
 - Number of individuals in the population (Ni).

Here follow few tests run on the Genetic Algorithm software. The complete
search algorithm was run 100 times for each couple of values of Probability of
Crossover (Pc) in (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0) and Number of individuals
in the population (Ni) in (50, 100, 200, 300, 400, 500). The whole run for each test,
took several days on an SGI Indy 180 MHz processor. For each search, the
termination is set after 300 generations or if the best individual reaches 90% of the
best-expected fitness value.

4.1 Four Coefficients Polynomial
The first test was to find a specific four coefficients polynomial given a set of eight
points.

 y = a0 + a1 x + a2 x2 + a3 x3;

given a set of point (xk, yk), k=0, ..., 7.
where a0=-2.5, a1=2.0, a2=1.5 and a3=-1.0.

The coefficients are coded as 16 bit fixed-point real values into the
chromosomes. One coefficient for each gene limited to the range -327.2, 327.2. The
genes are then coded with the reflected Grey code.

The fitness of each individual was evaluated by the quadratic error between
the expected polynomial and the polynomial encoded into the individual’s genes. The
fitness value of an individual is chosen to range between 0.0 and 1.0 where the best
individuals have higher values.

Ro

y a xk j k
j

jk

=

- - åå

1

1

2

This test revealed that the Reflected Gray Code is necessary, and was useful
to set the dynamically adjusted probability of mutation (Pm) to the present formula.

The results shown below in Fig. 2 are the average performance of the Genetic
Algorithm over 100 runs, as number of generation needed to accomplish the task and
the time used by the search process, versus the two free parameters.

It is possible to see that the number of generation needed decreases when N i
increases and when Pc decreases. The time increases when Ni increases and when Pc
decreases. Both the functions show a kind of flex around Ni = 400 and Pc = 0.4 which
are then considered the local optima. This study reveals that the Algorithm performs
best for low values of Pc and a given range of Ni. Higher numbers of individuals take

Surface Movement Radar Image Correlation Using Genetic Algorithm 253

4 coefficient test images

T
ue

 N
ov

 2
1

22
:0

7:
19

 2
00

0

50
100

150 200
250

300
350

400
450

500
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

50

100

Population

P crossover

generations

(a)

4 coefficient test images

T
ue

 N
ov

 2
1

22
:0

8:
16

 2
00

0

50
100

150 200
250

300
350

400
450

500
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

0.5

1

1.5

2

2.5

3

3.5

Population

P crossover

time (s)

(b)
Fig. 2 - (a) Number of generations required to get to a solution. (b) Time required getting to a
stop: either a solution or 300 generations. Case of four coefficients polynomial.

too long time to evaluate the fitness and lower numbers do not reach a solution in the
given number of generations, that is, in the maximum available time.

4.2 Correlation Between a Template and a Real Image
The second test was to find the best correlation between a template and a real image.
The image is the one shown in Fig. 1a, that is a 65 m long B747 radar image, made by
64 x 64 pixels, sampled at 3.0 m/pixel extracted from an actual radar image [10]. The
template T(i, j) is made by 32 x 32 pixels, computed given the set of four coefficients,
which are coded as 16 bit integers into the chromosomes. The four genes contain one
coefficient for each gene and their value is limited to the following ranges: scale s
between 1 and 120 m, angle a between 0 and 360 deg and position x, y inside the
template dimension that is between -32 and 32. The resolution is not a coefficient but
is assumed to be the same for template and image, dr=3.0 m/pixel.

The genes are then coded with reflected Grey code. The fitness of each
individual was evaluated by the NCC correlation [3] between a fixed template and the
one encoded in the genes. The fitness value of an individual is chosen to range
between 0.0 and 1.0 where the best individuals have higher values.

NCC u v

I i j T i u j v

I i j T i u j v

i j

i j i j

(,)

(,) (,)

(,) (,)

,

, ,

=
+ +

+ +

å

å å2 2

This test has not completely confirmed the basic evaluations about the
performance of the algorithm discovered during the four coefficient polynomial test.

Fig. 3, Fig. 4 and Fig. 5, below, show the performance of the Genetic
Algorithm as the number of generations needed to accomplish the task versus the two
free parameters, averaged over 100 runs.

These results show that there is no clear correlation between Pc and the
number of searches that reach 300 generation without finding a solution, that is,
without developing a good individual. As a general behaviour the function has a
minimum between Pc = 0.4 and Pc = 0.6. On the (b) side of Fig. 4 it is shown that

254 E. Piazza

4 coefficient test images

T
ue

 N
ov

 2
1

17
:0

6:
59

 2
00

0

50
100

150 200
250

300
350

400
450

500
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

100

150

200

250

Population

P crossover

generations

(a)

4 coefficient test images

T
ue

 N
ov

 2
1

17
:0

7:
19

 2
00

0

50
100

150 200
250

300
350

400
450

500
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

10

20

30

40

50

60

70

Population

P crossover

time (s)

(b)

Fig. 3 - (a) Number of generations required to get to a solution. (b) Time required to get to a
stop: either a solution or 300 generations. Case of correlation between a template and a real
image.

0

5

10

15

20

25

0 50 100 150 200 250 300

F
re

qu
en

cy
 (

%
)

generations

’p400c04g.dis’
’p400c05g.dis’
’p400c06g.dis’
’p400c07g.dis’
’p400c08g.dis’
’p400c10g.dis’

(a)
0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

F
re

qu
en

cy
 (

%
)

time (s)

’p400c04t.dis’
’p400c05t.dis’
’p400c06t.dis’
’p400c07t.dis’
’p400c08t.dis’
’p400c10t.dis’

(b)

Fig. 4 - Distribution of (a) the number of generations required to get to a solution, (b) the time
required to get to a stop: either a solution or 300 generations over a number of different
searches, varying the probability of crossover between 04 and 1.0.

Increasing Pc, affects the speed of the process and, actually, there is a minimum
between Pc = 0.4 and Pc = 0.6. The full time required now varies and is no more due
mainly to Ni = 400 as it was in the four coefficients polynomials case.

On the contrary, Fig. 5 shows the distribution of the same quantities against
the Number of individuals in the population (Ni) for the generic "best" Probability of
Crossover (Pc) = 0.4. These results show that by increasing Ni, in fewer searches the
line of 300 generation is reached without finding a solution. On the (b) side of Fig. 5 it
is shown that the minimum time to reach a solution is now much bigger than in the
case of the four coefficients polynomials. With Ni = 50, for example, no solutions are
ever found and the search time is about 20 s. With Ni = 300 the search time for an
unsuccessful search is 160 s while the average time is about 50 s. At the same time,
the figure shows the peaks due to the unsuccessful searches which, despite the fact
that they contain less searches, take more and more time.

This test was also used to check the different time performance of the
available machines at Navia. All the machines were tested with the same unsuccessful
run (a search that, after 300 generations, didn’t find a good individual) with a
population of 300 individuals and a Pc = 0.6. The program and its data are small

Surface Movement Radar Image Correlation Using Genetic Algorithm 255

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

F
re

qu
en

cy
 (

%
)

generations

’p050c04g.dis’
’p100c04g.dis’
’p200c04g.dis’
’p300c04g.dis’
’p400c04g.dis’
’p500c04g.dis’

(a)
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160

F
re

qu
en

cy
 (

%
)

time (s)

’p050c04t.dis’
’p100c04t.dis’
’p200c04t.dis’
’p300c04t.dis’
’p400c04t.dis’
’p500c04t.dis’

(b)
Fig. 5 - Distribution of (a) the number of generations required to get to a solution, (b) the time
required to get to a stop: either a solution or 300 generations over a number of different
searches, varying the number of individual between 50 and 500.

enough to fit into the smallest processor cache memory, which is the 512 kb on the
R5000IP22 of the SGI Indy.

Table 1 - Time performance on an unsuccessful run with 300 individuals and a Pc = 0.6.

SGI Indy R5000IP22 150 MHz IRIX 6.5 166 s
SGI O2 R5000IP32 300 MHz IRIX 6.5 101 s

SGI Origin2000 R10000IP27 225 MHz IRIX 6.5 61 s

Toshiba Satellite PentiumMMX 200 MHz Win 98 215 s

5 Conclusions

This paper has presented a possible solution to the problem of characterising a target
on a radar scene. The proposed solution involves the use of a Genetic Algorithm. The
Genetic Algorithm introduced here has a new feature: it automatically chooses a
suitable probability of mutation according to the actual fitness of the present
generation of individuals.

A study devoted to the tuning of the two free parameters of the Genetic
Algorithm set has been presented with a choice of "best" parameters.

When properly tuned, that is, when the best set of parameters is used, the
Genetic Algorithm has a time performance better than the exhaustive search for the
maximum of image correlations, but still too long for the heavy use in Air Traffic
Control environment. According to Fig 4b, applied to the correlation of a template
with a real image, no search is shorter than 20 s and all the successful searches take
less than 80 s with an average of 50 s. This time, compared with the 1.81 s radar
update time is still too long. However, optimizing the algorithm and running it on
more powerful processors, it could still be used, from time to time, whenever safety
requires a deeper investigation of some of the aircraft and traffic conditions, under
looser time constraints.

256 E. Piazza

References

1. EUROCAE, "Minimum Aviation System Performance Standards for Advanced
Surface Movement Guidance and Control Systems", EUROCAE WG41 Final
Report, Bruxelles 1997.

2. Dickens Thomas P., "Image-Calibration Transformation Matrix Solution Using a
Genetic Algorithm", in Industrial Application of Genetic Algorithms, Karr Charles
and Freeman Michael Editors, Chapter 2, CRC press, ISBN 0849398010,
http://corpitk.earthweb.com/ reference/ pro/ 0849398010/ ewtoc.html, 12 January
1998

3. Banks Jasmine, Bennamoun Mohammed, Corke Peter, "Fast and Robust Stereo
Matching Algorithms for Mining Automation", Digital Signal Processing,
Academic Press, Vol. 9, No. 3, p. 137-148, http://www.idealibrary.com/ links/ doi/
10.1006/ dspr.1999.0337 , July 1999

4. Pellegrini P.F., Piazza E., "Airport Surface Radar Signal Analysis for Target
Characterization. A Model Validation", IEEE IECON-95 Conference, Orlando,
Florida, November 1995

5. Sezgin M., Birecik S., Demir D., Bucak I.O., Cetin S., Kurugollu F., "A
Comparison of Visual Target Tracking Methods in Noisy Environments", IEEE
IECON-95 proceedings, p. 1360, Orlando, Florida, November 1995

6. Ferri M., Galati G., Marti F., Pellegrini P.F., Piazza E., "Design and Field
Evaluation of Millimetre-wave Surface Movement Radar", IEE Radar 97
Conference, Edinburgh, Scotland, Oct 1997

7. Galati G., Naldi M., Ferri M., "Airport Surface Surveillance with a Network of
Miniradars", IEEE Transactions on Aerospace and Electronic Systems, Vol. 35,
No. 1, p. 331-338, January 1999

8. Schraudolph Nicol N., Grefenstette John J., "A User’s Guide to GAucsd 1.4",
ftp://cs.ucsd.edu/ pub/ GAucsd , 7 July 1992

9. Chakraborty Samarjit, De Sudipta, Deb Kalyanmoy, "Model-Based Object
Recognition from a Complex Binary Imagery Using Genetic Algorithm", First
European Workshop, EvoIASP’99 and EuroEcTel’99, Goteborg, Sweden, May
1999

10. Piazza Enrico, "Adaptive Algorithms for Real Time Target Extraction from a
Surface Movement Radar", Proceedings of SPIE 4118-07, Parallel and Distributed
Methods for Image Processing IV, SPIE 2000 Annual Meeting, San Diego, CA,
July 2000

A Conceptual Approach for Simultaneous Flight
Schedule Construction with Genetic Algorithms

Tobias Grosche, Armin Heinzl, and Franz Rothlauf

University of Bayreuth
Department of Information Systems

D-95440 Bayreuth, Germany
{Grosche, Heinzl, Rothlauf}@uni-bayreuth.de

http://wi.oec.uni-bayreuth.de

Abstract. In this paper, a new conceptual approach for flight schedule
construction will be developed. Until now, the construction of a flight
schedule is performed by decomposing the overall problem into subprob-
lems and by solving these subproblems with various optimization tech-
niques. The new approach constructs flight schedules with the help of
genetic algorithms. Each individual of a population represents a com-
plete flight schedule. This encoding avoids the artificial decomposition of
the planning problem. With the help of genetic operators, flight schedule
construction may be conducted simultaneously, efficiently searching for
better solutions.

1 Introduction

Although positive market trends accompany the airline industry in the new
millennium, ongoing deregulation continuously increases competition and rivalry
within the industry. Recent developments in the commodity markets, especially
the rise in oil prices, volatile demand, and extension of existing respectively new
strategic alliances facilitates more effective ways of flight schedule construction.

Since every instance of a flight schedule affects the cost and revenue structure
of an airline and its competitors [1], its construction is of paramount importance
for every airline. The construction of a schedule is a complex planning activity.
Until now, it is performed by decomposing the overall planning task into various
subproblems of less complexity. Well known examples are fleet assignment or
rotation building etc. [1]. Many of these subproblems are well structured and,
therefore, solvable with linear optimization techniques. The subproblems will be
solved sequentially where a preceding subproblem delivers the input data for
the subsequent subproblems. Since the sum of partial optimal solutions does not
imply an overall optimal solution, a planning methodology which facilitates a
simultaneous (not sequential) optimization of flight schedules subproblems bears
a high potential. This paper outlines a conceptual approach for simultaneous
flight schedule construction with genetic algorithms (GA). We propose that a
GA-based scheduling approach will generate better flight schedules than the
sequential planning approach.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 257–267, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

258 T. Grosche, A. Heinzl, and F. Rothlauf

Our paper is organized as follows. The next section focuses on the traditional
planning approach, e.g. the sequential optimization of flight schedules. We will
briefly elaborate the subproblems and finally discuss the effectiveness of this
traditional approach. In the third section, we will develop a new approach for
simultaneous flight schedule construction. A coding scheme will be explicated
which possesses the ability to represent real-life flight schedules. Then, genetic
operators for schedule construction will be described and illustrated with ex-
amples. Finally, a concept for fitness evaluation will be stepwise modeled and
exemplified. In section four, we will briefly discuss the properties of our con-
ceptual approach and activities which help to improve the concept in the near
future.

2 Traditional Schedule Construction

2.1 Sequential Planning Activities

In order to effectively develop flight schedules, it is important to represent airline
operations in substantial detail. This, of course, creates complexity and leads to
a large number of variables in the overall planning model. Since it is almost
impossible to formulate the schedule construction problem as a mathematical
optimization model in a closed form, schedule construction has been undertaken
through a structured planning process which involves many activities and parts
of the airline. The planning process will be decomposed into subproblems with
less complexity which, in return, will be optimized sequentially.

In figure 1 an overview of the subproblems and possible aggregations to higher
problem levels is illustrated [2], [3].

Estimation
Competition Demand

Demand Estimation
Transportation Mode

Transportation Demand
Estimation

Problem
Market Selection

Market
Evaluation

Airport Selection
Problem

Leg Selection
Problem Assignment Problem

Leg Frequency

Departure and Arrival
Scheduling Problem

Flight
Scheduling

Network
Planning

Assignment Problem
Leg Capacity

Problem
Tail Assignment

Problem
Fleet Assignment

Problem
Aircraft Rotation

Aircraft
Routing

Problem
Crew Pairing

Problem
Crew Assignment

Crew
Scheduling

Fig. 1. Planning activities

2.2 Major Planning Activities

Market Evaluation. The quality of flight schedules is significantly influenced
by the demand for flights. The estimation of the demand can be performed by

Simultaneous Flight Schedule Construction with Genetic Algorithms 259

first estimating the transportation demand between an origin-destination pair
(market), then splitting up this demand on different transportation modes and
finally partition the demand for flight service on each airline in the market
[2]. Different models exist to estimate the demand for each step. Most of these
models require statistical data or facts about the socio-economic structure of
the specific market. One of the most important input for demand estimation is
historical data about bookings from computerized reservation systems.

Network Planning. The result of the market evaluation will allow the airline
to decide which markets to serve. This may already indicate a flight network, but
furthermore, a flight network is defined by its exact routes and airports. Thus,
the airline has to determine which airport in a region to serve. Moreover, the
airline has to select flight legs to operate in the chosen markets. This part of the
network planning process is affected mostly by political strategies, geographic
and socio-economic structures in the region, and ground resources of the airline.

Leg frequency assignment and leg capacity assignment are closely related.
The airline needs to decide about the total number of flights on one leg for the
planning period. This number influences the leg’s capacity and vice versa. For
some solution approaches see for example [4] and [5].

Flight Scheduling. Besides the frequency assignment in flight scheduling, the
airline has to specify exact departure times for its flights. The departure times
and the block time estimation (block time is the sum of flight time and the
time for taxiing on the ground) determine the arrival times. However, during
flight scheduling the fleet has not yet been assigned to the flights. The block
time is affected by the cruising speed of an aircraft type, so as a consequence,
it is unknown which block time should be taken into consideration. Thus, most
approaches which determine departure times are combined with fleet assignment.

Aircraft Routing. The main tasks in aircraft routing are fleet assignment and
aircraft rotation building. In fleet assignment, the airline faces the problem to
assign specific aircraft types to every flight leg. After fleet assignment, flights
of the same fleet are grouped into rotations of logical aircraft. A rotation is
a sequence of flights which can be flown in succession by the same aircraft.
Required maintenance restrictions usually are considered in this step. At the
end of the aircraft routing, the airline assigns real aircraft to the rotations (tail
assignment). Some approaches for this problem are proposed in [6], [7], [8], [9].

Crew Scheduling. Crew scheduling has minor influences on the schedule con-
struction problem. In this planning step, it will be determined which crew has
to operate which flight. This is done by first creating crew pairings and then
assign crews to the pairings. A crew pairing is a sequence of flights originating
and ending at the same crew base. See [10] for a solution approach.

260 T. Grosche, A. Heinzl, and F. Rothlauf

2.3 Overall Assessment of Existing Flight Schedule Construction
Process and Methodologies

Since researches have devoted much effort in developing optimization techniques
for the subproblems illustrated, it is possible to find good subsolutions. These
solutions might be (near) optimal for the subproblems, but this does not imply a
good overall solution. Local optimal solutions for subproblems can turn out to be
unfavorable for later planning steps. Interdependencies between the scheduling
steps are cut-off, e.g. the airline may realize during crew scheduling or aircraft
routing that the scheduled flights may not be carried out with the available
resources. Fleet assignment models are not able to consider the number of aircraft
per fleet. This problem is solved later in rotation building. Thus, it may happen
that the fleet assignment has to be modified after schedule construction.

The literature provides few approaches which integrate two or more sub-
problems [11]. Unfortunately, there is no model that takes all subproblems for
flight schedule construction into consideration. Thus, the state-of-the-art of flight
schedule construction will not support the development of acceptable schedules.
This might explain why many airlines - if at all - construct their schedules by
trial-and-error.

3 Simultaneous Flight Schedule Construction with
Genetic Algorithms

In this section, we will develop an integrated, GA-based flight schedule construc-
tion approach which simultaneously permits multiple planning activities like air-
port selection, leg selection, leg frequency assignment, leg capacity assignment,
departure as well as arrival scheduling, aircraft rotation, and fleet assignment.

3.1 Basic Representation Concept

A flight schedule may simply be coded as a list. For example, the list [FRA0.20
AMS40 ZRH30 OSL40 ... MIL30] represents the weekly flight schedule of one
single aircraft. This aircraft departs in Frankfurt (FRA) at 0.20 am to Ams-
terdam (AMS). Block times and minimal ground times will be stored in matri-
ces or tables. The suffix of the city code indicates that there is an additional
waiting time in AMS of 40 minutes. Thus, a flight program may be calcu-
lated as DepT imeB = DepT imeA + FlightT imeAB + MinGroundT imeB +
AdditionalWaitingT imeB.

If the aircraft has started its service in FRA on Monday morning, it arrives
in Milan (MIL) on Sunday. From MIL the aircraft will fly back to FRA in order
to begin its weekly service in FRA again.

With this basic representation concept we can generate flight schedules that
consist of weekly rotations only. But in reality, rotations may be longer than
one week. We solve this issue by simply appending multiple week plans while
introducing two markings ◦ and ∗. The symbol ◦ indicates that the rotation will

Simultaneous Flight Schedule Construction with Genetic Algorithms 261

be continued. A ∗ denotes the end of a rotation. Using these two markings, we
are able to represent rotations of varying length. Consider the flight schedule in
figure 2.

[ZRH0.20 ... ATH30 ° MUC0.10 ... DUB40 * DUS1.10 ... PRG30 ° HAM0.20 ... FRA25 *]

Fig. 2. Rotations

It indicates four week plans which are made up of two rotations, lasting two
weeks each. The first rotation starts Monday morning with an aircraft departing
from Zurich (ZRH) at 0.20 am and arriving at Athens (ATH) at the end of the
week. Instead of returning to ZRH, the marking ◦ indicates that it will fly to
Munich (MUC) where it continues its service on Monday morning in the second
week. At the end of the second week, the aircraft will arrive in Dublin (DUB)
from where it will return to ZRH to end its two week rotation. The end of
the rotation is symbolized by the marking ∗. The second rotation starts Monday
morning in Dusseldorf (DUS). At the end of the first week, this aircraft arrives at
Prague (PRG) and continues the rotation to Hamburg (HAM) on Sunday night.
In the second week, this aircraft departs HAM on Monday morning on 0.20 am
and completes its program in Frankfurt (FRA) where the second rotation ends.

Note that the two markings introduced represent multiple aircraft. In this
example, there are four aircraft deployed in the flight schedule. The first aircraft
departs ZRH Monday morning at 0.20 am, the second MUC at 0.10 am, the
third DUS at 1.10 am, and the fourth HAM at 0.20 am.

The last issue to resolve is the representation of multiple aircraft types for
fleet assignment. In this context the weekly plans of one aircraft type will simply
be joined until the next aircraft type follows. Consider the example in figure 3
which consists of two aircraft types and two individuals.

Type A Type B

Type A Type B
[ZRH0.20 ... ATH30 ° MUC0.10 ... DUB40 * DUS1.10 ... PRG ° HAM0.20 ... FRA25 *]

[ZRH0.20 ... ATH30 ° MUC0.10 ... DUB40 * DUS1.10 ... PRG ° HAM0.20 ... FRA25 *]

Fig. 3. Fleet assignment

Each individual represents a different flight schedule. In the first schedule,
every single aircraft type has to perform a two week rotation. In the second

262 T. Grosche, A. Heinzl, and F. Rothlauf

schedule, aircraft type A will be rotated twice whereas type B will be rotated
once. The first rotation for type A has a length of one week and the second
rotation one of two weeks. Note, that the various aircraft types will not be
explicitly coded in the list notation. Since the number of aircraft of each type is
known in advance (for example two aircraft of type A and two aircraft of type
B) it is determined that the week plans for type B start after two week plans of
type A.

3.2 Context Specific Genetic Operators

As we use a GA for our approach, we need recombination and mutation oper-
ators. Recombination should create individuals that inherit the properties from
their parents. As the information of the schedule is mainly the order of the cities
in the schedule, crossover should work well, if it preserves the order of the cities
when creating an offspring. Mutation operators should in general create offspring
with very similar properties as its parents. To ensure that our offspring has the
desired properties, we define the genetic operators directly on the structure of
the problem.

We believe that the one-point crossover is a good choice for preserving the
structure of the problem. We simply need to determine the crossover site. We
suggest to use the position where an exact point of time (e.g. 11.50 am) will
determine the crossover site in the recombination process. As a result, we will
obtain new flights at the crossover site.

Individual 2:

abs. pos.
MUC

BRU

BRU

ATH

ATH

HAM GVA

HAM GVA

OSL

OSL

Indivdiual 1’:
FRA

ZRH

ZRH

GVA MUC

MUC

OSL

OSLGVA

HAM GVA

GVA

OSL

OSLHAM

Individual 2’:
MUC

BRU

BRU

ATH

ATH

GVA

GVA

Time:
10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Individual 1:

abs. pos.
rel. pos.

FRA ZRH

GVA MUC

MUC

OSL

OSL

GVA

GVAGVA

ZRH

Crossover at 11.50 am:

Fig. 4. One-point crossover

In our example the flights Oslo (OSL) - Geneva (GVA) and Athens (ATH) -
Hamburg (HAM) will be replaced by OSL - HAM and ATH - GVA. By chang-
ing parts of individuals that contain markings of rotations this operator could
produce different rotations.

Another option is the introduction of an operator which we call string
crossover (see figure 5). With the help of this operator, segments of identical
length may be exchanged among different week plans and will be inserted at an
identical position in a week plan. The string-crossover permits the assignment
of (multiple) flights to other aircraft types. Since this operator permits a better

Simultaneous Flight Schedule Construction with Genetic Algorithms 263

4. WP 5. WP1. Weekplan 3. WP2. WP

1. WP 2. WP 4. WP 5. WP3. WP

3. WP2. WP1. WP 4. WP 5. WP

1. WP 3. WP2. WP 4. WP 5. WP

Individual 1

Individual 2

Individual 1’

Individual 2’

Fig. 5. String crossover

mixing of existing solution structures while not overemphasizing the effect of a
pure random search, we advocate its use for future implementation efforts.

Developing mutation operators is much more straightforward. We randomly
change a city, the length of a waiting time interval, or the rotation marking. The
replacement of a ∗ by a ◦ will change one flight. The alteration of a city will
change two flights. The change of the additional waiting time will not change
any destinations but rather modify the length of a flight schedule.

Since the application of the single-point crossover, the string crossover, and
the mutation operator will change arrival respectively departure times of flights
between child and parent individuals, a specific repair mechanism needs to be
developed. This mechanism should be able to adjust the departure times in way
that the differences in comparison to the parent individuals are minimized. For
this reason, the additional waiting time will serve as a buffer which will gradually
be shortened or prolonged through the process of time adjustment.

In some cases, this time adjustment mechanism will not permit a proper re-
alignment of the flight schedule. Thus, the deletion or insertion of distinct flights
is inevitable. We introduce the sum of waiting time intervals as a criterion for
flight insertion/deletion. If the sum of waiting time intervals in a given planning
period is low then the deletion of a flight is likely to occur. In contrast, if this
sum is high then the insertion of new flights will be likely. We will model the
insertion (deletion) probabilities as a (inverse) sigmoid function.

3.3 Fitness Evaluation

As the problem is quite large and difficult, approaches like GAs need a reasonable
population size and run over some 50 or hundred generations. Because current,
state-of-the-art flight schedule evaluation tools are very time-consuming heuristic
search could only be used, if we develop a simplified model for evaluating the
individuals.

Since the large time consumption of the flight schedule evaluation tools is
caused by the application of an open model which considers the effects on the
organization’s flight schedule on its competitors and vice versa, we propose the
development of a closed profit estimation model for fitness evaluation.

Since profit is defined by revenues minus cost, we need to elaborate the de-
termination of both variables. The basis for revenue estimation is the number of

264 T. Grosche, A. Heinzl, and F. Rothlauf

passengers or the number of seats sold. We approximate the number of passen-
gers as following:

sij(t) = hij(t)b · feij · pij(t) · (mij + mjik
). (1)

The main factor in this expression is the time-dependent attractiveness pij(t)
of a flight from city i to city j. It will be calculated with the help of a time-of-week
curve. Since the time-of-week curve can be derived from historical data, to every
flight pair in a schedule a specific attractiveness could be assigned according to
the departure time. For example, if a flight is scheduled for t = Monday, 4.00
pm, the time-of-week curve will deliver an attractiveness of pij(t) = 0.1. This
indicates that this particular flight captures 10% of an airline’s entire market
volume mij between these two cities.

In addition, we assume that the number of connecting flights at the destina-
tion j will increase the attractiveness of a flight. Thus, we model the additional
demand with the help of the variable mjik

. For i = HAM, j = ATH, and k =
OSL, mjik

expresses the additional market size of a connecting flight from ATH
to OSL if the passenger has started it’s trip in HAM.

Another factor to consider is the frequency feij . The higher the number
of flights e between two cities i and j, the more passengers per flight will be
attracted.

The last factor to include is the homogeneity hij(t)b. It reflects the issue
whether a flight takes place daily or on special weekdays only. If it takes place
every day, b would be 7. If this flight is offered only on Monday, Wednesday,
and Friday, b would be 3. So each flight schedule will be inspected for recurring
flights for a given t and the result will bounded to the value for variable b.

Applying this fitness function, the GA would generate flight schedules con-
taining a high proportion of flights at peak hours. Thus, the fitness evaluation
needs to be extended with regard to the following issues:
– How can we distribute the demand across conflicting flights?
– How can we model limitations in capacity?

As stated, there are flights between two cities i and j which depart close to-
gether and compete for identical passengers. Therefore, we need to develop a
mechanism that distributes the overall demand in a time interval among the
departing flights. We assume that the demand for one flight is described by a
normal distribution. For our purpose, we model a normal distribution curve for
each flight in the same market. The area below the curve corresponds to sij(t).
The maxima of the curves represent the departure times, the standard deviation
depends on sij(t). A curve has the following function:

ftx(t) =
sij(tx)

σsij(tx)
√

2π
e
− (t−tx)2

2σ2
sij(tx) , (2)

where
– sij(tx) is the expected number of seats sold for a flight at the exact time tx

between two cities i and j,

Simultaneous Flight Schedule Construction with Genetic Algorithms 265

– σsij(tx) is the standard deviation of the flight x with the departure time tx
and its demand sij(tx).

Depending on the departure times and the demand curve there are areas which
comprise two or more flights. These areas may be separated, indicating the
specific demand of a distinct flight. For example, four aircraft with identical
destinations depart from the same city at t1 = 6.00 am, t2 = 10.50 am, t3 =
12.00 pm, and at t4 = 12.05 (see figure 6). Without consideration of this conflict,
there would be a demand for each flight of s(t1) = 80, s(t2) = 50, s(t3) = 70,
and s(t4) = 69 passengers. Unfortunately, the estimated total number of seats
of 269 seems to be unrealistic since the flights at t2, t3, and t4 compete for the
same passengers. If we apply the function as listed above, the demand will be
distributed as follows: s(t1) = 80, s(t2) = 47.1, s(t3) = 31.1 and s(t4) = 29.9.

t1 t2 t4t3

69
70

Time(t)

Time(t)

80 50

29.931.147.180

Fig. 6. Conflicting flights

This formula has the advantage that it may also be applied for modeling
limited transportation capacity of an aircraft. Capacity restrictions may be rep-
resented as left and right boundaries of the area below the normal distribution
curve. The demand external this area represent capacity shortages. We need
to consider these shortages in order to model customer retention or compensa-
tion effects which may take place due to more than one flight. In this situation,
the neighboring flights might be able to satisfy this demand peaks if they offer
enough additional seats (see figure 7).

In figure 7, flight f1 will not be able to serve all customers. This limitation
is modeled with the help of the boundaries t1l

and t1r . The capacity barriers of
flight f2 are modeled with the help of t2l

and t2r
. Since f1 is already able to serve

the demand of f2 within the area of t2l
and t1r

, it will add additional capacity
for f2. This case is illustrated with the help of an area which is adjacent to the
right of t2r

. With out this spill-over effect, the area to the right of t2r
could not

be utilized.

266 T. Grosche, A. Heinzl, and F. Rothlauf

tr

f (t)
1

f (t)
2

t2rt1rt2lt1l Time(t)

60

10 Boundaries

Time(t)tl
10

Fig. 7. Limited transportation capacity

Using these evaluation schemes, we are now able to estimate the numbers of
passengers on each flight leg. Since we know the average revenue per passenger
in all markets from the past, we will be able to compute the revenues induced
by each flight schedule. Since the costs involved is also available from historical
data, the estimated profit of each schedule can be calculated.

4 Discussion

The complexity of constructing flight schedules has led to a sequential planning
process. The scheduling problem has been decomposed into numerous subprob-
lems of less complexity. These subproblems may be solved with exact and heuris-
tic approaches. But the optimal local solutions of the subproblems will not imply
a good overall solution.

In order to achieve good results, flight schedule construction needs to be
performed simultaneously. We believe that our concept sketches a promising way
of doing this. In our concept, an individual in a population of a GA represents
a complete flight schedule. We have defined genetic operators and derived a
fast fitness evaluation method. We have not yet found similar approaches in the
literature.

Since we are currently preparing the implementation of our concept, we need
to define an appropriate test scenario. Within this scenario, we need to indepen-
dently test the validity of our profit proxy as well as its underlying assumptions.
If this proves to be applicable, we need to test our prototype against the existing
planning approach. The genetic operators may be refined. If our GA-based con-
cept will meet or exceed current standards, additional planning activities like tail
assignment, crew assignment, and maintenance planning might be integrated.

References

1. Etschmaier, M. M., Mathaisel, D. F. X., Airline Scheduling: An Overview, in:
Transportation Science, May 1985, pp. 127 - 138.

2. Suhl, L., Computer-Aided Scheduling, An Airline Perspective, Wiesbaden, 1995.
3. Antes, Jürgen, Structuring the Process of Airline Scheduling, in: Operations Re-

search Proceedings, 1997, pp. 515 - 520.

Simultaneous Flight Schedule Construction with Genetic Algorithms 267

4. Teodorovic, D., Krcmar-Nozic, E., Multicriteria Model to Determine Flight Fre-
quencies on an Airline Network under Competitive Conditions, in: Transportation
Science, February 1989, pp. 14 - 25.

5. Dobson, G., Lederer, P. J., Airline Scheduling and Routing in an Hub-and-Spoke
System, in: Transportation Science, August 1993, pp. 281 - 297.

6. Desaulniers, G. et al., Daily Aircraft Routing and Scheduling, in: Management
Science, June 1997, pp. 841 - 855.

7. Kontogiorgis, S., Acharya, S., US Airways Automates Its Weekend Fleet Assign-
ment, in: Interfaces, May/June 1999, pp. 52 - 62.

8. Clarke, L. et al., The Aircraft Rotation Problem, in: Annals of Operations Re-
search, No. 69, 1997, pp. 33 - 46.

9. Talluri, K. T., The Four-Day Aircraft Maintenance Routing Problem, in: Trans-
portation Science, February 1998, pp. 43 - 53.

10. Mellouli, T., Standardisierte Decision-Support-Komponenten für Ressourcenein-
satzplanung und Störungsmanagement bei Bahn-, Regionalbus- und Flugge-
sellschaften, Proceedings of the 3. Meistersingertreffen, November 25./26. 1999,
Schloss Thurnau, Germany.

11. Barnhardt, C. et al., Flight String Models for Aircraft Fleeting and Routing, in:
Transportation Science, August 1998, pp. 208 - 220.

Genetic Snakes for Color Images Segmentation

Lucia Ballerini

Centre for Image Analysis
Swedish University for Agricultural Sciences
Lägerhyddvägen 17, 752 37 Uppsala, Sweden

lucia@cb.uu.se

Abstract. The world of meat faces a permanent need for new methods
of meat quality evaluation. Recent advances in the area of computer and
video processing have created new ways to monitor quality in the food
industry. In this paper we propose a segmentation method to separate
connective tissue from meat. We propose the use of Genetic Snakes, that
are active contour models, also known as snakes, with an energy mini-
mization procedure based on Genetic Algorithms (GA). Genetic Snakes
have been proposed to overcome some limits of the classical snakes, as
initialization, existence of multiple minima, and the selection of elastic-
ity parameters, and have both successfully applied to medical and radar
images. We extend the formulation of Genetic Snakes in two ways, by
exploring additional internal and external energy terms and by applying
them to color images. We employ a modified version of the image energy
which considers the gradient of the three color RGB (red, green and
blue) components. Experimental results on synthetic images as well as
on meat images are reported. Images used in this work are color camera
photographs of beef meat.

1 Introduction

There is a permanent need for new methods of meat quality evaluation. The
demand of researchers for improved techniques to deepen the understanding
of meat features, as well as the demand of consumers for high meat quality
products, induces the necessity of new techniques [1].

Fat content in meat influences some important meat quality parameters. The
quantitative fat content has been shown to influence the palatability character-
istics of meat. There are several methods to analyze quantitative fat content
and its visual appearance in meat. However, few of them are satisfactory enough
in terms of fat quantification in a cross section of a consumer size meat slice,
without using large amounts of organic solvents or being too time consuming.

Recent advances in the area of computer and video processing have created
new ways to monitor quality in the food industry.

In a previous paper we have developed image analysis methods for the specific
problem of measuring the percentage of fat [2]. In particular, a segmentation
algorithm (i.e. classification of different substances) has been optimized for color
camera photographs of meat. There is still an open problem with these images:

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 268–277, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Genetic Snakes for Color Images Segmentation 269

fat and connective tissue present almost the same color and therefore they are
almost indistinguishable by any color segmentation technique.

In this paper we propose an automatic segmentation procedure to identify
the separation of connective tissue from meat. We propose the use of Genetic
Snakes [3], that are active contour models, also known as snakes [4], with an
energy minimization procedure based on Genetic Algorithms (GA) [5].

Snakes are a robust global segmentation method combining constraints de-
rived from the image data with a priori knowledge about the position, size, and
shape of the structure to be segmented [6]. However, the application of snakes
to extract region of interest suffers from some limitations. In fact, there may be
a number of problems associated with this approach such as algorithm initial-
ization, existence of local minima, and the selection of model parameters.

We proposed the use of GAs to overcome some of these limits. GAs offer a
global search procedure that has shown its robustness in many tasks, and they
are not limited by restrictive assumptions on the objective function, such as the
existence of derivatives. The usefulness of GAs in pattern recognition and im-
age processing has been demonstrated [7,8,9,10,11,12]. GAs operate on a coding
of the free variables (the positions of the snake) and their fitness function is
the total snake energy. Snakes optimization through Genetic Algorithms proved
particularly useful in order to overcome problems related to initialization, pa-
rameter selection and local minima, and they have been successfully applied to
medical and radar images [3,13].

The purpose of this paper is to extend the Genetic Snakes model, and to
present additional energy functionals found to be useful in specific applications.

The organization of the paper is as follow: in Section 2 we discuss active
contours, the basic notions, their limitations and some improvements proposed
in literature. In Section 3 we review the Genetic Snakes model. In Section 4
we extend our previous formulation by experimenting new energy functionals.
Experimental results on synthetic and meat images are reported in Section 5, in
particular for meat images we proposed an internal area energy functional, which
will allow snakes to give accurate separation of muscle and fat from connective
tissue.

2 Active Contours (Snakes)

Snakes are planar deformable contours that are useful in several image analysis
tasks. They are often used to approximate the locations and shapes of object
boundaries on the basis of the reasonable assumption that boundaries are piece-
wise continuous or smooth.

Representing the position of a snake parametrically by v(s) = (x(s), y(s))
with s ∈ [0, 1], its energy functionals can be written as:

Esnake =
∫ 1

0
Eint [v(s)] ds +

∫ 1

0
Eext [v(s)] ds (1)

where

270 L. Ballerini

– Eint represents the internal energy of the snake due to bending and it is
associated with a priori constraints

– Eext is an external potential energy which depends on the image and ac-
counts for a posteriori information.

The final shape of the contour corresponds to the minimum of this energy.
In the original technique of Kass et al. [4] the internal spline energy is defined

as:

Eint [v(s)] =
1
2

[
α(s)

∣∣∣∣∂v(s)
∂s

∣∣∣∣
2

+ β(s)
∣∣∣∣∂

2v(s)
∂s2

∣∣∣∣
2
]

. (2)

The spline energy is composed of a first order term controlled by α(s) and a
second order term controlled by β(s). The two parameters α(s) and β(s) dictate
the simulated physical characteristics of the contour: α(s) controls the tension
of the contour while β(s) controls its rigidity.

The external energy couples the snake to the image. It is defined as a scalar
potential function whose local minima coincide with intensity extrema, edges,
and other image features of interest.

The external energy, which is commonly used, is defined as:

Eext [v(s)] = −γ|∇Gσ ∗ I(x, y)|2 (3)

where Gσ ∗ I(x, y) denotes the image convolved by a Gaussian filter with a
standard deviation σ, ∇ is the gradient operator and γ a weight associated with
image energies. This edge functional is used by many researchers.

The application of snakes and other similar deformable contour models to ex-
tract regions of interest is, however, not without limitations. For example, snakes
were designed as interactive models. In non-interactive applications, they must
be initialized close to the structure of interest to guarantee good performance.
The internal energy constraints of snakes can limit their geometric flexibility and
prevent a snake from representing long tube-like shapes or shapes with signifi-
cant protrusions or bifurcations. Furthermore, the topology of the structure of
interest must be known in advance since classical deformable contour models are
parametric and are incapable of topological transformations without additional
machinery.

Various methods have been proposed to improve and further automate the
deformable contour segmentation process. A review of some of them can be found
in [14].

3 Genetic Snakes

In this section we review the Genetic Snakes model, i.e. our previous model of
active contours, where the energy minimization procedure is based on Genetic
Algorithms [3].

The parameters that undergo genetic optimization are the positions of the
snake in the image plane v(s) = (x(s), y(s)). The coordinates x and y are codified

Genetic Snakes for Color Images Segmentation 271

in the chromosomes using a Gray-code [15,16]. To simplify the implementation
we used polar coordinates.

The fitness function is the total snake energy as previously defined in Equa-
tion (1), where Eint and Eext are defined in Eqs. (2) and (3). The sigma scaling
option is used [5].

The genetic optimization requires the definition of a region of interest (see
Fig. 1), given by r and R (the minimum and the maximum magnitude allowed
for each v(s)). The initial population is randomly chosen in such region, and
each solution lies in this region (r and R are user defined). This replaces the
original initialization with a region-based version, enabling a robust solution
to be found by searching the region for a global solution. This overcomes the
problems associated with sensitivity to initialization which was a crucial problem
for “hill climbing” techniques. As a result, the new optimization criterion is
better at extracting non-convex shapes compared to conventional snakes. This
helps to overcome the difficulties related to initialization and local minima. In
addition, we have observed a noticeable improvement of the segmentation with
respect to standard snake algorithm.

region of interest

feature

x

y

r
R

Fig. 1. Genetic Snakes Initialization.

An accurate description of implementation details along with a discussion on
the choice of the model coefficients can be found in [3].

4 Evolution of Genetic Snakes

In this section we extend our previous formulation of Genetic Snakes by experi-
menting new internal and external energy functionals.

The classical optimization techniques impose different restrictions on the
type of image functional that can be employed (for example the existence of
derivatives); the use of Genetic Algorithms gives us more freedom on the choice
of such functional. The internal energy term, Eint, defined in Equation (2),

272 L. Ballerini

controls the properties of the snake. This internal energy provides an efficient
interpolation mechanism for recovering missing data.

In the present work, we have investigated an energy proportional to the area
enclosed by the snake which has the effect of causing the contour to expand or
contract.

The area energy we propose is:

Earea [v(s)] = δA (4)

where A is the area enclosed by the snake. The sign of δ determines whether the
snake will tend to expand or contract. For the case of a positive δ, this energy
will be a positive term in the fitness and will cause the snake to choose regions
enclosing small areas. On the other hand, for a negative δ, the snake will tend
to prefer regions having larger area.

The area is calculated as:

A =
1
2

∣∣∣∣∣
N∑

i=1

(xiyi+1 − xi+1yi)

∣∣∣∣∣ (5)

where (xi, yi) denotes the coordinates of a vertex and by convention
(xN+1, yN+1) = (x1, y1). This expression holds for any polygon provided that
the vertices are ordered around the contour and no line segments joining the ver-
tices intersect. Our representation of the coordinates, along with the use of polar
coordinates, does not require any explicit check to ensure that this relationship
is applicable.

The effect of this area energy is similar to the balloon force employed by
Cohen [17,18]. In their model the additional force has been formulated as:

F = kn(s) (6)

where n(s) is the unit vector normal to the curve at point v(s) and k is the
amplitude of this force. Note that F depends on not only the position v(s), but
also on the normal at this position. In our formulation the area energy term
depends on the position, but not on derivatives.

We experimented also an area energy which force the snake to have a deter-
minate area enclosed:

Earea [v(s)] = δ(A − Aref)2. (7)

This energy has the form of an harmonic potential with a minimum when
the area enclosed by the snake is equal to the reference area Aref .

In order to apply our model to color images, we also employed a modified
version of the image energy. When the goal is to fit a snake to a boundary within
an image, it is useful to preprocess the image with an edge detector so that the
points of maximum gradient are emphasized. The edge detector most commonly
employed uses the gradient of the image convolved with a Gaussian smoothing
function.

Genetic Snakes for Color Images Segmentation 273

We considered the gradient of the three color RGB components. Thus, the
proposed image energy functional is composed of three terms and can be ex-
pressed as:

Eext [v(s)] = −γR|∇Gσ ∗ IR(x, y)|2 − γG|∇Gσ ∗ IG(x, y)|2 − γB |∇Gσ ∗ IB(x, y)|2
(8)

where IR(x, y), IG(x, y), IB(x, y) are the three components of the image inten-
sities. The weights are negatives so that local minima of Eext correspond to
maxima of the gradient, i.e. strong edges.

5 Results

5.1 Experiments on Synthetic Images

In this section, the behavior of the new area energy term is examined using
artificial images.

The experiment uses synthetic images containing circular shapes having an
inner and an outer boundary as shown in Figure 2. The intensity images are
generated by setting the pixel value to 100 if it is internal to the shape, and 0
otherwise.

Fig. 2. Example of synthetic test image.

This kind of images is constructed to study the snake ability to be attracted
by the inner or the outer boundary according to the area energy term.

On these images we performed experiments using snakes having 50 points,
varying the energy weighting coefficients (α = 0.1, 0.15, 0.2, β = 0.1, 0.15, 0.2,
γ = 0.1, 0.2, 0.3 and δ = −0.3,−0.2,−0.1, 0.1, 0.2, 0.3), running the GA for
2000000 iterations each time on a population of 10000 individuals. The pop-
ulation size was computed according to the length of genome, as suggested by
Goldberg [5]. We have used the standard two-point crossover. The crossover rate
and mutation rate are set respectively to 0.6 and 0.000006 based on previous ex-
perimental observations.

Figure 3 reports one of the results obtained, using the following weight values:
α = 0.1, β = 0.2, γ = 0.2 and δ = ±0.3. When the sign of δ is positive the snake

274 L. Ballerini

chooses the inner boundary, while when it is negative the snake is attracted by
the outer boundary.

Fig. 3. Simulation results on synthetic test images with different area energy weights.

5.2 Applications to Meat Images

Genetic Snakes are then applied to meat images in order to segment them, with
the special purpose of separating connective tissue from the remaining parts of
the meat.

Color images of many samples of M. longissimus dorsi were captured by a
Sony DCS-D700 camera. The same exposure and focal distance were used for
all images. Digital color photography was carried out on both sides of each slice
on a green background. Images are 1024 x 1024 pixel matrices with a resolution
of 0.13 mm x 0.13 mm. They are represented in an RGB (red, green, and blue)
format (see Figure 4).

Fig. 4. Digital camera photograph of the longissimus dorsi muscle from a representative
beef meat, (original is in color).

Genetic Snakes for Color Images Segmentation 275

Images were preprocessed to suppress the background; the choice of green
color as background was very helpful for this stage. Three values of threshold
(RGB) were used for this phase. An example of background suppression is shown
in Figure 5.

Fig. 5. Background suppression from image shown in Figure 4.

On the background suppressed images we computed the reference area Aref .
Then we applied the Genetic Snakes. For simplicity, the origin of the coordinates
was located at the center of the image.

The energy functionals are chosen according to meat properties. We observed
that the connective tissue is usually located close to the border of the meat and
that there is a strong edge between it and the muscle. Moreover the percentage
of connective tissue is usually around 4 ÷ 5%.

Thus, the proposed area energy functional is expressed as:

Earea [v(s)] = δ(A − 0.95Aref)2. (9)

On these images we used the internal energy defined in Equation (2) and
the image energy functional defined in Equation (8) with σ = 0.2. We used
snakes having 50 points, running the GA for 40000000 iteration each time on a
population of 100000 individuals. The crossover rate and mutation rate are set
respectively to 0.43 and 0.000001 based on some experimental observations.

In Figure 6 we can see an example of original image and the corresponding
meat outlines segmented by our snake model. Note the connective tissue in the
bottom part of the image is separated from the rest of the meat.

6 Conclusions

In this paper we have discussed Genetic Snakes and presented an extension of
our previous model. The snake employed in this work has several advantages
with respect to the standard snake algorithm [4].

276 L. Ballerini

Fig. 6. Digital camera photograph of the longissimus dorsi muscle from a representative
beef meat. The final position of our Genetic Snake model is superimposed.

The energy minimization procedure based on Genetic Algorithms overcomes
the problems associated with sensitivity to initialization and local minima, which
was a crucial problem of classical techniques.

Other energy terms may easily added using the genetic optimization proce-
dure. This was not possible in the classical snake formulation. In our model there
is no restriction on the form of the energy functionals.

The new area energy we proposed exhibits interesting properties in the lo-
calization of meat boundary.

Compared to current methods to separate meat from connective tissue (man-
ual selection or threshold methods), this snake-based approach is expected to
provide significant improvements.

As each individual image needs to be processed from the scratch, the main
problem with this method is the time required and the impossibility to exploit
the ability of GAs to generalize.

In this work we applied GAs to the positions of the snake. The management
of the weight controls of the energy function is an open important problem.
Further work on this technique could be the evolution of the parameters and the
functional governing the snake behavior.

Acknowledgments. This work is performed within the National FOOD21 re-
search programme, financed by MISTRA.

I would like to thank the meat-group at the Dept. of Food Science, Swedish
University of Agricultural Sciences, Uppsala for their friendly collaboration, es-
pecially Anders Högberg for providing the camera pictures and for general dis-
cussions.

I would also like to thank Professor Gunilla Borgefors, Centre for Image
Analysis, SLU, Uppsala, for her valuable comments on the manuscript.

Genetic Snakes for Color Images Segmentation 277

References

1. G. Monin, “Recent methods for predicting quality of whole meat”, Meat Science,
vol. 49, no. Suppl. 1, pp. S231–S243, 1998.

2. L. Ballerini, A. Högberg, K. Lundström, and G. Borgefors, “Colour image analysis
technique for measuring of fat in meat: An application for the meat industry”, To
appear in: Proc. Electronic Imaging, 2001.

3. L. Ballerini, “Genetic snakes for medical images segmentation”, Lectures Notes in
Computer Science, vol. 1596, pp. 59–73, 1999.

4. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models”, Inter-
national Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988.

5. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, Addison-Wesley, Reading, MA, 1989.

6. T. McInerney and D. Terzopoulos, “Deformable models in medical image analysis:
A survey”, Medical Image Analysis, vol. 1, no. 2, pp. 91–108, 1996.

7. Poli, Voigt, Cagnoni, Corne, Smith, and Fogarty, Eds., Evolutionary Image Anal-
ysis, Signal Processing and Telecommunications, vol. 1596 of Lectures Notes in
Computer Science, Goteborg, Sweden, 1999. Springer–Verlag.

8. “Special issue on genetic algorithms”, Pattern Recognition Letters, vol. 16, no. 8,
1995.

9. C. Bounsaythip and J. Alander, “Genetic algorithms in image processing - a
review”, in Proc. 3nwga (3rd Nordic Workshop on Genetic Algorithms), Helsinki,
Finland, 1997.

10. D. N. Chun and H. S. Yang, “Robust image segmentation using genetic algorithm
with a fuzzy measure”, Pattern Recognition, vol. 29, no. 7, pp. 1195–1211, 1996.

11. B. Bhanu, S. Lee, and J. Ming, “Adaptive image segmentation using a genetic
algorithm”, IEEE Transactions on Systems, Man and Cybernetics, vol. 25, no. 12,
pp. 1543–1567, December 1995.

12. P. Andrey, “Selectionist relaxation: Genetic algorithms applied to image segmen-
tation”, Image and Vision Computing, vol. 17, pp. 175–187, 1999.

13. L. Ballerini and E. Piazza, “Genetic snakes for radar images segmentation”, in
proc. IEEE International Symposium on Intelligent Signal Processing and Com-
munication Systems, Phucket, Thailand, December 1999, pp. 621–624.

14. L. Ballerini, Computer Aided Diagnosis in Ocular Fundus Images, PhD thesis,
Università di Firenze, Italy, 1998.

15. D. Beasley, D. R. Bull, and R. R. Martin, “An overview of genetic algorithms:
Part 1, fundamentals”, University Computing, vol. 15, no. 2, pp. 58–69, 1993.

16. D. Beasley, D. R. Bull, and R. R. Martin, “An overview of genetic algorithms:
Part 2, research topics”, University Computing, vol. 15, no. 4, pp. 170–181, 1993.

17. L. D. Cohen and I. Cohen, “Finite element methods for active contour models
and balloons for 2D and 3D images”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 15, no. 11, pp. 1131–1147, November 1993.

18. L. D. Cohen, “On active contour models and balloons”, Computer Vision, Graph-
ics, and Image Processing: Image Understanding, vol. 53, no. 2, pp. 211–218, March
1991.

A Distributed Genetic Algorithm for Parameters
Optimization to Detect Microcalcifications in

Digital Mammograms

Alessandro Bevilacqua1,2, Renato Campanini2,3, and Nico Lanconelli2,3

1 Department of Electronics, Computer Science and Systems,
University of Bologna, viale Risorgimento, 2,

40136 Bologna, Italy
abevilacqua@deis.unibo.it

2 INFN (National Institute for Nuclear Physics), viale Berti Pichat, 6/2,
40127 Bologna, Italy

{bevila, lanconel, campanini}@bo.infn.it
3 Department of Physics, University of Bologna, viale Berti Pichat, 6/2,

40127 Bologna, Italy

Abstract. In this paper, we investigate the improvement obtained by
applying a distributed genetic algorithm to a problem of parameter op-
timization in medical images analysis. We setup a method for the detec-
tion of clustered microcalcifications in digital mammograms, based on
statistical techniques and multiresolution analysis by means of wavelet
transform. The optimization of this scheme requires multiple runs on a
set of 40 images, in order to obtain relevant statistics. We aim to evaluate
how fluctuations of some parameters values of the detection method in-
fluence the performance of our system. A distributed genetic algorithm
supervising this process allowed to improve of some percents previous
results obtained after having “hand tuned” these parameters for a long
time. At last, we have been able to find out parameters not influencing
performance at all.

1 Introduction

The presence of microcalcifications in breast tissue is one of the most important
signs considered by radiologist for an early diagnosis of breast cancer, which is
one of the most common form of cancer among women. Statistical analyses show
how errors in microcalcifications detection are very high in population screening
programmes. A feasible solution, in order to reduce these kind of errors, con-
sists in providing doctors with a computer aided system, which could act as a
“second radiologist”. Experiments showed that these systems can significantly
improve the accuracy in the detection task. Our Computer Aided Diagnosis
(CAD) scheme described in [1] is quite complex and its effectiveness depends
on the values of different parameters. Therefore it is necessary to optimize the
choice of these parameters, in order to achieve good performance. Unfortunately,
their number is very high (about thirty) and they are correlated with each other.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 278–287, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A Distributed Genetic Algorithm 279

Consequently, it is difficult to get an optimal choice of them. In the earlier study
the selection were performed manually; we refer to this procedure as the “hand
tuned” one. In this paper, we present an automated method for the selection
of the parameters values by means of a genetic algorithm. Genetic Algorithms
(GAs) search the solution space to maximize (minimize) a fitness (or cost) func-
tion by using simulated evolutionary operators such as mutation and sexual
recombination. In this study the fitness function to be maximized reflects the
goal of maximizing the number of true-positive detections while minimizing the
number of false-positive detections.

GAs are currently applied to many diverse and difficult optimization prob-
lems (see [2] and [3]). In a number of applications where the search space was
too large for other heuristic methods or too complex for analytic treatment GAs
produced favorable results. Other researchers in [4] and [5] have shown that GAs
could improve the performance of a CAD scheme.

In the present study, we will evaluate how the parameter values fluctuations
influence the performance of the CAD scheme and which parameters more affect
the cost function; our goal is as well to select, by using a GA, the most significant
parameters. The GA needs to evaluate several generations, in order to obtain a
good optimization. Due to the very long time required for one run, it would be
almost impracticable to execute the GA on a sequential architecture. We there-
fore implement a distributed GA on a small Network Of Workstations (NOWs),
by realizing a global parallelized GA. In this type of parallel GAs, there is only
one population, as in the serial GA, and even if the evaluation of individuals is
parallelized explicitly, the algorithm remains unchanged. In this way, we could
easily apply the existing principles for sequential GAs.

We accomplish the optimization of our CAD scheme by using the 40 digitized
mammograms of the Nijmegen database. Performances of the detection scheme
are shown by means of Free Response Operating Characteristic (FROC) curves:
they display the number of true positive clusters of microcalcifications detected
versus the average number of false positives per image.

2 The Detection Method

Microcalcifications are very small spots which appear brighter than the surround-
ing normal tissue. Typically they are between 0.1 mm and 1 mm in size and are
of particular clinical significance when found in clusters of five or more in a 1
cm2 area. Most of the clusters consist of at least one evident microcalcification
and other more hidden signals.

Our approach to the detection task includes two different methods: the first
one (coarse) is able to detect the most obvious signals, while the second one (fine),
based on multiresolution analyses, discovers more subtle microcalcifications (see
[1]). Signals coming out from these two methods are combined through a logical
OR operation and then clusterized to give the final result. There are some steps,
common to both coarse and fine methods:

– pre-processing, which isolates breast tissue;

280 A. Bevilacqua, R. Campanini, and N. Lanconelli

– filtering, in which structured background is removed;
– signal extraction, to find out microcalcifications candidates signals;
– false positive reduction, where microcalcifications are separated, by calculat-

ing a set of features, as described in [1] and [6] from false signals extracted.

In all these tasks there are several parameters to be tuned; we used twenty-nine
of them (listed in Table 1) for the optimization process with the GA. A very
critical phase of every CAD system is the false positive reduction step: here a
detected signal is considered either microcalcification or false signal, according
to the value of a set of its features.

Table 1. Parameters used in the optimization process

Parameters of the coarse method Parameters of the fine method

Size of the local thresholding window
Threshold for Gaussianity test ht
Values for local thresholding k
Minimum edge gradient (EG)
Maximum EG
Minimum average local gradient (ALG)
Maximum ALG
Minimum area of signal Minimum area of signal
Maximum area of signal Maximum area of signal
Minimum gray level (GL) Minimum gray level (GL)
Maximum GL Maximum GL
Minimum degree of linearity (DL) Minimum degree of linearity (DL)
Maximum DL Maximum DL
ct11, in: GL > ct11 * EG + ct12 p1, in: EG < p1 * tanh(p2 * GL)
ct12, in: GL > ct11 * EG + ct12 p2, in: EG < p1 * tanh(p2 * GL)
ct21, in: DL < ct21 * ALG + ct22 p3, in: EG > p3 * GL + p4

ct22, in: DL < ct21 * ALG + ct22 p4, in: EG > p3 * GL + p4

ct31, in: DL > ct31 * ALG + ct32
ct32, in: DL > ct31 * ALG + ct32

Most of the parameters are thresholds to choose the range of features values in
this false positive reduction phase; others are used for selecting regions of interest
or extracting signals (see [1]). Any individuals of the population considered in
GA optimization is therefore described by a string (gene) of twenty-nine values.
Each one of them represents a parameter value and can be a real or an integer
number, according to the domain of the parameter itself. The purpose of the
optimization of a CAD scheme is to find out the set of parameters which gets the
highest number of true positive clusters of microcalcifications with the lowest rate
of false positive clusters, i.e. the best tradeoff between sensitivity and specificity.
This tradeoff is described by the design of the fitness function.

A Distributed Genetic Algorithm 281

3 The Genetic Algorithm

3.1 Design

The advantages in using GAs are that they require no knowledge or gradient
information about the response surface, they are resistant to becoming trapped
in local optima and they can be employed for a wide variety of optimization
problems. On the other hand GAs could have trouble in finding the exact global
optimum and they require a large number of fitness functions evaluations. It is
very difficult to achieve analytic relationship between the sensitivity of the CAD
and the parameters values to be optimized. Since a GA does not need this kind
of information, it should be suitable in our optimization task.

If there is an explicit knowledge about the system being optimized, that
information can be included in the initial population. In this study we initialize
the population to the best “hand tuned” results.

An evolutionary strategy needs to be adopted in order to generate individuals
for the next generation. We chose an elitist generation as replacement operator.
Namely the individuals are ranked by their fitness and only the best of them
(10% of the population) are taken unchanged into the next generation. In this
way, we guarantee that good individuals are not lost during a run. Other children
come from crossover and mutation, (their associated probabilities are pCO and
pMUT respectively).

The aim of the fitness function is to numerically represent the performance
of an individual. In our case a couple (true positives, false positives) is mapped
by this function to a real number normalized between 0 and 1. That number
encodes the excellence of a couple obtained by a particular individual (i.e. a
set of parameters in the CAD scheme). We designed the cost function as a 2D
gaussian, with the maximum in the most desired point (100% of true positives
and 0 false positives) and variance equal to 15% true positives and 2.2 false
positives.

In order to end the evolution of the population we choose the following termi-
nation criterion: we stop the evolution when the average of the fitness of the best
six individuals has reached a plateau. The final result of the GA optimization is
the best individual of the last iteration.

3.2 Implementation

The GA supervises the executions of an existent “basic program”, which solves
the domain problem and provide fitness evaluation. In the sequential program,
the fitness evaluation step is computed independently for each individual of the
population, by means of a for loop. We have one more loop that is innate in
the “basic program” (the detection algorithm), which performs the detection
scheme described in Sect. 2 over a whole database of mammographic images:
the evaluation of one individual so requires the independent execution of the
detection program for each image in the database. These loops are exploited in
the parallel development of the algorithm.

282 A. Bevilacqua, R. Campanini, and N. Lanconelli

Global parallelization is one of the most common way to realize a parallel GA.
In global parallelization (see [7]), any individual can mate with any other because
the operators and the evaluation of the individuals are explicitly parallelized,
often by a “master processor” that sends individuals to other processors for the
evaluation and applies genetic operator itself. The master program stores the
entire population and performs an iterative decomposition: on each generation
it sends a fraction of the population (one or more individuals) to each slave
processors and waits results from the slaves to come back.

Slaves are self-scheduled, they ask the master for more work as their task
ends. This algorithm behaves in a synchronous manner, since the master waits
to receive the fitness values for all the individuals, before proceeding into the
next generation. Once all individuals have been computed, the master performs
replacement, crossover and mutation operations to create a new generation. In
this way, the GA operations keep global and the existing design guidelines for
simple (sequential) GAs are directly applicable.

In our GA, individuals are short strings of bytes and they are not time
consuming, from a communication point of view. For this reason, the data par-
allelism of the detection algorithm can be exploited too. We recall that in the
sequential algorithm an individual processes a whole images database. The eas-
iest distributed implementation is to let an individual to sequentially process
the entire set of images too. In this way, for each generation the program waits
for the slowest slave to end its computation: in the worst case this time is the
one necessary to process a database. Thus we create a new item, named chunk,
which is constituted by an image identifier and by an individual. In this way,
it is not necessary that one slave compute a whole database, but this task may
be assigned to different slaves. Therefore, the master program sends a chunk,
instead of one individual, every generation to each slave process, which sends
back results and the individual identifier. In this way, the maximum idle time of
the program shrinks from the time needed for computing a whole database to
the time to compute one image. Here we use a modified version of the manager-
workers paradigm, the “working-manager” model defined in [8], in which the
manager uses its idle time to process data itself, by so increasing the overall
performance.

4 Results

4.1 The Analysis of Performance

NOWs are cluster of workstations with quite slow communication links, that
anyway can be suitable for a large number of applications. In addition, small
Symmetric MultiProcessor (SMP) systems can be found within many of the
modern computers which may lead to a powerful distributed computer if con-
nected to each other.

The cluster we used is a heterogeneous computers network consisting of
6 workstations (10 computing nodes), connected to a LAN by a 100 Mbit

A Distributed Genetic Algorithm 283

Ethernet. Workstations are listed below, according to their performance on the
sequential algorithm:

W1) 1 PentiumIII 450Mhz, 512MB RAM;
W2) 1 SMP: 2 PentiumIII 450Mhz, 256MB RAM;
W3) 1 SMP: 2 PentiumII 450Mhz, 512MB RAM;
W4,5) 2 SMPs: 2 PentiumII 400Mhz, 512MB RAM;
W6) 1 Mobile PentiumII 366Mhz, 128MB RAM;

We adopt static mapping and do not introduce any virtual parallelism degree,
by assigning one task to each processor, for a total amount of 10 processes.

All the code is written in C, Linux is the operating system, PVM libraries
supply the communication routines and gcc is the C compiler.

Each population is constituted by 30 individuals, and each generation re-
quired 27 individuals to be computed. Each generation takes about 1 h of elapsed
time to be calculated on this cluster.

We get both CPU time and wall clock time measures necessary to obtain
final results. This data parallel application has a very coarse grain structure
and in addition small amount of data are transferred when communication takes
place. For this reason, time due to communication between master and slaves is
irrelevant and it has not been considered.

We then focus our attention on the “weighted” efficiency (Fig. 1) of each
workstation:

W2 W W W W W3 4 5 1 6

0

20

40

60

80

100

CPU

wall clock

Efficiency

Fig. 1. The “Weighted” efficiency of each workstation

Effi =
Si
Ii

(1)

where Si and Ii are the relative speedup and the “ideal” (theoretical) speedup,
respectively. Si is defined as:

Si =
Ts(Wi)
Tp

(2)

284 A. Bevilacqua, R. Campanini, and N. Lanconelli

where Ts(Wi) is the time it takes to the sequential algorithm on the workstation
Wi, and Tp is the time of the parallel algorithm. Finally, Ii:

Ii =
PT
Pi
. (3)

Here, Pi=Ts(W1)/Ts(Wi) is the power weight of Wi compared with that of the
fastest workstation W1. PT is the power weight of the whole cluster and its value
is obtained by summing over all Pi.

We observe how the intrinsically parallel nature of this problem has been
successfully exploited, by dividing original data in chunks. We obtain excellent
results in term of efficiency, if we consider CPU time. Experiments showed a
mean idle time value of about 10 sec.

Regarding with the time needed to read images, it would be quite significant,
since images are only local to W3. Each image (8 MB) takes about 1.5 sec to be
read, and for each generation 27 × 40 images should be read. This sequential
step causes a loss in terms of efficiency, even if we tried to keep in memory a few
images, and it becomes more visible if we consider wall clock time.

4.2 Experimental Results

The main goal of the present study is to show that the performance of our CAD
detection scheme improves due to the optimization based on the GA. To this

50

60

70

80

90

100

0 0.5 1 1.5

%
 o

f t
ru

e
cl

us
te

rs

fpi

Optimized with GA

Hand tuned

FROC on Nijmegen Database

Fig. 2. FROC of the detection methods on the 40 images (Nijmegen) database

end we depict in Fig. 2 two FROC curves: one related to the “hand tuned”
method and one for the optimized one. The optimized curve is derived from the
best individual, by varying the value of the parameter p1. Both the curves are
obtained on the entire database of 40 images: here we do not divide the data into
training and test groups, rather we use all the images for training and testing. We
can see that the sensitivity of the optimized scheme is always greater than in the

A Distributed Genetic Algorithm 285

“hand tuned” case. The GA allows to outperform the previous method of some
percents. Even if at first look it could seem a slight improvement, nevertheless
this is extremely important because here it is necessary to minimize the losses
of clusters of microcalcifications, maintaining at the same time a low rate of
false alarms. Indeed, to avoid any losses of suspect cases is a vital point in issues
regarding the detection of lesions for early breast cancer diagnosis; therefore, any
little step towards a sensitivity of 100% is crucial. The best solution obtained
by the GA is an individual with a fitness value of 0.827, which corresponds to
94.3% of true clusters with 0.47 false positives per image. To obtain these results
we utilize uniform crossover pCO=0.8 and pMUT=0.1. The convergence of the
GA evolution has required the computation of 1974 individuals, corresponding
to 73 generations: it took roughly 3 days (76 h) on our NOW. Let’s take a
look at the peculiarity of the best individual: focusing our attention on its genes
values, we can find out the differences between them and the parameters values
of the “hand tuned” results. We can notice that these changes reduce the range
of the values which identify the true signals. In particular, regarding the coarse
method, the ranges of area, gray level, edge gradient and degree of linearity
are narrower than those achieved in the “hand tuned” study (e.g. the minimum
area of signal increases from 3 to 5 pixels, whereas the maximum area decreases
from 30 to 22). In Fig. 3 it is possible to observe a similar effect about the fine
method. There are plotted the curves, described by parameters p1 and p2, which
separate true signals from false detections. Signals above the curve are kept,

0

50

100

150

200

0 200 400 600 800 1000 1200 1400

Ed
ge

 g
ra

di
en

t

False signals
True signals

GA optimized curve
Hand tuned curve

Edge gradient vs Gray level

Gray level

Fig. 3. Scatter plot of edge gradient versus gray level. The two curves, described by p1

and p2, separate false signals from true ones

while signals below it are eliminated. Also in this case the GA is more selective
in maintaining true signals: if a signal has a given gray level, the GA keep it
only if the edge gradient is higher, with respect to the “hand tuned” case. We
can therefore summarize that the GA optimization tends to restrict the range of

286 A. Bevilacqua, R. Campanini, and N. Lanconelli

the features, which characterize the true signals. That allows to cut the number
of false positive signals, without losing too many true ones.

Another issue investigated is how the parameters values fluctuations influ-
ence the performance of the CAD system. Starting from the best individual we
vary the value of the first gene around its best value (the one discovered by
the GA), keeping the other genes fixed. The variation of the parameter ranges
around ±50% its best value. We repeat this process for all the genes, each time
maintaining the other values fixed at their best solution. In this way, we can see
which parameter more affect the fitness value.

0

0.2

0.4

0.6

0.8

1

-40% -20% best value +20% +40%

Fi
tn

es
s

p1

p2

Fluctuations of parameter values around the best value

Parameter values

Fig. 4. Variation of fitness due to the change of parameters p1 and p2, with the other
parameters fixed at their best values

In Fig. 4 we can see an example of how the fitness changes, due to the
variation of p1 and p2 separately. We notice that p1 is a very significant param-
eter, because the fitness goes to zero, with a modification of p1 of only ±30%
around its best value. It turns out that the k value for local thresholding (coarse
method), p1, p2 and the maximum of the degree of linearity (fine method) are
the most significant parameters. A little fluctuation of their values indeed im-
plies a rapid fall of the fitness. On the other hand, there are some genes which
do not affect the value of the fitness. They are, in particular: the maximum of
the edge gradient, the minimum and the maximum of the average local gradi-
ent, ct31 and ct32 for the coarse method and p4 for the fine method. A variation
up to 50% of them around their best value does not imply any change in the
fitness value. This fact has allowed us to perform an optimization without these
parameters (keeping them fixed at their best value). With this reduced set of
parameters (23 genes instead of 29) we obtain the same results of those cited
above (fitness value of 0.827), by analyzing only 1623 individuals instead of 1974
(60 generations instead of 73).

A Distributed Genetic Algorithm 287

5 Conclusion

We have been developing a Computer Aided Diagnosis system for the detection
of clustered microcalcifications in digital mammograms. The performance of the
system strongly depends on the settings of a set of several parameters. The goal
of the present research is to optimize those parameters, in order to restrict the
range of the features, which characterize the true signals, allowing the cut of the
number of false alarms, without losing too many true signals detected. In an early
version, this task was performed manually, and it took to us a very long time. In
this paper, we presented an heuristic approach to this optimization problem by
means of a distributed genetic algorithm. We have obtained better results in few
generations, which correspond to a really short interval time. Finally, we have
been able to discover the most significant parameters, being those that more
affect the cost function.

Notes and Comments. Images were provided by courtesy of the National Ex-
pert and Training Center for Breast Cancer Screening and the Department of
Radiology at the University of Nijmegen, the Netherlands.

This work is supported by the Italian National Institute for Nuclear Physics
(CALMA project).

References

1. Bazzani, A., Bevilacqua, A., Bollini, D., Brancaccio, R., Campanini, R., Lanconelli,
N., Romani, D.: System for automatic detection of clustered microcalcifications in
digital mammograms. Int. J. Mod. Phys. C 11 (2000) 901–912

2. Dhawan, A. P., Chitre, Y., Kaiser-Bonasso, C., Moskowitz, M.: Analysis of mammo-
graphic microcalcifications using gray-level image structure features. IEEE Trans.
Med. Imag. 15 (1996) 246–259

3. Dokur, Z., Olmez, T., Yazgan, E.: Classification of MR and CT images using genetic
algorithms. Proceedings of the 20th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society 20 (1998)

4. Anastasio, M., Yoshida, H., Nagel, R., Nishikawa, R. M., Doi, K.: A Genetic
Algorithm-Based Method for Optimizing the Performance of a Computer-Aided
Diagnosis Scheme for Detection of Clustered Microcalcifications in Mammograms.
Med. Phys. 25 (1998) 1559–1566

5. Yoshida, H., Anastasio, M., Nagel, R., Nishikawa, R. M., Doi, K.: Computer-Aided
Diagnosis for Detection of Clustered Microcalcifications in Mammograms: Auto-
mated Optimization of Performance Based on Genetic Algorithm. Proceedings of
IWCAD 1997, (Elsevier Science B.V., The Netherlands) (1997)

6. Ema, T., Doi, K., Nishikawa, R. M., Jiang, Y., Papaioannou, J.: Image feature
analysis and Computer Aided Diagnosis in digital radiography: reduction of false-
positive clustered microcalcifications using local edge-gradient analysis. Med. Phys.
22 (1995) 161–169

7. Cantú-Paz, E.: A survey of Parallel Genetic Algorithms. Report No. 97003, (Univ.
of Illinois, Urbana, 1997) (1997)

8. Bevilacqua, A.: A dynamic load balancing method on a heterogeneous cluster of
workstations. Informat. 23 (1999) 49–56

Dynamic Flies: Using Real-Time Parisian
Evolution in Robotics

Amine M. Boumaza1 and Jean Louchet2

1 inria, projet fractales, Domaine Voluceau bp 105,
78153 Le Chesnay cedex, France

amine.boumaza@inria.fr
2 ensta, 32 Boulevard Victor, 75739 Paris cedex 15, France

louchet@ensta.fr

Abstract. The Fly algorithm is a Parisian evolution strategy devised
for parameter space exploration in computer vision applications, which
has been applied to stereovision. The resulting scene model is a set of 3-D
points which concentrate upon the surfaces of obstacles. In this paper, we
present how the evolutionary scene analysis can be continuously updated
and integrated into a specific real-time mobile robot navigation system.
Simulation-based experimental results are presented.

1 Introduction

The Fly algorithm [1] is an application of the individual (or “Parisian”) approach
[2] to artificial evolution: it treats each individual as a part of the solution of
the problem rather than as a complete potential solution. Its basic principle is
to evolve a population of 3-D points (the ‘flies’) using a fitness function such
that the flies concentrate into the objects surfaces in the scene. The fitness
function is a pixel-based calculation: to evaluate a fly, the fitness correlates the
neighbourhoods of the fly’s projections on each image. High correlation values
correspond to similar neighbourhoods and therefore to flies located on the visible
surface of an object in the scene.

Synthetic images
(from the stereo pair)

Top view showing the walls
the flies and the robot

Classical “evolution strategy” - style genetic operators (random mutation,
barycentric crossover) and a specific sharing operator are used to evolve the fly
population.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 288–297, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Dynamic Flies: Using Real-Time Parisian Evolution in Robotics 289

The aim of this paper is to present this method as the basis of a real-time
vision system for a mobile robot. To this end we will describe more in detail
the fly algorithm and show some of its interesting properties, concerning the
processing of time-varying image sequences and real-time capabilities; then we
describe the specific robot navigation algorithm which uses fly data as an input,
and show some examples of navigation and obstacle avoidance using a robot
simulator.

Fig. 1. Pixels b1 and b2, calculated projections of fly B, have highly correlated neigh-
bourhoods, unlike pixels a1 and a2, projections of fly A, which receive their illumination
from two different physical points on the surface of the object.

2 Fly-Based Robot Vision

2.1 Evolutionary Operators

Geometry and Fitness Function. A fly’s chromosome is defined as the coor-
dinates (x, y, z) of a 3-D point. As we are using two cameras, the coordinates of
its projections are (xL, yL) in the image given by the left camera and (xR, yR) for
the right camera. The positions of cameras are known, therefore xL, yL, xR , yR
may be easily calculated from x, y, z using classical projective geometry [3] [4]
formulas.

The fitness function evaluates the degree of similarity of the pixel neighbour-
hoods of the projections of the fly onto each image. It gives high fitness values
to the flies lying on the surface of an object :

fitness(fly) =
G∑

colours

∑
(i, j)∈N (L (xL + i, yL + j) − R (xR + i, yR + j))2

where:

– (xL, yL) and (xL, yL) are the coordinates of the left and right projections of the
current individual (see Fig. 1),

– L (xL + i, yL + j) is the grey value of the left image at pixel (xL + i, yL + j),
similarly with R for the right image.

– N is a small neighbourhood of the origin.

290 A.M. Boumaza and J. Louchet

On colour images, square differences are calculated on each colour channel.
The normalizing factor G, which is a local contrast measurement based on image

gradient, reduces the fitness of flies over unsignificant regions. Thus, highest fitness val-
ues are obtained for flies whose projections have similar and significant (non-uniform)
pixels.

Artificial Evolution Operators. An individual’s chromosome is the triple
(x, y, z) which contains the fly’s coordinates in the coordinate system.

The population is initialised randomly inside the intersection of the cameras fields
of view, from a given distance (clipping line) to infinity (fig. 2).

Fig. 2. The fly population is initialised inside the intersection of the cameras 3-D fields
of view.

The statistical distribution is chosen in order to obtain a uniform distribution of
their projections in the left image. In addition, their depth is distributed from an
arbitrary clipping line to infinity using a uniform distribution of the values of z−1: the
flies’ probability density is thus lower at high distances.

Selection : is elitist and deterministic. It ranks the flies according to their fitness values
and retains the best individuals (around 50%).

2-D sharing : reduces the fitness values of flies located in crowded areas to prevent
them from getting concentrated into a small number of maxima. It reduces each fly’s
fitness by K × N , where K is a “sharing coefficient” and N the number of flies which
project into the left image within a distance R (“sharing radius”) to the given fly. The
sharing radius is given by [1]:

R ≈ 1
2

(√
Npixels

Nflies
− 1

)

Mutation : allows exploration of the search space. It uses an approximation of a
Gaussian random noise added to the parent fly’s chromosome parameters (x, y, z).
Standard deviations σx, σy, σz are the same order of magnitude as R.

Dynamic Flies: Using Real-Time Parisian Evolution in Robotics 291

The barycentric crossover operator : builds an offspring randomly located on the line
segment between its parents: the offspring of two flies F1 (x1, y1, z1) and F2 (x2, y2, z2)
is the fly F3 (x3, y3, z3) defined by :

−−→
OF = λ

−−→
OF1 + (1 − λ) −−→

OF2

The weight is chosen using a uniform1 random law in [0, 1]. The crossover may be
interpreted as an exploration of potential straight or planar primitives in the scene.

2.2 Integrating Velocities: An Asynchronous Algorithm for
Dynamic Flies

The “standard” fly algorithm presented above is dedicated to static images. Experi-
ments showed that if the changes in the scene are slow enough, using the set of flies
obtained with the last stereo pair to initialise the current population of flies speeds up
convergence significantly. It is even beneficial to consider that the flies evolve continu-
ously [5] and to use, for each evaluation, the most recent image data available from the
cameras - provided that pixels from the right and left cameras are synchronous. This is
an interesting feature, as modern CMOS technology imagers allow asynchronous ran-
dom access to pixels: this enables to use constantly updated image data and to get a
potentially faster reaction of the system to external events.

Conversely, unlike current stereo analysis algorithms, the fly algorithm is able to
continuously update its results, which allows the robots navigation system to use con-
stantly updated scene descriptions.

In order to better exploit image data coming from moving cameras, we enriched
the chromosome representation of the flies by adding velocities: the chromosome of a
“dynamic fly” is now (x, y, z, ẋ, ẏ, ż) where ẋ, ẏ, ż are the velocity components of the
fly.

Each time a new image frame is used, the coordinates of the flies are updated
using their velocities. The fitness function does not use the velocities, but flies with
correct velocities will survive better through generations. The mutation and crossover
operators are extended to velocities, using the same weights. An additional genetic
operator is added, immigration, which introduces totally new randomly generated flies.
This operator ensures exploration of space and faster detection of new obstacles in the
field of view.

Once the algorithm has converged on the first images, convergence on a new image
is obtained in about 10 generations, depending on how much the scene has moved since
the last frame.

1 The goal of the crossover operator is to fill in surfaces whose contours are detected,
rather than to extend them. It is therefore not desirable to use coefficients outside
[1, 0], otherwise it would allow the center of gravity to lie outside of the objects
boundary.

292 A.M. Boumaza and J. Louchet

3 Application to Obstacle Avoidance

3.1 Using Artificial Potential Fields

The obstacle avoidance methods which can be found in literature use results of conven-
tional stereo analysis algorithms as an input (i.e. in general polyhedral models). Due
to the novelty of the “fly” approach, there is as far as we know, no existing navigation
and obstacle avoidance method able to use the fly representation. We chose a method
based on artificial potential fields, because of their simplicity and also to respect real
time constraints.

The potential field navigation methods proposed by O. Khatib [6] is among the
most widely used in robot navigation and local planning. It does not require a lot of
computation time, which allows its implementation in real time.

The principle of this method is inspired form Physics. The environment is modelled
as a potential field and the robot as a charged particle under the influence of this field.
The potential field includes an attractive and a repulsive potential. The attractive
potential constantly attracts the robot to the goal. The role of the repulsive one is to
repel the robot from the obstacles present in the environment.

In practice the robot follows the force induced from the potential field, easily trans-
lated into a steering command i.e. a heading and a velocity proportional to the force.
The force −→

F is the sum of an attractive and a repulsive force.

−→
F = −→

Fa + −→
Fr

The attractive force −→
Fa has a constant amplitude except in a small neighbourhood

around the goal. The repulsive force −→
Fr must take into account all the flies which

represent obstacles in the environment. However, involving each fly individually in the
potential would induce too many calculations. Thus we use a discrete representation
of the environment.

3.2 Robot’s Internal Representation

As shown in figure 3, the robot uses an internal representation of the world which
consists of a 2-D grid of cells centred on it. Each cell concentrates the information
coming from the flies it contains and generates its own contribution to −→

Fr. This is
similar to the ”evidence grids2” proposed by [9].

Once the space around the robot is discretized, we associate to each cell a value
(“confidence weight”) computed according to the fitness of the flies that lie within the
cell.

val(ci) =
∑
m∈ci

fitness(m)

where ci is a given cell of the grid. The value of val(ci) is then normalized between
[0,1] to keep the cell values bounded. This coefficient indicates if the fly is well po-
sitioned on a surface of an object or not. Therefore we define the resulting repulsive
force as:
2 Similar approaches were used in [7], [8] to model sensory data issued from sonars.

Dynamic Flies: Using Real-Time Parisian Evolution in Robotics 293

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Fig. 3. The discretized environment of the robot. The grey cone shows the robot cam-
eras’ field of view, the square grid its internal memory.

−→
Fr =

∑
ci∈grid

−→
Fci

where the amplitude of −→
Fci is proportional to val(ci).

Appendix A shows the potential functions and forces used.

3.3 Escaping Local Minima

Local minima are a considerable weakness of potential-based navigation methods.
These are configurations where the magnitude of the total force is zero (figure 5a,
c). The methods3 we use to solve this problem rely on altering the attractive force to
get the robot out of the minimum.

Random walk. This is a method often used in gradient descent algorithms, not
requiring a lot of resources. We implemented it by generating a virtual goal (attractive
potential) in a random place to deviate the trajectory of the robot from the local
minimum. The virtual goal is generated so that there are no or few obstacles between
it and the robot or the global goal. We translated this into a cost function defined in
appendix B. Among several randomly generated virtual goals, we keep the one with
minimum cost.

Wall following. In the case the robot is stuck behind an obstacle, an alternative
method is to deviate its trajectory by changing the direction of the attractive force
without using a virtual goal, but introducing a new attractive force with a direction at
an obtuse4 angle with the repulsive force so that the new total force is roughly parallel
to the obstacle edge. This way we expect the robot to follow the edges of the obstacle
until it finds an obstacle-free path to the goal. This method is used in the example
shown on figure 5.

3 [10] [11] propose heuristic methods to solve situation of local minima, and [12] define
generalized potential functions that avoid local minimum configurations.

4 [13] [14] propose similar approaches with angles of 145oand 120o

294 A.M. Boumaza and J. Louchet

3.4 Robot Simulator Architecture

The simulator is divided into four parts (figure 4). The sensing system is modeled as
an image synthesis algorithm which creates stereo image pairs as seen by the robot.
The vision system uses this input to build a fly-based representation of space. The
navigation system uses this fly system to create commands transmitted to the robot
simulator.

4 Experimental Results

On figure 5, images (a) and (c) show the robot getting trapped into local minima.
Images (b) and (d) show how these situations are resolved using wall following. Images
(c) and (f) show other examples of complex trajectories generated by wall following
(e) and random walk (f). On the latter example, the robot has been able to find the
door entrances to reach its destination.

5 Conclusion

As a consequence of the fact that the fly algorithm delivers a scene description which
consists of a set of 3-D points, it is not possible to compare directly its performance with
conventional stereo analysis methods [15]. In this work, we developed a first platform
to develop and test the fly algorithm in a mobile robotics context. This is an important
step into this real-world application of the Parisian approach.

Let us now examine the speed point of view. Standard synchronous vision systems,
based on image segmentation and stereo matching with a typical 25 Hz (40 ms) frame
rate, generally use all the interval between two frames to make their calculations and
(in the best cases) deliver their result to the navigation system with an 80 ms delay.

In our approach, the combination of random access cameras5 and Parisian evolution
allows to get a proper convergence in 10 generations: this takes less than 40 ms with a
5000 individual population, using non-optimised C code with a conventional 300 MHz
industry-standard processor. Thus this combination should be at least twice as fast as
conventional methods. Using a more powerful processor would allow to increase the
number of generations and get proportionally faster convergence and shorter reactions
to new events in the scene.

Future work will include experiments on real wheeled robots, studying self-
adaptation of genetic parameters in the flies chromosomes and fly speciation, so that
flies can fulfil different specialised roles in the analysis process.

A The Potential Function

The potential function used in this paper is a mix of conic and parabolic wells defined
as follows:

5 Stereo algorithms based on conventional image processing need to use complete
bitmap images as inputs, and therefore cannot easily take advantage of random
access camera technology.

Dynamic Flies: Using Real-Time Parisian Evolution in Robotics 295

sys.

sys.

Robot simulator

Navigation system

Vision system

Sensing system

Position
dynamical sys.

Robot’s

Commands
Steering

Stereo

ImagesImage Synthesis

CAD

Model

Sampled

grid

Obstacle
avoidance Alg.

Sampling

Velocities

Learning

Coordinate
Change

Genetic
Parameters

Fly Algorithm

Fly
representation

robot coord.
of the scene in

Fly
representation

global coord.
of the scene in

population
Initial

Fig. 4. The architecture of the simulator.

a b c

d e f

Fig. 5. Examples of trajectories.

Ua(q) =

{
ka distgoal(q)2 if distgoal(q) ≤ d0

d0 ka distgoal(q) if not

Ur(q) = kr
1

distobs(q)

where Ua and Ur are respectively the attractive and repulsive potentials, kr, ka are
positive constant, distgoal, distobs respectively the distances from the goal and from the

296 A.M. Boumaza and J. Louchet

obstacles, and d0 a fixed distance from the goal. These potentials generate attractive
and repulsive forces so that:

−→
Fa(q) = −−→∇ Ua(q) =

{
−ka(q − qgoal) −→ua if distgoal(q) ≤ d0

−d0 ka −→ua if not−→
Fr(q) = −−→∇ Ur(q) = kr

1
distobs(q)2

−→ur

where qgoal is the goal position, −→ua a unit vector directed toward qgoal from q.
since −→

Fr =
∑

ci∈grid
−→
Fci then −→

Fci = val(ci) 1
distci(q)2

−→uci . where −→uci is a unit vector
directed from the centre of the cell ci to q.

B Random Walk Cost Function

The following cost function is used in the “random walk” process to choose which
virtual goal will be used by the robot to get out of a local minimum.

Cost(Gvirtual) = w1

(
flies M | cos

(̂−−→
MGvirtual,

−−→
MR

)
< threshold1

)
+

w2

(
flies M | cos

(̂−−→
MGreal,

−−→
MR

)
< threshold2

)
+

w3 dist(Greal, Gvirtual)

References

1. J. Louchet. Using an individual evolution strategy for stereovision. Genetic Pro-
gramming and Evolvable Machines. Kluwer, to appear, 2001.

2. P. Collet, E. Lutton, F. Raynal, and M. Schoenauer. Individual GP: an alternative
viewpoint for the resolution of complex problems. In Genetic and Evolutionary
Computation Conference GECCO99. Morgan Kaufmann,San Francisco, CA, 1999.

3. R. M. Haralick. Using perspective transformations in scene analysis. Computer
Graphics and Image Processing, (13):191–221, 1980.

4. R.C. Jain, R. Kasturi, and B.G. Schunck. Machine Vision. McGraw-Hill, New
York, 1994.

5. R. Salomon and P. Eggenberger. Adaptation on the evolutionary time scale: a
working hypothesis and basic experiments. In Springer Lecture Notes on Computer
Science, number 1363, pages 251–262. Springer-Verlag, Berlin, 1997.

6. O. Khatib. Real time obstacle avoidance for manipulators and mobile robots. The
International Journal of Robotics Research, 5(1):90–99, Spring 1986.

7. I. Ulrich and J. Borenstein. Vfh+: Reliable obstacle avoidance for fast mobile
robots. In Procedings of the IEEE Conference On Robotics and Automation,
ICRA’98, pages 1572–1577, Leuven, Belgium, May 1998.

8. J. Van Dam and B. Krose F. Groen. Transforming occupancy grids under robot
motion. In S. Gielen and B. Kappe, editors, Artificial neural networks, page 318.
Springer-Verlag, 1993.

9. M. C. Martin and H. P. Moravec. Robots evidence grid. Technical report, The
Robotics Institute, Carnegie Mellon University, March 1996.

Dynamic Flies: Using Real-Time Parisian Evolution in Robotics 297

10. Y.Koren and J. Borenstein. Potential field methodes and their inherent limitations
for mobile robot navigation. In Procedings of the IEEE Conference On Robotics
and Automation, ICRA’91, pages 1398–1404, Sacramento, California, April 7-12
1991.

11. John S. Zelek. Complete real-time path planning during sensor-based discovery.
In IEEE/RSJ International Conference on Intelligent Robots and systems, 1998.

12. B. H. Krogh. A generalized potential field approach to obstacle avoidance control.
Robotics Research, August 1984.

13. J. Borenstein and Y.Koren. Real-time obstacle avoidance for fast mobile robots. In
IEEE Transaction on System, Man, and Cybernetics, volume 19, pages 1179–1187,
Sept./Oct. 1989.

14. R. A. Brooks and J. H. Connel. Asynchronous distributed control system for
a mobile robot. In SPIE86Cambridge Symposium on Optical and Optoelectronic
Engineering, Cambridge, MA, pages 77–84, October 1986.

15. cumuli project: Computational understanding of multiple images,
http://www.inrialpes.fr/cumuli.

16. I. Rechenberg. Evolution strategy. In J.M. Zurada, R.J. MarksII, and C.J. Robin-
son, editors, Computational Intelligence imitating life, pages 147–159. IEEE Press,
Piscataway, NJ, 1994.

17. P.K. Ser, S. Clifford, T. Choy, and W.C. Siu. Genetic algorithm for the extraction of
nonanalytic objects from multiple dimensional parameter space. Computer Vision
and Image Understanding, vol. 73 no. 1, Academic Press: Orlando, FL, pages 1–13,
1999.

18. E. Lutton and P. Martinez. A genetic algorithm for the detection of 2D geometric
primitives in images. In The Proceedings of the International Conference on Pattern
Recognition, ICPR’94, pages 526–528, Los Alamitos, CA, October 9-13 1994. IEEE
Computer Society.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 298-306, 2001.
© Springer-Verlag Berlin Heidelberg 2001

ARPIA: A High-Level Evolutionary
Test Signal Generator

Fulvio Corno, Gianluca Cumani, Matteo Sonza Reorda, and Giovanni Squillero

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24 I-10129, Torino, Italy
http://www.cad.polito.it/

Abstract. The integrated circuits design flow is rapidly moving towards higher
description levels. However, test-related activities are lacking behind this trend,
mainly since effective fault models and test signals generators are still missing.
This paper proposes ARPIA, a new simulation-based evolutionary test
generator. ARPIA adopts an innovative high-level fault model that enables
efficient fault simulation and guarantees good correlation with gate-level
results. The approach exploits an evolutionary algorithm to drive the search of
effective patterns within the gigantic space of all possible signal sequences.
ARPIA operates on register-transfer level VHDL descriptions and generates
effective test patterns. Experimental results show that the achieved results are
comparable or better than those obtained by high-level similar approaches or
even by gate-level ones.

1 Background

In recent years the application specific integrated circuit (ASIC) design flow
experienced radical changes. Deep sub-micron integrated circuit (IC) manufacturing
technology is enabling designers to put millions of transistors on a single integrated
circuit. Following Moore’s law, design complexity is doubling every 12-18 months.
In addition, there is an ever-increasing demand on reducing time to market. With
complexity skyrocketing and such a competitive pressure, designing at high levels of
abstraction has become more of a necessity than an option.

At the present time, exploiting design-partitioning techniques, register-transfer
level (RT-level) automatic logic synthesis tools can be successfully adopted in many
ASIC design flows. However, not all activities have already migrated from gate- to
RT-level and are not yet mature enough to.

High-level design for testability, testable synthesis and test pattern generation are
increasing their industrial relevance [1]. During the development of ASIC, designers
would like to be able to foresee its testability before starting the logic synthesis
process. Furthermore, RT-level automatic test signals generators are expected to
exploit higher-level compact information about design structure and behavior, and to
be able to produce more effective sequences within reduced CPU time. The test
signals may possibly be completed after synthesis by ad-hoc gate-level tools.

ARPIA: A High-Level EvolutionaryTest Signal Generator 299

However, despite the big effort of electronic design automation (EDA) industries,
tackling test issues at high levels is still an unsolved problem. The lack of a common
fault model is probably the hardest theoretical barrier. Over the years, the computer
aided design (CAD) community agreed on some well-defined gate-level fault models.
The most popular is the permanent single stuck-at fault, and all commercial products
are able to use it. On the contrary, up to now it was unable to agree on any high-level
fault model.

The most important technical barrier, on the other side, is the lack of efficient
algorithms to generate effective test signals. As a matter of fact, at the present time
even simulating RT-level test signals is a challenging task. Fault simulation
algorithms for RT-level designs are known since more than a decade [2], but
commercial tools usually don’t include these capabilities. Furthermore, classical
algorithms are difficult to integrate in simulators, mainly due to the complexity and to
the several peculiarities of hardware description languages. Some prototypical fault
simulators were proposed [3] [4], but until some fault model becomes widely
accepted EDA industries have no good reason to invest and this situation is not likely
to change.

Even so, researchers and pioneering design groups already need test signals on
their RT-level designs. Many generators were proposed. Nevertheless, since any
attempt of backward justification must take into account all structural, behavioral and
timing specifications [5], traditional algorithms are almost unusable. Researchers
sometimes achieved good results, but they were generally limited to specific classes
of circuits. However, interesting successful results have been reported using
evolutionary algorithms [6]. These approaches exploit natural evolution principles to
drive the search of effective patterns within the gigantic space of all possible signal
sequences. Evolutionary heuristics begin to appear a reasonable alternative to
traditional techniques.

This paper presents ARPIA, a high-level evolutionary automatic test signals
generator. Experimental results gathered using the prototypical implementation is
remarkable. The effectiveness of the generated test signals is at least comparable with
(and in several cases higher than) that of previously proposed approaches.
Additionally, thanks to the evolutionary algorithm and to a fault dropping mechanism,
computational requirements of the new system are lower.

Next Session details ARPIA. An analysis of the proposed approach is illustrated in
Section 4. Section 5 draws some conclusions.

2 ARPIA

ARPIA is a simulation-based evolutionary test signals generator. Being an
evolutionary algorithm, it evolves a population seeking fitter individuals. But, since
individuals are test sequences for a digital circuit, the fitness measures the sequence
ability to detect faults in the design. And it is computed by simulation. Given a fault
model, the fault coverage is defined as the percentage of faults that the test sequence
is able to detect. Thus, the goal of ARPIA can be rephrased as “generate a sequence
of signals that attains maximum fault coverage.”

ARPIA shares the same philosophy with [6]. They are both simulation-based
approaches, and individuals are evaluated resorting to an RT-level fault simulator.

300 F. Corno et al.

However, the two methodologies exploit different fault models, different fault
simulation techniques and different evolutionary algorithms. Next Sections detail
these three key points.

2.1 Fault Model

Many fault models have been proposed in the past, mainly by borrowing from
software-testing metrics [7]. While software derived metrics are well known and quite
standardized, and they are already implemented in some commercial tools, their
usefulness for hardware testing is quite low. In particular, software metrics neglect
observability issues and the effects of logic synthesis, and thus are not an accurate
indicator of circuit testability.

One successful proposal of a hardware-related fault model is Observability-
Enhanced Statement Coverage [8] [4]: it introduces the concept of tag as the
possibility that an incorrect value is computed at a given location, thus approximating
the effects of fault propagation. Since this fault model does not assume any specific
fault effect, its generality prevents explicit fault simulation.

An extension of observability-enhanced statement coverage was first proposed in
[9] and then refined in [10], where explicit RT-level assignment single-bit stuck-at’s
are used instead of generic tags. An RT-level assignment single-bit stuck-at fault is
defined as a single-bit stuck-at in the effect of an RT-level assignment operation:
when a fault is present, the affected object (signal or variable target of an assignment
statement) loads the correct value, except for one bit that is forced to 0 or 1.

Fig. 1 shows the example of a stuck-at fault. The fault affects the third leftmost bit
of the assignment operation, and modifies the result of the expression, after it has
been computed and before it is assigned to the target signal. The faulty signal is
updated as usual, according to propagation rules, but with a faulty value. Other
assignments of the same signal are assumed to be fault-free, since stuck-at faults on
the same signal but on different statements are considered different. More details
about the fault model can be found in [9].

addr <= (tail + reg1) mod 2**8;

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 1

0 0 1 0 1 1 0 1 1

Fig. 1. Stuck-At Fault Example

The current fault model exploits several heuristics to filter out unrepresentative
RT-level stuck-at. This elimination enables the RT-level assignment single-bit stuck-
at fault coverage to be highly correlated with gate-level fault coverage: the correlation
coefficient R, computed over a set of 10 different circuits by simulating the test
sequences generated in three different ways, reaches R=0.77 [10].

ARPIA: A High-Level EvolutionaryTest Signal Generator 301

2.2 Fault Simulation Technique

Fault simulation is made possible by creating routines that change the target
signal/variable bit value during simulation, using the simulator scripting language
(Tcl), when a given target assignment instruction is executed. The fault injection
procedures, presented in [9], must face various issues derived from the fault model,
from VHDL semantics and from the simulator itself.

This fault simulation environment allows us to compute fault coverage figures at
the RT-level with a minimal CPU time overhead, since the VHDL model of faulty
circuits is simulated at the same speed as the fault-free model. The main time penalty
is at fault activation time instants, where some breakpoints are set and TCL
commands to modify values are executed.

2.3 Algorithm

A fault can be marked as tested only when it is both excited and observed. Given a
fault, the target of the whole process is first to force the corresponding bit to a value
that make the fault visible (excitation), then to propagate the fault effects to some
primary output (observation).

current_sequence = random_sequence(L);
steady_state_factor = 0;
do
{
new_sequence = mutate(current_sequence);
if(excited_faults(new_sequence) > excited_faults

(current_sequence)) {
current_sequence = new_sequence;
steady_state_factor = 0;

} else {
increase(steady_state_factor);

}
} while(excited_faults(current_sequence) == 0 &&

steady_state_factor < steady_state_limit)

Fig. 2. Phase One Pseudo Code

The two problems are tackled separately, with two different strategies. Indeed, test
generation is performed in three phases. The first is aimed at exciting faults, the
second tackle observation, while the third dynamically optimize the fault list.

The goal of the first phase is to produce a set of signals able to excite an untested
fault. The first phase implements a simple first-improvement hill climber (Fig. 2). The
local search procedure starts with a random sequence of given length L. In each step,
a new sequence is generated by randomly mutating the current one. If the new
sequence excites a larger number of untested faults, it becomes the current one.
Otherwise it is discarded. The process ends whenever the current sequence is able to
excite at least k fault, or after a predefined amount of useless steps. It is worth noting
that the number of excited faults is computed over the untested faults only.

302 F. Corno et al.

Three mutations are currently implemented by ARPIA: add, delete and change.
The first two respectively add and delete a vector of input signals from the test
sequence. The last one randomly changes a vector of input signals in the sequence.

When a test sequence able to excite a sufficient number of faults is found, it is
transferred to the second phase together with the excited faults. The goal of the
second phase is to observe each single fault in the excited set. This stage exploits an
evolutionary algorithm similar to an evolution strategy [11].

First, a target fault ft is selected from the excited set. Then, a population of P
sequences is created by mutating the original sequence and evolved using a (P+P)
strategy. In every evolution step, P new individuals are generated by mutating the P
original ones (each sequence generates exactly one new sequence). The P fitter
individuals are selected for survival among the 2P. The same three mutation operators
of the first phase are adopted.

In the second phase, given a target fault ft, the fitness measures how far a sequence
is able to propagate ft effects. More precisely, it is the maximum number of
differences caused by the fault during the application of a single vector of signals of
the test sequence (1).

å˛
=

objects
Sv

t objectbitsdifferentMAXfStwoevaluation)(_),(_ (1)

The evolution is halted whenever ft is detected or after a certain amount of
generations. The pseudo code is shown in Fig. 3.

The second phase is iterated until all faults in the excited set have been tested or
aborted.

The evolution-strategy approach was chosen because of the complexity of the
encoding. Individuals are sequence of vectors. Each vector of signals is simulated in a
clock cycle. Circuits contain memory elements, thus the behavior in a clock cycle
depends both on current input signals and previous ones. The effect of a traditional
recombination operator, like the uniform crossover, can be very similar to a complete
random mutation at phenotypic level. We shun any risk and exploit an algorithm that
“omits recombination since its philosophy relies on species as evolving entities” [12].

After each successful second phase, an optimization mechanism called fault
dropping is activated. All still untested faults are simulated with the new sequence,
seeking if any additional fault is detected by it. This is more of a possibility than an
expectation, since the starting sequence found in the first phase is required to be able
to excite more than one fault. The fault dropping mechanism greatly enhances overall
algorithm performance.

3 Experimental Analysis

In order to practically evaluate the effectiveness of the proposed approach, we
implemented a prototype. The generator is composed of about 1,500 lines in ANSI C
and interacts with V-System 5.3 VHDL simulator by Model Technology. Special
techniques are adopted to speed-up fault simulation [9]. During experiments we adopt
the following parameter values:

ARPIA: A High-Level EvolutionaryTest Signal Generator 303

for t = 1 to P {
population[t] = mutate(starting_sequence);

}
generations = 0;
success = 0;

do
{

generations = generations + 1;
for t = 1 to P {

population[P + t] = mutate(population[t]);
if(tested(ft, pupulation[t])

success = 1;
}
sort(population);

} while(not success && generations < generations_limit);

Fig. 3. Phase Two Pseudo Code

� first-phase initial sequence length of 50 clock cycles (L = 50)
� first phase sequence required to excite 5 different faults (k = 5)
� second phase population of 10 individuals (P = 10).

Table 1. ARPIA Result

Tot Det FC% Tot Det FC%
b01 78.80 81 81 100.00% 258 258 100.00%
b02 39.19 43 39 90.70% 150 149 99.33%
b03 1,089.96 213 145 68.08% 822 615 74.82%
b04 1,627.86 424 353 83.25% 3,356 3,035 90.44%
b05 1,932.27 778 244 31.36% 5,552 1,856 33.43%
b06 200.31 110 82 74.55% 5,552 5,387 97.02%
b07 9,297.26 289 146 50.52% 2,404 1,401 58.28%
b08 2,832.38 154 118 76.62% 918 839 91.39%
b09 4,970.53 240 196 81.67% 900 768 85.33%
b10 778.35 172 127 73.84% 1,054 961 91.18%
b11 34,837.11 381 263 69.03% 2,868 2,614 91.14%
b12 7,890.20 870 115 13.22% 5,280 1,105 20.92%
b13 2,801.85 284 224 78.87% 1,818 1,501 82.56%
b14 473,741.90 10,493 9,114 86.86% 28,990 23,708 81.78%
b15 590,611.31 4,900 2,026 41.35% 55,568 18,060 32.50%

Circuit
RT FaultsCPU time

[s]
Gate Faults

Table 1 reports the experiments performed on the ITC99 RT-level benchmarks.
These benchmarks are representative of typical circuits, or circuit parts, that can be
automatically synthesized as a whole with current tools and are described in [13].
Experiments have been run on a Sun Enterprise 250 running at 400 MHz and
equipped with 2 Gbytes of RAM.

The first column of Table 1 reports the name of the benchmark, while the CPU
time required to generate the test signal sequence is shown in the second column. RT-
level fault figures are reported in the next column block in terms of: total number of
faults [Tot], number of detected faults [Det] and percent fault coverage [FC%]. The

304 F. Corno et al.

next column block shows gate-level figures: total number of gate-level faults [Tot],
number of detected [Det] and respective fault coverage [FC%].

Results show that ARPIA is able to generate test sequences that are highly
effective both at RT-level and at gate-level, within an acceptable CPU time. However,
to better analyze the tool performance, we need to compare it with different approach
(Table 2).

Table 2. Comparison with ARTIST and ARPIA without Evolutionary Algorithm

RT Gate RT Gate RT Gate
b01 100.00% 99.61% 100.00% 100.00% 100.00% 100.00%
b02 90.70% 99.33% 90.70% 99.33% 90.70% 99.33%
b03 56.81% 69.10% 68.08% 74.82% 68.08% 74.82%
b04 69.34% 69.19% 83.79% 91.03% 83.25% 90.44%
b05 11.31% 5.42% 31.36% 33.50% 31.36% 33.43%
b06 70.00% 93.38% 74.80% 97.35% 74.55% 97.02%
b07 47.75% 56.49% 50.52% 58.28% 50.52% 58.28%
b08 52.60% 28.00% 60.10% 71.68% 76.62% 91.39%
b09 62.50% 48.89% 77.84% 81.33% 81.67% 85.33%
b10 46.51% 65.84% 73.69% 90.99% 73.84% 91.18%
b11 43.57% 58.79% 68.64% 90.62% 69.03% 91.14%
b12 2.76% 4.36% 29.06% 45.99% 13.22% 20.92%
b13 31.69% 31.19% n/a n/a 78.87% 82.56%
b14 11.57% 37.91% n/a n/a 86.86% 81.78%
b15 14.69% 12.75% n/a n/a 41.35% 32.50%

ARPIA (no ES) ARTIST ARPIA
Circuit

The first column block of Table 2 reports data for the first prototype of ARPIA,
where a simple hill-climber was exploited instead of the evolution strategy. The gap
between the two RT-level figures shows the fundamental role played by the
evolutionary algorithm. The gap between gate-level fault coverage statistics is a mere
consequence.

In the second column group of Table 2 we reported results attained by ARTIST [6],
a highly-optimized tool exploiting a genetic algorithm. The difference between these
two tools can be explained resorting to both the fault model and the new evolutionary
mechanism. A deeper comparison between the results of ARPIA and of ARTIST
(complete data can not be reported here for lack of space) shows that the former is
characterized by a higher efficiency (i.e., it requires a lower CPU time), thanks to
fault dropping and a higher compactness of the generated sequences. Indeed, ARTIST
was not able to tackle some of the benchmarks due its lower efficiency (marked with
“n/a” in the table).
 The effectiveness of the evolutionary algorithm can also be seen in Table 3, where
the number of excited faults is shown in column [Exc] together with the number of
detected faults [Det]. The effectiveness of the evolutionary algorithm can be defined
as its ability to observe (i.e., to detect) excited faults, not considering faults that are
certainly unobservable due to incorrect design ([Err] column).

 It should be noted that phase two effectiveness is quite high also for b12, a
problematic circuit where ARPIA only manages to get 13.22 % RT-level fault

ARPIA: A High-Level EvolutionaryTest Signal Generator 305

coverage. Thus, primarily the first phase can be hold responsible for the low
performance.

Table 3. Phase Two Effectiveness

Tot Exc Det Err
b01 81 81 81 0 100.00%
b02 43 43 39 4 100.00%
b03 213 148 145 3 100.00%
b04 424 356 353 3 100.00%
b05 778 340 244 19 76.01%
b06 110 87 82 5 100.00%
b07 289 240 146 20 66.36%
b08 154 118 118 0 100.00%
b09 240 196 196 0 100.00%
b10 172 139 127 12 100.00%
b11 381 289 263 26 100.00%
b12 870 130 115 1 89.15%
b13 284 266 224 16 89.60%
b14 10,493 10,165 9,114 0 89.66%
b15 4,900 2,244 2,026 24 91.26%

Circuit
RT-Level Faults Phase2

Efficacy

3 Conclusions and Future Works

Due to the wide adoption of logic synthesis tools, high-level techniques are
increasingly necessary in order to shift test-related activities towards the description
level adopted by designers. A crucial point for developing effective high-level test
signal generator lies in the identification of a suitable fault model. Another crucial
point is the availability of a suitable algorithm for test generation.

In this paper we exploit a recent fault model to propose a methodology for
generating high quality test signals. The approach is based on an evolution strategy.
Experimental data show the potential of the proposed approach with regard to similar
techniques, the effectiveness of the fault model, and the convenience of the
evolutionary algorithm.

We are currently improving ARPIA in two directions. First, we are trying to
replace the hill-climber in the first phase with sharper algorithms, solving the issues
stemming from the lack of information concerning the system behavior before fault
excitation. We are also considering the adoption of an evolutionary core similar to the
one exploited in [14]. Secondly, we are tuning the evolution strategy adopted in the
second phase, experimenting more complex selection schemes. We are pondering to
change the algorithm, adding back recombination in some constrained form.

306 F. Corno et al.

4 References

[1] “High Time for High-Level Test Generation,” Panel at the IEEE International Test
Conference, 1999, pp. 1112-1119

[2] M. Abramovici, M. A. Breuer, A. D. Friedman, Digital systems testing and testable
design, Computer Science Press, 1990

[3] A. Fin, F. Fummi, “A VHDL Error Simulator for Functional Test Generation,” IEEE
European Design, Automation and Test Conference, 2000, pp. 390-395

[4] F. Fallah, S. Devadas, K. Keutzer, “OCCOM: Efficient Computation of Observability-
Based Code Coverage Metrics for Functional Verification,” DAC98: 34th Design
Automation Conference, 1998

[5] F. Ferrandi, F. Fummi, L. Gerli, D. Sciuto, “Symbolic Functional Vector Generation for
VHDL Specifications,” DAC99: 35th Design Automation Conference, 1999, pp. 442-446

[6] F. Corno, M. Sonza Reorda, G. Squillero, “High-Level Observability for Effective High-
Level ATPG,” VTS2000: 18th IEEE VLSI Test Symposium, May 2000, pp. 411-416

[7] B. Beizer, Software Testing Techniques (2nd ed.), Van Nostrand Rheinold, 1990
[8] F. Fallah, P. Ashar, S. Devadas, “Simulation Vector Generation from HDL Descriptions

for Observability-Enhanced Statement Coverage,” DAC99: 35th Design Automation
Conference, 1999, pp. 666-671

[9] F. Corno, G. Cumani, M. Sonza Reorda, Giovanni Squillero, “RT-level Fault Simulation
Techniques based on Simulation Command Scripts,” DCIS 2000: XV Conference on
Design of Circuits and Integrated Systems, November 21-24, 2000

[10] F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero, “An RT-level Fault Model with
High Gate Level Correlation,” IEEE International High Level Design Validation and Test
Workshop, November 8-10, 2000

[11] T. Bäck, F. Hoffmeister, and H.-P. Schwefel, “A survey of evolution strategies.”
Proceedings of the Fourth International Conference on Genetic Algorithms, 1991, pp. 2-9

[12] H.-P. Schwefel, F. Kursawe, On Natural Life’s Tricks to Survive and Evolve, Proceedings
of the 1998 IEEE International Conference on Evolutionary Computation, 1998, pp. 1-8

[13] F. Corno, M. Sonza Reorda, G. Squillero, “RT-Level ITC 99 Benchmarks and First
ATPG Results,” IEEE Design & Test, Special issue on Benchmarking for Design and
Test, July-August 2000, pp. 44-53

[14] F. Corno, M. Sonza Reorda, G. Squillero, “Automatic Validation of Protocol Interfaces
Described in VHDL,” EvoTel2000: European Workshops on Telecommunications,
Edinburgh (UK), May 2000, pp. 205-213

A Pursuit Architecture for Signal Analysis

Adelino R. Ferreira da Silva

Universidade Nova de Lisboa,
Dept. de Eng. Electrotécnica,

2825 Monte de Caparica, Portugal
afs@mail.fct.unl.pt

Abstract. One of the main goals of signal analysis has been the de-
velopment of signal representations in terms of elementary waveforms
or atoms. Dictionaries are collections of atoms with common parame-
terized features. We present a pursuit methodology to optimize redun-
dant atomic representations from several dictionaries. The architecture
exploits notions of modularity and coadaptation between atoms, in or-
der to evolve an optimized signal representation. Modularity is modeled
by dictionaries. Coadaptation is promoted by introducing self-adaptive,
gene expression weights associated with the genetic representation of a
signal in a proper dictionary space. The proposed model is tested on
atomic pattern recognition problems.

1 Introduction

An all pervasive scientific methodology to describe and analyze complicated
phenomena, is to represent them as a superposition of simple, well-understood
objects. In physics and engineering, an important aspect of many of these repre-
sentations is the chance to extract relevant information hidden in the underlying
process or signal representation. For example, linear transformations are often
applied with the aim of simplifying signal analysis. Such transformations are
used for many diverse tasks such as reconstruction, classification, compression,
coding, and diagnostics.

One of the main goals of signal analysis in recent years has been the develop-
ment of signal representations in terms of elementary waveforms well localized
in time and frequency, called time-frequency atoms. Collections of waveforms
with common parameterized features are called dictionaries. Several alternative
time-frequency dictionaries have been developed. For instance, wavelet dictio-
naries use translations and dilations of a basic mother waveform or wavelet [1].
A wavelet packet dictionary includes the standard wavelet dictionary and a col-
lection of oscillating waveforms spanning a range of frequencies and durations.
A local cosine packet dictionary contains the standard orthogonal Fourier dic-
tionary and a variety of sinusoids of various frequencies weighted by windows of
various widths and locations. A more general framework for signal representation
is provided by atomic decomposition analysis [2]. In this case, the representa-
tion is extended with the introduction of non-orthogonal signal decompositions.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 307–316, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

308 A.R. Ferreira da Silva

Non-orthogonal bases produce highly overcomplete dictionaries. The freedom of
choice provided by non-orthogonal representations leads to a considerable com-
binatorial explosion. For general dictionaries, finding the optimal expansion over
a redundant dictionary of waveforms is NP-complete [3]. On the other hand, the
non-orthogonality between atoms introduce complex signal interactions which
cannot be exploited by standard signal processing algorithms.

In this paper we propose a pursuit methodology to optimize redundant, non-
linear approximations from several dictionaries. The proposed methodology, re-
ferred to as evolutionary pursuit (EP), relies on evolutionary computation tech-
niques [4] to select well-adapted approximations. In EP, finding the best approx-
imation for a given signal is viewed as an evolutionary learning process. The EP
approach reduces the computational complexity of atomic decomposition analy-
sis by subdecomposing the fitness optimization process. One critical requirement
for atomic decomposition analysis is cooperative coevolution. We need an evolu-
tionary algorithm to evolve and sustain a diverse and cooperative population in
order to promote interaction between atoms in different decompositions. Simple
genetic algorithms are not entirely adequate for this purpose, since they have
difficulty in maintaining diversity, thus leading to strong convergent properties.
We introduce an architecture for evolving coadapted sets of atomic decomposi-
tions. The architecture exploits explicit notions of modularity and coadaptation
between atoms, in order to evolve an optimized signal representation. Modularity
is modeled by considering a pursuit model of decompositions coming from sep-
arate dictionaries. Considering a molecule as a set of atoms, finding an optimal
atomic decomposition amounts to optimizing the best combination of molecules
from separate dictionaries. Coadaptation is promoted in EP by introducing self-
adaptive, gene expression weights associated with the genetic representation of
a signal in a proper dictionary space. Each individual is modeled after a com-
posite genome with a genome representation for each component part. More
specifically, each individual is able to generate signal representations for each
dictionary within the set of all dictionary spaces. Gene expression weights are
evolved for each component separately, and used to promote fitness adaptation
between molecules from different libraries in the pursuit model.

The paper is organized as follows. In Sect. 2, we review the basic formu-
lation used to characterize signal approximations. Section 3, formulates signal
approximations in terms of coadapted decompositions. In Sect. 4 we propose
an architecture to support the evolution of adapted decompositions. Section 5
presents the results of the application of the proposed methodology to atomic
pattern recognition problems. Section 6 summarizes the conclusions.

2 Signal Approximations

In this section we review some relevant aspects of signal approximation theory.
For more details we refer to [1]. Let f be a discrete digital signal. A dictionary
D is a collection of waveforms (φγ)γ∈Λ, with γ a parameter [2]. We envision an
optimal superposition of dictionary elements, in the sense that the residue RM

A Pursuit Architecture for Signal Analysis 309

in an approximate signal expansion

f =
M−1∑
m=0

αγm
φγm

+ RM

is minimized, being αγm
appropriate expansion coefficients. We are mainly inter-

ested in dictionaries that are overcomplete, because they give us the possibility
of adaptation, i.e., choosing among many representations the one that is best
suited to our purposes. This adaptation capability draws from the fact that over-
complete dictionaries yield non-unique decompositions. Following a terminology
close to the one proposed in [1], let B = {gm}m∈N be an orthonormal basis of a
Hilbert space H. Any f ∈ H can be decomposed in a basis Bb indexed by b ∈ N,

f =
+∞∑
m=0

〈f, gbm〉gbm.

For an approximation in basis Bb, instead of representing f by all inner products
{〈f, gbm〉}m∈N we may use only the best M components. The approximation
error in basis Bb is then

εb[M] = ‖f − f̃bM‖2 =
+∞∑

m=M

|〈f, gbm〉|2. (1)

Using the simplified notation αb[i] = 〈f, gbmi
〉 for expressing the coefficient of

rank i, the best non-linear approximation in basis b = B1 is

f̃bM =
M−1∑
i=0

αb[i]gbmi
.

For our purposes, a dictionary Dk, k ∈ Z
+, is a union of orthonormal bases in a

single space of finite dimension N , Dk = ∪b∈NBb. To optimize non-linear signal
approximations in a single dictionary, we will adaptively select a ”best” basis
from a dictionary of bases by minimizing a cost functional.

3 Formulation of Coadapted Decompositions

To improve the approximation of complex signals we need to consider gen-
eral non-orthogonal signal decompositions, and multiple dictionaries. The non-
orthogonality between atoms introduce complex signal interactions which cannot
be fully exploited by standard signal processing techniques. Evolutionary algo-
rithms rely on a population of individuals, each of which represents a search point
in the space of potential solutions. To construct well-adapted and parsimonious
signal decompositions, EP evolves populations of bases taken from several dictio-
naries. In addition, the number of atoms to retain in the final approximation from
each dictionary may be self-adaptively selected by the evolutionary algorithm

310 A.R. Ferreira da Silva

[4] in order to minimize the final signal residue. The self-adaptive procedures in
EP follow the standard evolution strategies approach [5]. The particular choice
of which dictionaries to use depends upon the application.

Consider a signal of dimension L. Let K be the number of dictionaries Dk, k =
{1, . . . , K} from which bases are to be selected. For each dictionary Dk, select
an initial population Pk,0 of µ bases,

Bk
b = {gk

bm}b={1,... ,µ}
1≤m≤Nk

,

where Nk is the number of vectors in basis Bk
b for dictionary Dk. For each

generation g, we evolve the decomposition associated with each dictionary Dk,
and extract the residue at each step. Thus, for dictionary D1,

R1,g
b = f −

N1∑
i=1

α1,g
b [i]g1,g

bmi
. (2)

The application of the genetic algorithm to the population of residues at gen-
eration g for dictionary D1, R1,g

b , b = {1, . . . , µ}, yields a local best basis g1,g
β1m,

and a local minimum residue R1,g
β1

. This residue is the signal to be optimized by
bases taken from the next dictionary D2, in the current generation. A similar
optimization process is applied to all dictionaries in sequence.

The evolutionary procedure (2) for calculating the residues is unsuited to
deal with non-orthogonal decompositions. Since, in general, we are dealing with
the superposition of non-orthogonal atoms, the best-adapted coefficients αk,g

b [i]
are not specified by the bases gk,g

bm alone, as in the single dictionary case with
orthogonal bases, but have to be evolved to achieve improved signal approxima-
tions. Therefore, we reformulate (2) in terms of weight factors w1,g

i to be applied
to the coefficients α1,g

b [i] at each generation g,

R1,g
b = f −

N1∑
i=1

w1,g
i α1,g

b [i]g1,g
bmi

. (3)

The coefficients α1,g
b [i] are evaluated directly from the population of µ bases,

as in the single dictionary case. The weights w1,g
i are evolved by EP. There is

a different set of weights for each dictionary. The objective is to evolve a set
of bases, weights and number of atoms for each dictionary, such that the final
residue at generation g = G, RG = ‖f − f̃G‖ is minimized. The final signal
approximation f̃G is synthesized from the best evolved bases Bk

β among all K
dictionaries at the final generation G,

f̃G =
K∑

k=1

Nk∑
i=1

wk,G
i αk,G

β [i]gk,G
βmi

. (4)

Each best evolved basis per dictionary contributes with the best Nk ≥ 0 coeffi-
cients to build the final (non-linear) signal approximation.

A Pursuit Architecture for Signal Analysis 311

signal residue

Ga
1

Gw
1

D1 Tr. D1 Thr. D1 Inv.

+

−

D1 MODULE

Fig. 1. Pursuit architecture: first stage

4 A Pursuit Architecture of Coadapted Dictionaries

The formulation of coadapted decompositions introduced in Sect. 3 may be ex-
pressed in terms of a pursuit architecture of coadapted dictionaries. The pro-
posed pursuit architecture supports the emergence of adapted decompositions.
The architecture exploits modularity and coadaptation between molecules in or-
der to evolve an optimized signal representation. The first stage of the pursuit
model associated with dictionary D1 is depicted in Fig. 1. The model is a cascade
of K stages, following the pattern represented in Fig. 1. There is one stage for
each dictionary in the model. Each stage is composed of a transformation unit
(Tr.), a thresholding and weighting unit (Thr.), and an inversion unit (Inv.).
The exact transformation to be applied at stage k, is governed by the genetic
material Gk

a for dictionary Dk. Likewise, the type of weighting mechanism to
use is governed by the gene expression weights Gk

w. At the end of each stage, a
residue is extracted to be processed by the next stage.

4.1 Modularity

As far as modularity is concerned, dictionaries Dk, k ∈ Z
+, are the basic mod-

ular units to be considered. For computational efficiency reasons, we consider
dictionaries for which fast transforms are available. A one-dictionary molecule
Mk, is defined as a signal composed by the superposition of atoms taken from
dictionary Dk. In the current implementation, we have used a maximum of
four dictionaries, Dk, {1 ≤ k ≤ 4}: wavelet packets, local cosine packets, cosine
transforms and Dirac signals [1]. At each generation, each unit contributes with
a one-dictionary molecule for the adaptation process (molecules may be empty,
i.e., have zero atoms). The connections between modules implement the residue
extraction specification formulated in Sect. 3. These connections represent a fea-
ture extraction mechanism for atomic recognition, updated at each stage Dk.
The superposition of the evolved one-dictionary molecules Mk at each stage,

312 A.R. Ferreira da Silva

gives the signal approximation f̃ =
∑

k Mk, to be evaluated for fitness at each
generation. Fitness has been evaluated in terms of the `2-error,

`2 = ‖f − f̃‖2 =

[
L∑

i=1

[f(xi) − f̃(xi)]2
] 1

2

. (5)

4.2 Intra-dictionary Adaptation

The second fundamental pursuit mechanism deals with coadaptation. However,
before describing the coadaptation mechanism used in the pursuit architecture,
we have to specify the underlying genetic representation, and the genotype-to-
phenotype mapping used for the purpose of fitness evaluation. Both of these
aspects, the representation and the fitness evaluation, have been described more
fully in previous work when dealing with atomic decompositions for wavelet
packet and cosine packet dictionaries [6,7]. In the following, we will refer to the
construction used in those references as the intra-dictionary genetic algorithm.
The fundamental aspects of the algorithm are as follows. For each dictionary Dk

there is a genotype sequence Gk
a , which defines how some discrete function f of

L sample values is transformed to obtain its representation in the transformed
library space. For instance, the wavelet packet dictionary may be organized as
a tree data structure. Therefore, the genotype sequence Gk

a which defines the
wavelet packet decomposition may be specified by a breadth-first sequence [6].
Alternatively, a tree genotype or some other valid representation could be used
for the same purpose. The genotype sequence Gk

a guides the decomposition pro-
cess and constructs a phenotypic representation of f in the transformed space,
F k, for dictionary Dk. For fitness evaluation purposes, the best terms of the
F k representations for each dictionary Dk are used to reconstruct the approx-
imation f̃ . When dealing with single dictionaries, it has been shown that the
intra-dictionary genetic algorithm is robust for atomic pattern recognition [6,7].

4.3 Coadaptation: Inter-dictionary Adaptation

When considering multiple dictionaries, each dictionary Dk contributes with Nk

evolved coefficients from the transformed space F k, or equivalently Nk atoms,
for the reconstructed signal f̃ . We suppose that we know which dictionaries are
available. Furthermore, we suppose that the total number of atoms, N , used to
build the reconstructed signal f̃ is specified. For multiple dictionaries, the atomic
decomposition problem amounts to address the following two questions. First,
which coefficients should be selected from each dictionary ? Second, how many
coefficients should be selected from each dictionary ? In general the best rep-
resentation for a given signal involves interaction between atoms from different
dictionaries. Therefore, we are left with a coadaptation problem for atoms from
different dictionaries, or inter-dictionary adaptation. For atoms from the same
dictionary, adaptation is solved by the intra-dictionary evolutionary algorithm
outlined in Sect. 4.2.

A Pursuit Architecture for Signal Analysis 313

Coadaptation is addressed by defining, for each dictionary, a new genome
component Gk

w which weights the intermediate phenotypic representation gener-
ated by the component Gk

a specified in Sect. 4.2. Each gene ga[i] of Gk
a has an

associated gene gw[i] of Gk
w. The genes gw[i] are used to weight the expression of

the genes ga[i] in transformed space. Fitness is evaluated by the `2-error ‖f−f̃‖2,
with f̃ =

∑4
k=1 f̃k, where each component f̃k is obtained through the inverse

transform associated with dictionary Dk. For each dictionary Dk, Nk trans-
formed coefficients F k are evolved. It is worth noting that the genetic weights
Gk

w are not applied to the fitness function directly, but are used as regulatory en-
tities applied to intermediate genetic transcriptions (see Fig. 1). Although we do
not elaborate on this, this mechanism has features in common with gene expres-
sion mechanisms as proposed for instance in [8]. However, the genetic weights are
not used simply as gene activation entities, but rather as regulatory mechanisms
within the decomposition and reconstruction (transcription) process. The deter-
mination of the contribution each vector of coefficients is making to the solution
as a whole (credit assignment), is regulated by the genes Gk

w. This regulation
fosters the maintenance of genetic diversity. In fact, even if the vectors of coeffi-
cients F k are correctly identified for each dictionary Dk, the expression weights
Gk

w may degrade the fitness value assigned to an individual. Therefore, individu-
als representing less than exact decompositions will have an increased chance of
surviving, if their gene expression weights promote well-fitted combinations of
molecules among dictionaries. The weights are evolved in a self-adaptive manner
[5], in close connection with the evolved dictionary representation.

5 Experimental Results

Following the methodology outlined in Sect. 3, a series of statistical tests were
conducted to evaluate the discriminating capabilities of the evolutionary algo-
rithm in identifying the atoms and the time-frequency coefficients in molecular
test signals. The evolutionary program used in the tests is a hybrid implemen-
tation based on the steady-state genetic algorithm as implemented in [9], and
the evolutionary algorithm with self-adaptive Gauss-Cauchy mutation [10,4].
We have used the following genetic parameters: population size: 50; number of
generations: 200; crossover probability: 0.95; mutation probability: 0.01; replace-
ment probability: 0.9. The basic operators used to drive the EP program were as
follows: self-adaptive Gauss-Cauchy mutation for real genomes [10]; uniform mu-
tation with constraints for admissible tree genomes [11]; blend crossover (BLX)
for real genomes [9]; uniform crossover for integer genomes; tournament selection
as the selection method.

In this work, we consider synthetic signals composed of atoms taken from
a mixture of dictionaries. The atoms used in the construction of the synthetic
signals were randomly taken from four dictionaries [1]: wavelet packets (WP),
local cosine packets (CP), discrete cosines (DC), and diracs (DI). As an example,
Fig. 2 shows a randomly generated test signal constructed with 4 wavelet packet
atoms, 4 cosine packet atoms, 2 cosines and 2 diracs. The signal has length

314 A.R. Ferreira da Silva

0 50 100 150 200 250

−0.
5

0.0
0.5

1.0

Index

Syn
the

tic s
igna

l

Fig. 2. Example of a synthetic test signal

L = 256. Table 1 specifies the atomic composition of the molecular signals used in
the test suite, in terms of the dictionaries WP, CP, DC, and DI. The Daubechies-
8 filter [1] was used to generate the atoms from the wavelet packet dictionary.
Molecular tests signals were randomly generated with a total number of atoms
in the range ra = {6, 8, 12, 16, 20}, for different molecular compositions.

To evaluate the ability of the evolutionary algorithm to correctly identify the
elementary waveforms in the test signal f , we have used two error measures: one
in transformed space, the `0-error, and the other in signal space, the `2-error. As
explained in Sect. 4.2, the set of evolved coefficients F k ,{1 ≤ k ≤ 4}, in trans-
formed space are used to reconstruct the signal approximation f̃ . There are two
characteristics associated with the F k coefficients: their position in the trans-
formed signal representation, and their numerical value. The `0-error gives an in-
dication of the positioning of the coefficients in the vectors F k, and measures the
coefficients’ misidentification error rate. More specifically, the `0-error measure is
defined as follows. Suppose that each coefficient is normalized so that ‖F k

i ‖ = 1.
Let C be the union of the sets of normalized coefficients Ck from all dictionaries
k = {1, . . . , 4}, C = ∪kCk. Likewise, let E be the union of the sets of normal-
ized evolved coefficients Ek from all dictionaries k = {1, . . . , 4}, E = ∪kEk.
The `0-error measure is defined by the number of elements in the asymmetric
difference of the two sets, `0 = #{C − E} = #{C − (C ∩ E)}.

Table 1. Atomic composition of test signals and errors

Test Atoms WP CP DC DI `0-error `2-error
1 6 4 0 1 1 0 2.7e-7
2 8 2 2 2 2 0 7.3e-4
3 12 4 4 2 2 0 0.017
4 12 6 6 0 0 0 0.018
5 16 4 4 4 4 0 0.044
6 16 8 8 0 0 0 0.092
7 20 10 10 0 0 0 0.20
8 20 8 8 4 0 0 0.23

A Pursuit Architecture for Signal Analysis 315

W
P

1
W

P
2

W
P

3
W

P
4

CP
 5

CP
 6

CP
 7

CP
 8

DC
 9

DC
 1

0
DI

 1
1

DI
 1

2

Fig. 3. Evolved atomic components of the signal depicted in Fig. 2

For each test 30 samples were generated. Each new sample generates a new
random atomic composition, with the exact number of atoms from each dictio-
nary specified by the corresponding test number in Table 1. For wavelet packets
and cosine packets the decomposition tree used to synthesize the signal was
randomly generated anew for each sample as well. Table 1 presents the median
values of the `2-errors, between the test signals referenced in Table 1, and the
signals reconstructed with the atoms found by evolutionary pursuit. The median
values of the misidentification errors for the atomic coefficients, as measured by
the `0-error, are also reported in the same table. The specification of the number
of atoms to take from each dictionary was used to run the tests, and obtain the
results presented in Table 1. The median `0-errors in Table 1 show that all the
atoms were correctly identified in most of the stochastic tests, for the number
and mixture of atoms considered in the suite of tests. The low `2-errors indi-
cate that a good visual reconstruction of the original signal has been achieved.
Moreover, the `2-errors show a nice degradation of the reconstructed signal in
relation to the original signal, as the number of atoms increases. Fig. 3 depicts
the evolved atomic components of the signal shown in Fig. 2.

316 A.R. Ferreira da Silva

6 Conclusion

The problem with overcomplete systems in general, is that they lead to large scale
optimization problems with highly non-convex objective functions. We presented
a modular architecture for signal decomposition analysis, based on dictionaries
for which fast transforms are available. Intra-dictionary adaptation, operates on
overcomplete systems of orthogonal bases. Inter-dictionary adaptation, operates
on sequences of intra-dictionary approximations and require coadaptation mech-
anisms. The tests with synthetic signals used in the paper show that the proposed
pursuit approach is able to perform component analysis with low misidentifica-
tion errors. The tests were carried out under the supposition that the number
of atoms to extract from each dictionary were known a priori. This limitation
may be overcome, by incorporating in the genetic algorithm a mechanism to
learn the number of atoms to take from each dictionary. However, preliminary
tests have shown that this additional adaptation mechanism may degrade the
misidentification rate for atomic recognition tasks. We intend to research this
topic further in the future.

References

1. Stéphane Mallat. A Wavelet Tour of Signal Processing. Academic Press, San
Diego, 1998.

2. S. S. Chen. Basis Pursuit. PhD thesis, Stanford University, November 1995.
3. G. M. Davis, S. Mallat, and M. Avelanedo. Greedy adaptive approximations. J.

Constr. Approx., 13:57–98, 1997.
4. Thomas Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strate-

gies, Evolutionary Programming, Genetic Algorithms. Oxford University Press,
New York, 1996.

5. H.-G. Beyer. Towards a theory of evolution strategies: Self-adaptation. Evolution-
ary Computation, 3(3):311–347, 1996.

6. A. F. da Silva. Genetic algorithms for component analysis. In D. Whitley et. al.,
editor, Proceedings of the 2000 Genetic and Evolutionary Computation Conference,
GECCO-2000, Las Vegas, Nevada, pages 243–250. Morgan Kaufmann Publishers,
San Francisco, 2000.

7. A. F. da Silva. Evolutionary time-frequency analysis. In A. Zalzala et. al., editor,
Proceedings of the 2000 Congress on Evolutionary Computation, CEC2000, La
Jolla, California, pages 1102–1109. IEEE Press, 2000.

8. H. Kargupta. The genetic code and the genome representation. In Annie S. Wu,
editor, Proceedings of the 2000 Genetic and Evolutionary Computation Conference
Workshop Program, pages 179–184, 2000.

9. M. Wall. GAlib: A C++ Library of Genetic Algorithm Components. Mechanical
Engineering Department, Massachusetts Institute of Technology, August 1996.

10. K. Chellapilla. Combining mutation operators in evolutionary programming. IEEE
Trans. on Evolutionary Computation, 2(3):91–96, September 1998.

11. A. F. da Silva. Evolutionary wavelet bases in signal spaces. In S. Cagnoni et al.,
editor, Real-World Applications of Evolutionary Computing, volume 1803 of Lecture
Notes in Computer Science, pages 44–53. Springer-Verlag, 2000.

Genetic Algorithm Based Heuristic Measure for
Pattern Similarity in Kirlian Photographs

Mario Köppen1, Bertram Nickolay1, and Hendrik Treugut2

1 Fraunhofer IPK Berlin
Pascalstr. 8-9, 10587 Berlin, Germany

{mario.koeppen|bertram.nickolay}@ipk.fhg.de
2 Stauferklinik Schwäbisch Gmünd

Wetzgauer Str. 85, 73557 Mutlangen, Germany

Abstract. This paper presents the use of a genetic algorithm based
heuristic measure for quantifying perceptable similarity of visual pat-
terns by the example of Kirlian photographs. Measuring similarity of
such patterns can be considered a trade-off between quantifying strong
similarity for some parts of the pattern, and the neglection of the acci-
dental abscense of other pattern parts as well. For this reason, the use
of a dynamic measure instead of a static one is motivated. Due to their
well-known schemata processing abilities, genetic algorithm seem to be a
good choice for “performing” such a measurement. The results obtained
from a real set of Kirlian images shows that the ranking of the proposed
heuristic measure is able to reflect the apparent visual similarity ranking
of Kirlian patterns.

1 Introduction

Kirlian photography was invented in the former Soviet Union in 1939 by Se-
myon Kirlian [1]. Due to the fact that images obtained through the Kirlian
process seems to reveal aura-like features around living objects, it has a long
time fascinated scientists and laymen, but charlatans as well. The Kirlian pro-
cess and a number of processes derived later based on the original one all use
high frequency, low current electricity to create an electrical “corona” around
the object to be photographed. Actually, the discharge is photographed. It has
been suspected that Kirlian photographs reveal relevant medical information
about the “energetic” state of the object, esp. the human body or parts of it,
and can be used for the diagnosis of disease [2] [3] [4]. The medical term for
such a diagnostic method is electroradiography. One well-known approach to a
therapy based on Kirlian photography was introduced by Mandel [5], but there
are more [6].

In Fig. 1 the Kirlian photographs of four different subject’s fingertips can
be seen. There are typical features of such photographs, as protuberances, gaps
and discharge marks. All of them give the human observer of such images the
impression of a unique pattern category. However, a serious controversy is raging
among researchers on the “non-random” nature of Kirlian images, especially the

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 317–324, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

318 M. Köppen, B. Nickolay, and H. Treugut

question, whether the Kirlian images of one and the same person show similar
features or not. In some cases, as it is shown in Fig. 2, a visual similarity of
images taken from the same person at different moments can be clearly seen.
Already this fact urges an explanation.

gap

protuberances

discharge
marks

Fig. 1. Kirlian images of fingertips of four different subjects.

This paper presents an approach to the quantification of the visual similar-
ity of Kirlian images. Due to the different sources of influence on the picturing
process, standard statistical methods will not give very much qualitative insight
into this issue (see [7] [8] for a study using conventional statistics). Consider for
example the presence of gap features in the pattern. Gaps could appear for two
different reasons: as partly belonging to the suspected person-specificity of the
Kirlian image, or as being caused by a random influence on the individual pictur-
ing process. Hence, gaps could stand for visual similarity or not. Also, the local
distribution of discharge marks could appear differently. Of more importance is
the partial high similarity, thus giving a contradictory goal for similarity mea-
surement. A means for reflecting schematical similarity has to be used instead
of a direct computation from image data.

In order to solve this problem, a dynamic measure is used instead of a static
one. The similarity is ranked by the degree, to which it is possible for an adaptive
procedure to re-establish that similarity. Genetic algorithms are proposed for
fulfilling this task.

In section 2, the necessary preprocessing of the Kirlian images and the used
material are presented. Section 3 discusses the problem of processing measures
and emphasizes the use of a genetic algorithm based heuristic measure for the
purpose of this study. Finally, in section 4 the results on the Kirlian images,
which were achieved with this approach, are presented and discussed.

Genetic Algorithm Based Heuristic Measure 319

Fig. 2. Kirlian images of the same fingertip of a subject, taken at different moments.

2 Material and Method

From 30 adult subjects, which suffered from several diseases, 120 Kirlian images
were taken, four images of the hands and feets of each subject, with 15 minutes
time delay between two photographs. Out of those 120 examinations, 32 were
selected according to an apparent high visual similarity of at least three finger-
tips. The goal was to provide a quantitative measure that reflects this visual
similarity, and which is able to separate the class of Kirlian images from ran-
dom patterns and may hint on person-specificity. The goal was not to relate the
Kirlian images to the special diseases of the subjects.

The Kirlian images were digitized using a resolution of 400dpi. As a result,
there were 96 digital images (four images of three fingers of eight subjects)
prepared for further examination.

In order to get a comparable representation for all those images (which are
differing in size, quality and presence of features), an unrolling procedure was
applied, with an interactively set center. Thus, the nearly circular structure of
the Kirlian patterns is reflected. For 256 equally-angled directions, the distance
between the first and last group of pixels1, which was meet along that directions,
was taken and plotted against the direction angle. This “coarse polar transfor-
mation” gives a pattern, which will be referred to as signature of the Kirlian
image in the following (see Figure 3). When there was no group of pixels found,
the value 0 was assigned to the corresponding direction.

The reason for unrolling the Kirlian images were

– normalization of the results,
– reduction to the one-dimensional case,
– first quantification of the image data,
– noise reduction,
– accounting for shape irregularity and
– special treatment of gaps.

The unrolled Kirlian image signatures were used for further processing.

1 At least three pixels in a sequence are black.

320 M. Köppen, B. Nickolay, and H. Treugut

3 Genetic Algorithms for Heuristic Measuring

In Fig. 4, four Kirlian signatures of two different subjects can be seen. While
there is still an apparent schematic similarity of the signatures of the same
subject, and an obvious dissimilarity for signatures of different subjects, the
provision of a suitable measure to measure this is not so easy. The idea was to
use an adaptive procedure for such a measuring. The adaptive task here is given
by the goal to design a signature, which is equal to all four signatures at once.
Of course, this task has no exact solution, but there will be an optimal one.
The matching quality can be used as a measure of similarity. Instead of being
a static measure, such a procedure can be considered a dynamic measure. In
artificial intelligence research, such measures are infrequently used and referred
to as heuristic measures.

j

j
p

Fig. 3. Unrolling of a Kirlian image.

To provide an analogy for the heuristic measure approach: consider the task
to get to know, whether a given lake is deep or shallow. An easy way would be
to measure the depth of the lake at every point, then to compute the average
depth and decide from the obtained value. However, the effort might be too high
for getting the depth everywhere. So, the other approach is to instruct a subject
to swim to a shallow position of the lake, starting of from a random position.
The subject may use all of her skills to solve this task. Then, the subject is
repeatedly placed anywhere in the lake, and a couple of minutes is given to her
to find to a shallow place. Now, it is counted how often the subject was able to
find a shallow place among all trials. From this frequency, the depth of the lake
can be judged. This gives a heuristical measure for the depth of the lake.

It has to be noted that the actual size of the measure is not of interest, since
this value depends on the method used for the adaptation. What counts is the
relative ranking of those values for different objects, say different lakes. It follows

Genetic Algorithm Based Heuristic Measure 321

that for a reasonable use of such a measuring, the measure needs to be calibrated
to the applied method, e.g. on lakes, which are known to be very deep or very
shallow. Then, the obtained values can be related to the wanted information.

Back to the Kirlian images, as a prominent heuristical search procedure,
genetic algorithms (GA) were chosen. GAs are well-known for their inherent
building-block (or schemata) processing capabilities, which exposes them among
other optimization procedures [9] [10].

j0 2p j0 2p

Fig. 4. Unrollings of two sets of Kirlian images.

GA maintain a population of bitstrings, i.e. vectors composed of the elements
0 and 1. A schema is a bitstring containing “wildcards”, i.e. a bitstring with some
unspecified positions. In this sense, e.g. 1011 is a realization of the schema 1**1,
and 0111 not. During the GA run, not only the space of bitstrings (so-called
searchspace) is searched for better bitstrings (solutions), but the space of all
schemata as well. This was a long time suspected the “hidden force” that drives
GA towards successful solutions, and it was initially formulated as [11]:

Short, low order, above average schemata receive exponentially increasing trials
in subsequent generations.

However, there were prominent failures of GAs as well, and the question about
the importance of building blocks and their features for genetic search is a still
ongoing research topic by itself (see [12] for a newer work in this field).
From this, the possible ability of a GA to find building blocks (at least reflected
by the obtained results) that match a set of different bitstrings as close as possible
can be expected. The fitness of a bitstring is the average hamming distance of

322 M. Köppen, B. Nickolay, and H. Treugut

the bitstring to the given set of bitstrings. The average fitness obtained from the
best individuals of several runs of a GA on the bitstring matching problem is a
heuristic measure for schematic similarity of the given set of bitstrings.

It has to be noted that the use of standard statistical measures for Kirlian
images was considered in [7] and [8], yielding no insight into the similarity of
the patterns. This is no wonder, since the possible absence of features, despite
of a present high similarity in all other parts of the pattern, may deceive direct
computations.

A similar procedure for solving a pattern recognition problem was presented
in [13]. There, in a system for automatic processing of invoices, the schematic
similarity (but not equality) of invoice table rows was detected by running a
genetic algorithm for a few generations, with the task of generating a bitstring
pattern for all text rows of the document at once. The GA was able to detect
the group of rows comprising an invoice table by using this method. However,
when there was no invoice table present within the document image at all, the
achieved fitness value remained below a certain threshold. This can be consid-
ered a heuristically measuring based extraction of invoice table from the invoice
document image as well.

4 Results and Discussion

For heuristicically measuring the schematic similarity of four signatures, those
signatures were represented as four bitstrings of length 256. The bitstrings at
position i were set to 1, if the value of the signature at the i-th angle (i.e. at
angle 2πi/256) was over 50% of the maximum value of the signature, and to 0
if this was not the case.

For the GA, a population of 10 bitstrings of length 256 was used. The genetic
operations were roulette-wheel selection, one-point crossover, pointwise mutation
and elitist selection. The fitness measure for a bitstring was the average hamming
distance of the bitstring to the four bitstrings, which were derived from the four
sigtnatures. However, for the hamming distance only positions of the signature
bitstrings were regarded, for which the left and right neighbors carried the same
bitvalue. In each generation, 30 children were generated, and 200 generation
cycles were performed at all. The average fitness of the best individuals, taken
over ten runs of the GA, gave the heuristical measure for signature similarity.

In order to “calibrate” the GA-based heuristical measure, two experiments
were performed in advance. In one experiment, the procedure was applied to 4-
tupel of random patterns, i.e. random sets of 256 values from [0, 1]2. The average
best fitness values of those runs were between 0.2578 and 0.2930.

In a second experiment, the same was done with four randomly selected Kir-
lian images (i.e. Kirlian images of different subjects). This time, values between
0.2815 and 0.3164 were obtained, thus notably higher values as for the random
patterns.
2 Note, that the order of magnitude of the values does not influence the heuristical

measure.

Genetic Algorithm Based Heuristic Measure 323

Table 1. Result of the Genetic Algorithm based heuristic measure for Kirlian images
of the same person.

Finger Measure Finger Measure
K3-l2 0.503625 K13-l3 0.437500
K3-l3 0.410156 K13-r4 0.351563
K3-r3 0.476562 K13-l1 0.445312
K5-r2 0.398437 K15-l3 0.347656
K5-l3 0.503906 K15-r3 0.363281
K5-r3 0.500000 K15-l4 0.441406
K6-r2 0.496094 K18-l4 0.488281
K6-l4 0.406250 K18-l1 0.515625
K6-r1 0.441406 K18-r1 0.523437
K11-l2 0.523437 K19-l2 0.394531
K11-r2 0.429687 K19-r2 0.441406
K11-l3 0.371094 K19-l3 0.386719

Table 1 gives the results for the final experiment with the test subjects. All
measures are above 0.34 and can be considered to be clearly distinct from random
patterns and from pattern groups of several subjects.

The study shows a clear ranking: at the lowest level, there are random pat-
terns; at the next level, there are inter-subject Kirlian patterns; and on the
highest level there are intra-subject Kirlian patterns. The heuristic measure cor-
rectly describes the visual similarity of the intra-subject Kirlian photographs.

The question, whether this hints on a person-specificity of Kirlian images at
all should be discussed with care. At least, there is person-specificity for the se-
lected patterns. According to the heavy scientific attacks on electroradiographic
therapies in general, this reflects the fact that there are at least some circum-
stances, where Kirlian images of the same person are more similar to each other
than to Kirlian images of different persons. From a physical point of view, this is
an astonishing fact. While the basic physical mechanisms of the corona discharge
are fully understood, there is no proper model for the appearance of the typical
features of a Kirlian image for the same person. However, two applications of
even low person-specificity of Kirlian images are nevertheless of high interest:
for biometrical applications, and for clinical therapies based on the feedback of
a subject to its own Kirlian image.

Acknowledgment. This work was supported by the Karl and Veronica
Carstens Stiftung. The authors would also like to thank the unknown reviewers
for their helpful suggestions.

References

1. S.D. Kirlian and V.K. Kirlian. Photography and visual observations by means of
high frequency currents. J.Sci.Appl.Photography, 6:397–403, 1964.

324 M. Köppen, B. Nickolay, and H. Treugut

2. R.S. Chouhan. Towards a biophysical explanation of the coronal formations ob-
tained in kirlian photography in relation to cancer. In Proc. of the 3rd Intl. Conf.
for Medical and Applied Bioelectrography, Helsinki, Finlandia, pages 19–21, 1996.

3. L. Konikiewicz. Kirlian photography in theory and clinical applications.
J.Biol.Photogr.Assoc., 45:115–134, 1997.

4. Y. Omura. Acupuncture, infra-red thermography and kirlian photography.
Acupunct.Electrother.Res., 2:43–86, 1977.

5. Peter Mandel. Energetische Terminalpunkt-Diagnose. Synthesis-Verlag, 1983. (in
German).

6. J. Pehek, H. Kyler, and D. Faust. Image modulation in corona discharge photog-
raphy. Science, 194:263–270, 1976.

7. H. Treugut. Kirlian Fotographie: Reliabilität der Energetischen Terminalpunktdi-
agnose (ETD) nach Mandel bei gesunden Probanden. Forsch.Komplementärmed.,
4:210–217, 1997. (in German).

8. H. Treugut. Kirlian Fotographie: Reliabilität der Energetischen Terminalpunktdi-
agnose (ETD) nach Mandel bei Kranken. Forsch.Komplementärmed., 5:224–229,
1998. (in German).

9. John H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, 1975.

10. David E. Goldberg. Genetic Algorithms in Search, Optimization & Machine Learn-
ing. Addison-Wesley, Reading MA, 1989.

11. Shumee Baluja. Population-based incremental learning: A method for integrating
genetic search based function optimization and competitive learning. Technical Re-
port CMU-CS-94-163, Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA, 1994.

12. Chris Stephens and Henri Waelbroeck. Schemata evolution and building blocks.
Evolutionary Computation, 7:109–124, 1999.

13. Mario Köppen, Dörte Waldöstl, and Bertram Nickolay. A system for the auto-
mated evaluation of invoices. In Jonathan H. Hull and Suzanne L. Taylor, editors,
Document Analysis Systems II, pages 223–241. World Scientific, Singapore a.o.,
1997.

Evolutionary Signal Enhancement Based on
Hölder Regularity Analysis

Jacques Lévy Véhel and Evelyne Lutton

Projet Fractales — INRIA, B.P. 105, 78153 Le Chesnay cedex, France,
Jacques.Levy Vehel@inria.fr, Evelyne.Lutton@inria.fr,

http://www-rocq.inria.fr/fractales

Abstract. We present an approach for signal enhancement based on the
analysis of the local Hölder regularity. The method does not make explicit
assumptions on the type of noise or on the global smoothness of the
original data, but rather supposes that signal enhancement is equivalent
to increasing the Hölder regularity at each point. The problem of finding
a signal with prescribed regularity that is as near as possible to the
original signal does not admit a closed form solution in general. Attempts
have been done previously on an analytical basis for simplified cases [1].
We address here the general problem with the help of an evolutionary
algorithm. Our method is well adapted to the case where the signal
to be recovered is itself very irregular, e.g. nowhere differentiable with
rapidly varying local regularity. In particular, we show an application to
SAR image denoising where this technique yields good results compared
to other algorithms. The implementation of the evolutionary algorithm
has been done using the EASEA (EAsy specification of Evolutionary
Algorithms) language.

1 Introduction

A large number of techniques have been proposed for signal enhancement. The
basic frame is as follows. One observes a signal Y which is some combination
F (X,B) of the signal of interest X and a “noise” B. Making various assumptions
on the noise, the structure of X and the function F , one then tries to derive a
method to obtain an estimate X̂ of the original signal which is optimal in some
sense. Most commonly, B is assumed to be independent of X, and, in the sim-
plest case, is taken to be white, Gaussian and centered. F usually amounts to
convoluting X with a low pass filter and adding the noise. Assumptions on X
are almost always related to its regularity, e.g. X is supposed to be piecewise Cn

for some n ≥ 1. Techniques proposed in this setting resort to two domains: func-
tional analysis and statistical theory. In particular, wavelet based approaches,
developed in the last ten years, may be considered from both points of view [2,
3].

Our approach in this work is different from previous ones in several respects.
First, we do not make explicit assumptions on the type of noise and the cou-
pling between X and B through F . However, if some information of this type

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 325–334, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

326 J. Lévy Véhel and E. Lutton

is available, it can readily be used in our method. Second, we do not require
that X belong to a given global smoothness class but rather concentrate on its
local regularity. More precisely, we view enhancement as equivalent to increasing
the Hölder function αY (see next section for definitions) of the observations.
Indeed, it is generally true that the local regularity of the noisy observations is
smaller than the one of the original signal, so that in any case, αX̂ should be
greater than αY . We thus define our estimate X̂ to be the signal “closest” to the
observations which has the desired Hölder function. Note that since the Hölder
exponent is a local notion, this procedure is naturally adapted for signals which
have sudden changes in regularity, like discontinuities. From a broader perspec-
tive, such a scheme is appropriate when one tries to recover signals which are
highly irregular and for which it is important that the restauration procedure
yields the right regularity structure (i.e. preserves the evolution of αX along
the path). An example of this situation is when denoising is to be followed by
image segmentation based on textural information: Suppose we wish to differ-
entiate highly textured zones (appearing for instance in MR or radar imaging)
in a noisy image. Applying an enhancement technique which assumes that the
original signal is, say, piecewise C2, will induce a loss of the information which is
precisely the one needed for segmentation, since the denoised image will not con-
tain much texture. The same difficulty occurs in other situations such as change
detection from noisy sequences of aerial images or automatic monitoring of the
evolution of lung diseases from scintigraphic images: in such cases, the criterion
for a change is often based on a variation of the irregularity in certain regions,
and one needs to preserve this information.

In addition to the examples given above, other situations where such con-
ditions occur are turbulence data analysis and characterization of non-voiced
parts of voice signals. Since the method is highly non linear and quite complex,
an analytic solution is not possible. We thus resort to a stochastic optimisation
method based on evolutionary altgorithms.

The remaining of this paper is organized as follows. Section 2 recalls some
basic facts about Hölder regularity analysis, which is the basis of our approach.
The denoising method is explained in section 3. The evolutionary implementation
based on EASEA is then detailed in section 4, finally numerical results on both
1D and 2D signals are displayed in section 5.

2 Hölder Regularity Analysis

A popular way to measure the local irregularity of signals is to consider Hölder
spaces. We will focus in this paper on the Hölder characterizations of regularity.
To simplify notations, we assume that our signals are nowhere differentiable.
Generalisation to other signals simply requires to introduce polynomials in the
definitions [4].

Let α ∈ (0, 1), Ω ⊂ R. One says that f ∈ Cα
l (Ω) if:

∃ C : ∀x, y ∈ Ω :
|f(x) − f(y)|

|x− y|α ≤ C

Evolutionary Signal Enhancement 327

Let: αl (f, x0, ρ) = sup {α : f ∈ Cα
l (B (x0, ρ))} αl (f, x0, ρ) is non increasing as

a function of ρ.
We are now in position to give the definition of the local Hölder exponent :

Definition 1 Let f be a continuous function. The local Hölder exponent of f
at x0 is the real number:αl (f, x0) = limρ→0 αl (f, x0, ρ)

Since αl is defined at each point, we may associate to f the function x → αl(x)
which measures the evolution of its regularity.

This regularity characterization is widely used in fractal analysis because it
has direct interpretations both mathematically and in applications. It has been
shown for instance that αl indeed corresponds to the auditive perception of
smoothness for voice signals. Similarly, simply computing the Hölder exponent
at each point of an image already gives a good idea of its structure, as for
instance its edges [5]. More generally, in many applications, it is desirable to
model, synthesize or process signals which are highly irregular, and for which
the relevant information lies in the singularities more than in the amplitude. In
such cases, the study of the Hölder functions is of obvious interest.

In [6], a theoretical approach for signal denoising based on the use of a Hölder
exponent and the associated multifractal spectrum was investigated. We develop
here another enhancement technique that uses the information brought by the
local Hölder function, which is simple from an algorithmic point of view, and
yields good results on several kind of data.

3 Signal Enhancement

We adopt in this paper a functional analysis point of view. This means that we do
not make any assumption about the noise structure, nor the way it interacts with
the data. Rather, we seek a regularized version of the observed data that fulfills
some constraints. A statistical approach, classically based on risk minimization,
will be presented elsewhere [1].

Let X denote the original signal and Y the degraded observations. We seek
a regularized version X̂ of Y that meets the following constraints: a) X̂ is close
to Y in the L2 sense, b) the (local) Hölder function of X̂ is prescribed.

If αX is known, we choose αX̂ = αX . In some situations, αX is not known but
can be estimated from Y . Otherwise, we just set αX̂ = αY +δ, where δ is a user-
defined positive function, so that the regularity of X̂ will be everywhere larger
than the one of the observations. We must solve two problems in order to obtain
X̂. First, we need a procedure that estimates the local Hölder function of a signal
from discrete observations. Second, we need to be able to manipulate the data
so as to impose a specific regularity. A third difficulty arises from the following
analysis: Assume the simplest case of an L2 signal corrupted by independent
white Gaussian noise. It is easy to check that almost surely αY = − 1

2 everywhere,
because a) − 1

2 is the regularity of the noise, b) αX ≥ 0 since X ∈ L2, c) the
regularity of the sum of two signals which have everywhere different Hölder
exponents is the min of the two regularities. Thus αY does not depend on X,

328 J. Lévy Véhel and E. Lutton

and one cannot go back from αY to αX . This fact casts doubts on the efficiency
on the whole approach, since the information it is based on is degenerate in this
case.

All these problems are solved once one realizes that the mathematical notion
of Hölder regularity is an abstraction that makes sense only asymptotically. One
needs to analyze carefully how it should be adapted to a finite setting, much
in the same way as what is done for abstract white noise. In particular, we are
interested in a perceptual notion of regularity: If two 2D functions A and B are
such that αA < αB , but an imaging of A and B at a given resolution yields
the contrary visual impression that A is smoother than B, then of course our
algorithm should go with the perceptual information. In other words, in practical
applications we are not interested in the asymptotic behavior, but in the scales
which are really in the image, and our estimate of α should reflect this fact.
This means precisely one thing: the estimation procedure should yield results in
agreement with what is perceived, and not care for the “true” α , which may or
may not be accessible from the finite data. To go back to the example above,
while it is true that at infinite resolution the sum “signal + white noise” would
look much the same as white noise as far as regularity is concerned, this is not
the case at finite resolution, where the influence of the signal is still perceptible.
In addition, since our procedure is differential, i.e. we wish to impose αX̂ = αY +δ
or αX̂ − αX = 0, for estimated αX and αY , we do not care about constant bias.

We will use a wavelet based procedure for estimating and controlling the
Hölder function. This is made possible by results in [4] and [7] which imply that:

Proposition 1 Let {ψj,k}j,k be an orthonormal wavelet basis, where as usual
j denotes scale and k position, and assumes that ψ is regular enough and has
sufficiently many vanishing moments. Then, X has local Hölder exponent α at t
if and only if for all (j, k) such that t belongs to the support of ψj,k,

|cj,k| ≤ C2−j(α+ 1
2) (1)

where C is a constant and cj,k is the wavelet coefficient of X.

Although (1) is only an inequality, it suggests that one may estimate αX(t) by
linear regression of log(|cj,k|) w.r.t. to the scale j (log denotes base 2 logarithm)
considering those indices (j, k) such that the support of ψj,k is centered above t.
Of course this will be only approximate, but since (1) is a necessary and sufficient
condition, and if enough wavelet coefficients are “large”, we may hope to obtain
results sufficient for our purpose.
Two points are essential in this estimation procedure:

– The estimation is obtained through a regression on a finite number of scales,
defined as a subset of the scales available on the discrete data. This avoids
the pathologies described above concerning the regularity of the sum of two
signals. In particular, it is possible to express the Hölder function of the
noisy signal Y = X + Gaussian white noise as a function of αX , and thus
to estimate conversely αX from αY [1].

Evolutionary Signal Enhancement 329

– The use of (orthonormal) wavelets allows to perform the reconstruction in a
simple way: Starting from the coefficient (dj,k) of the observations, we shall
define a procedure that modifies them to obtain coefficients (cj,k) that verify
(1) with the desired α, and then reconstruct X̂ form the (cj,k).

We may now reformulate our program as follows: For a given set of observations
Y = (Y1, . . . , Y2n) and a target Hölder function α , find X̂ such that ||X̂ −Y ||L2

is minimum and the regression of the logarithm of the wavelet coefficients of
X̂ above any point i w.r.t. scale is −(α(i) + 1

2). Note that we must adjust the
wavelet coefficients in a global way. Indeed, each coefficient at scale j subsumes
information about roughly 2n−j points. Thus we cannot consider each point
i sequentially and modify the wavelet coefficients above it to obtain the right
regularity, because point i + 1, which shares many coefficients with i, requires
different modifications. The right way to control the regularity is to write the
regression contraints simultaneously for all points. This yields a system which is
linear in the logarithm of the coefficients:

∆L = A

where ∆ is a (2n, 2n+1 − 1) matrix of rank 2n, and

L = (log |c1,1|, log |c2,1|, log |c2,2|, . . . log |cn,2n |),
A = −n(n− 1)(n+ 1)

12

(
α(1) +

1
2
, . . . , α(2n) +

1
2

)

Since we use an orthonormal wavelet basis, the requirements on the (cj,k) may
finally be written as:
minimize

∑
j,k

(dj,k − cj,k)2 subject to: ∀ i = 1, . . . , 2n,
n∑

j=1

sj log(|cj,E((i−1)2j+1−n)|) = −Mn(α(i) +
1
2
) (2)

where E(x) denotes the integer part of x and the coefficients sj = j − n+1
2 ,

Mn = n(n−1)(n+1)
12 and equation (2) are deduced from the requirement that the

linear regression of the wavelet coefficients of X̂ above position i should equal
−(α(i) + 1

2).
Finding the global solution to the above program is a difficult task ; in parti-

cular, it is not possible to find a closed form formula for the cj,k. In the following,
we show how this problem can be addressed with an evolutionary algorithm.

4 Evolutionary Signal Enhancement with EASEA

An evolutionary technique seems to be appropriate for the optimisation problem
described in equation (2): a large number of variables are involved, and the
function to be optimised as well as the contraint are non linear. We describe in
this section an implementation based on the EASEA [8] language and compiler.

330 J. Lévy Véhel and E. Lutton

EASEA (EAsy Specification of Evolutionary Algorithms) is a language dedi-
cated to evolutionary algorithms. Its aim is to relieve the programmer of the task
of learning how to use evolutionary libraries and object-oriented programming
by using the contents of a .ez source file written by the user.

EASEA source files only need to contain the ”interesting” parts of an evo-
lutionary language, namely the fitness function, a specification of the crossover,
the mutation, the initialisation of a genome plus a set of parameters describ-
ing the run. With this information, the EASEA compiler creates a complete
C++ source file containing function calls to an evolutionary algorithms library
(either the GALIB or EO for EASEA v0.6). Therefore, the minimum require-
ment necessary to write evolutionary algorithms is the capability of creating
non-object-oriented functions, specific to the problem which needs to be solved.

In our case, the evolutionary optimisation involved to enhance a signal (1D
or 2D) was implemented using a simple structure on which genetic operators
were defined. We used GALib [9] as the underlying evolutionary library.

We describe below the implementation for 1D signals, an implementation for
image denoising was also produced based on the same principle, and results for
1D and 2D data are presented in the next section.

The Haar wavelet transform has been used to produce the dj,k associated
to the observed signal Y . We also suppose that we know the desired Hölder
exponents α(i) (either α(i) = αY (i)+δ where the αY (i) are the Hölder exponents
of Y and δ is a user defined regularisation factor, or α(i) is set a priori).

The problem is to find some multiplication factor uj,k such that cj,k =
uj,k ∗ dj,k, j ∈ [0..n − 1], k ∈ [0..2j − 1]. As is usual in wavelet denoising, we
let unchanged the first l levels and seek for the remaining uj,k in [0, 1]. The
genome is made of the uj,k coefficients, for j ∈ [l..n − 1] and k ∈ [0..2j − 1].
These coefficients are encoded as a real numbers vector of size SIZE MAX =
2n − 2l, which can be written using EASEA syntax as :

GenomeClass { double U[SIZE_MAX]; }

The EASEA Standard functions sections contain the specific genetic opera-
tors, namely:

1. The initialisation function: Each uj,k coefficient is randomly set to a
value in [0, 1]. Two initial solutions are also put in the initial population :
uj,k = 1. and uj,k = 2−kδ.

2. The crossover function: a barycentric crossover has been easily defined as
follows : Let parent1 and parent2 be the two genomes out of which child1
and child2 must be generated, and let alpha be a random factor:

\GenomeClass::crossover:
double alpha = (double)random(0.,1.);
if (&child1) for (int i=0; i<SIZE_MAX; i++)

child1.U[i] = alpha*parent1.U[i] + (1.-alpha)*parent2.U[i];
if (&child2) for (int i=0; i<SIZE_MAX; i++)

child2.U[i] = alpha*parent2.U[i] + (1.-alpha)*parent1.U[i];
\end

Evolutionary Signal Enhancement 331

3. The mutation function: Mutation is a random perturbation of radius
SIGMA = 0.01, applied with probability PMut on each gene.
\GenomeClass::mutator://Must return the number of mutations as an int

int NbMut=0;
for (int i=0; i<SIZE_MAX; i++)

if (tossCoin(PMut)){ NbMut++;
Genome.U[i]+=SIGMA*(double)random(-1.,1.);
Genome.U[i] = MIN(1.,Genome.U[i]); Genome.U[i] = MAX(0.,Genome.U[i]);}

if (NbMut==0) identicalGenome=true; // saves evaluation time
return NbMut;

\end

4. The evaluation function: The fitness function has two aims: minimise∑
((1 − uj,k) ∗ cj,k)2, making sure constraint (2) is satisfied, i.e. the Hölder

exponents are the ones we want. The constraint is integrated to the fitness
function using a high penalisation factor W :

Fitness =
∑
j,k

((1 − uj,k) ∗ cj,k)2 +W ∗
∑

i

|αu(i) − α(i)|

We use the GALib steady state genetic engine with replacement percentage
of 60% and a selection by ranking. Crossover and mutation probabilities are
fixed respectively to 0.9 and 0.001. Genome size, Population size, and number
of generations are fixed for each experiment, see section 5.

5 Numerical Experiments

We first show results of enhancement on synthetic 1D data. The original
signal is a generalised Weierstrass function [10] with αX(t) = t for all t, (i.e.
X(t) =

∑∞
n=0 2ntsin(2nt), t ∈ [0.1]) which has been corrupted by white

Gaussian noise. Figure 1 shows the original signal, the noisy one, and the result
of the enhancement procedure. For comparison, a denoising using a classical
wavelet shrinkage is also displayed. For both procedures, the parameters were
set so as to obtain the best fit to the known original signal. It is seen that,
for such irregular signals, the Hölder regularity based enhancement yields
more satisfactory results. The constraint was to find Hölder exponents that
verify α(t) = t for all t. Parameters of the evolutionary algorithm were as follows :

Genome Size SIZE MAX = 496
Population Size 25
Number of generations 50000
Computation time 1365.96 seconds for 293506 evaluations

332 J. Lévy Véhel and E. Lutton

0 100 200 300 400 500 600
−3

−2

−1

0

1

2

3

0 100 200 300 400 500 600
−3

−2

−1

0

1

2

3

4

Generalised Weierstrass funtion (left) + noise (right).

0 100 200 300 400 500 600
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Denoising using wavelet shrinkage method (left), and using the evolutionary scheme
with prescribed α(t) = t (right).

0 50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Left: Estimated Hölder exponents of the original function (left), of the function +
noise (middle) and of the reconstructed function (right).

Fig. 1. Results on a generalised Weierstrass function α(t) = t

Our second example deals with a synthetic aperture radar (SAR) image. A
huge literature has been devoted to the difficult problem of enhancing these
images, where the noise is non Gaussian, correlated and multiplicative. A fine
analysis of the physics of the speckle suggests that it follows a K distribution
[11]. Classical techniques specifically designed for SAR image denoising include
geometric filtering and Kuan filtering. Wavelet shrinkage methods have also
been adapted to this case [12]. Figure 2 show an original SAR image, its
denoising with the Hölder method and with soft thresholding. Notice how the
river, with appears with a “Λ” shape in the middle of the image is nicely
uncovered by the regularity based enhancement. As no a priori knowledge about

Evolutionary Signal Enhancement 333

Hölder exponents of the signal was available, the constraint was to find Hölder
exponents that verify αdenoised(t) = αoriginal(t) + δ for all t. Parameters of the
evolutionary algorithm were as follows :

Genome Size SIZE MAX = 21845
Population Size 50
Number of generations 100
Computation time 1702.46 seconds for 3051 evaluations
Regularisation factor δ 0.5 and 0.7

Left: Original SAR image. Right: Image denoised using soft thresholding.

Image denoised using the Hölder regularity scheme. Left: δ = 0.5. Right: δ = 0.7

Fig. 2. Experiments on a 256x256 area of a SAR image (courtesy IRD)

6 Conclusion

We have shown in this paper how an evolutionary algorithm can be applied to
a signal or image enhancement technique based on a “fractal” analysis. Good
results have been obtained as well as on 1D or 2D signal in comparison to other
techniques in an affordable computation time.

Quality of the results is also very dependent from the quality of Hölder expo-
nents estimation. Much better estimate of αX(t) can be obtained by measuring

334 J. Lévy Véhel and E. Lutton

the oscillations of X in balls centered at t and of radii εk, and then regressing
the logarithm of these oscillations w.r.t. the logarithm of the εk. However, this
procedure does lead to a more complex inverse problem, i.e. obtaining a sig-
nal with prescribed regularity. Future work will be devoted to an evolutionary
formulation of this problem.

References

1. J. Lévy Véhel, Statistical denoising of irregular signals, INRIA internal report.
2. R.A. Devore, B. Lucier Fast wavelet techniques for near optimal image processing.

1992 IEEE Military Communications Conference, 2–12 (1992).
3. D.L. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41, No. 3,

613–627 (1994).
4. S. Jaffard, Pointwise smoothness, two-microlocalization and wavelet coefficients.

Publ. Mat. 35, No. 1, 155–168 (1991).
5. J. Lévy Véhel, Fractal Approaches in Signal Processing, Fractals, 3 (4), pp 755-775,

1995.
6. J. Lévy Véhel, B. Guiheneuf “Multifractal Image Denoising,” SCIA, 1997.
7. B. Guiheneuf, J. Lévy Véhel, 2 micro-local analysis and applications in signal

processing, Int. Conf. on Wavelet, Tangier, 1997.
8. Pierre Collet, Evelyne Lutton, Marc Schoenauer, Jean Louchet, ”Take it EASEA,”

Parallel Problem Solving from Nature VI, vol 1917, Springer Verlag pp 891-901,
Paris, septembre 2000. EASEA home page: http://www-rocq.inria.fr/EASEA/

9. M. Wall, GAlib home page: http://lancet.mit.edu/ga/ , MIT.
10. K. Daoudi, J. Lévy Véhel, Y. Meyer, Construction of functions with prescribed

local regularity, Constructive Approximation, 1989.
11. C.J. Oliver, Information from SAR images, J. Phys. D, 24, 1493-15144, 1991.
12. L. Gagnon, F. Drissi Smaili, Speckle noise reduction of airborne SAR images with

symetric Daubechies wavelets, Signal and Data Processing of Small Targerts, Proc.
SPIE 2759, 1996.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 335-342, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Building ARMA Models with Genetic Algorithms

Tommaso Minerva1 and Irene Poli2

1 Faculty of Economics, University of Modena and Reggio Emilia,
via Berengario 51, 41100 Modena, Italy

minerva@unimo.it
2 Department of Statistics, Università Ca' Foscari, Venezia (Italy)

irenpoli@unive.it

Abstract. The current state of the art in selecting ARMA time series models
requires competence and experience on the part of the practitioner, and some-
times the results are not very satisfactory. In this paper, we propose a new auto-
matic approach to the model selection problem, based upon evolutionary com-
putation. We build a genetic algorithm which evolves the representation of a
predictive model, choosing both the orders and the predictors of the model. In
simulation studies, the procedure succeeded in identifying the data generating
process in the great majority of cases studied.

1 Introduction

Modelling linear and stationary time series, one frequently chooses the class of
ARMA models because of its high performance and robustness. The selection of a
particular ARMA model, however, is neither easy nor without implications for the
goal of the analysis ([1],[2],[3],[4],[5],[6],[7],[8]).

The most common approach to the model selection problem is the well-known
Box-Jenkins procedure ([9], [10]), which involves a pattern recognition analysis, a
model parameter estimation, and diagnostic checking based on the estimated errors.
The result of the procedure depends greatly on the competence and experience of the
investigators and is affected by a strong path-dependence. The pattern recognition
analysis, in particular, employs a wide set of correlation measures whose values are
supposed to provide insight into the optimal orders p and q of the autoregressive and
moving average components. Unfortunately, one frequently observes that different
models have similar estimated correlation patterns, and the choice among competitive
models can be quite arbitrary. Some concern derives also from comparative studies in
which experts, asked to identify a number of series, frequently reach different
conclusions ([11], [12]). A further objection to the Box-Jenkins procedure for model
selection is related to the time required to develop the identification model, which
sometimes can be excessively high.
 In this paper we introduce a computational method for selecting a model within the
ARMA class models. We adopt the evolutionary computational approach based on the
idea that certain algorithms based upon biological evolution can be reproduced in a

336 T. Minerva and I. Poli

computer and can be used as a powerful search and optimisation tool. The evolution of
natural systems has been studied for many years in the field of artificial intelligence
and artificial life to solve optimisation problems characterised by a high level of
complexity. The idea of studying evolution to build computational procedures for
solving problems was first introduced by Box ([9]) but developed and algorithmically
implemented by Holland ([13], [14],[15],[16],[17], [18]).

Evolutionary computation usually works by randomly generating a population of
candidate solutions to a problem. This population then evolves, through a set of
operators inspired by genetic variation and natural selection, towards the “best”
population of solutions to the problem. Evolution is an adaptive process whereby the
structures change with the action of the genetic operators. The change is stochastic and
controlled by some probability law. It is also parallel, since the structures are
transformed simultaneously.

For the ARMA model selection problem we build a genetic algorithm which
evolves step by step a population of candidate models, by using a set of operators
tailored to the specific problem. The procedure suggests how many predictors should
be included in the model and chooses the predictors from a larger set of possible
predictors. The performance of the procedure is then tested in a simulation study,
where the genetic algorithm is asked to identify a number of time series generated by
different processes. The results are very satisfactory: we reach a correct identification
of the data generating process for the majority of the series (or the best predictive
model) with a low number of generations and a low number of individuals in the
algorithm population.

2 The EvoARMA Models

The usual representation of the autoregressive moving-average, ARMA(p,q), model for
a time series Xt , where p is the order of the autoregressive form and q the order of the
moving average form, is given by

f(B)Xt = q(B)et (1)

where f(B)=1- f1B1-….- fpBp represents the autoregressive terms, q(B)= 1- q1B1-…-
 qqBq, represents the moving average term, B is the backshift operator, and e(t) is a
sequence of uncorrelated random variables with means 0 and variance s2>0. The
sequence e(t) is the so-called white noise process. The model is supposed to be
stationary and invertible, i.e., the equations f(z)=0 and q(z)=0 have the roots outside
the unit circle. Moreover the model coefficients f1…fp, q1…qq and the white noise
variance s2 are supposed to be constant, i.e. they do not depend on time. Modelling
time series within the class of ARMA models deals with the selection of both the
autoregressive order, p, and the moving average order, q, as well as the relevant (non
zero) predictors.

Building ARMA Models with Genetic Algorithms 337

Our concern in this paper is with choosing both the orders p and q of the
model and the relevant predictors to be considered in the representation according to
the evolutionary paradigm of genetic algorithms according to previous preliminary
works ([19], [20], [21]).

We encode the ARMA models as vectors (“chromosomes”) in binary digits
to represent different orders and different predictors. Each chromosome is composed
of various fields to identify: the number p of autoregressive predictors, the number q
of moving average predictors, the predictors Xt-i i i=1,…,p, and the predictors et-j,
j=1,…,q. In this study we assume that the first two fields of the chromosome are
represented by 4 binary digits each, encoding an integer running from 1 to 15 that
selects respectively the number of autoregressive terms (p) and the number of moving
average terms (q). The following p+q fields are each represented by 5 binary digits.
Each such field encodes an integer running from 1 to 31, which represents the
respective autoregressive or moving average predictor.
For example the chromosome in the binary alphabet

0010 0001 00001 10110 01000

whose real representation is

2 1 1 22 8

denotes a model for the time series Xt with 2 AR predictors and 1 MA term, which
are specified by Xt-1 , Xt-22 , and e t-8.
The resulting model is

Xt - f1 Xt-1 - f22 Xt-22 = et - q8 et-8

To build the genetic algorithm we randomly generate a population of candidate
ARMA models to represent the dynamics of the particular time series.

For each individual model in this population, we then proceed with the statistical
estimate of the parameters using a set of data called the training or learning set. We
next evaluate each individual with an objective function which measures the
optimality of each model with respect to the prediction problem. A different set of
data, the validation set, is then chosen to evaluate the objective function that we define
as a modified form of Akaike’s information criterion. This objective function takes the
form:

� (m) = Nv log (1/ Nv, (S ())(ˆ0 lyy l -+
2)+ 2M (2)

where Nv, is the number of data in the validation set, l = 1, 2, ... is the prediction lead

time, ())(ˆ0 lyy l -+ is the l-step ahead prediction error, using model m, and M is the

number of the parameters in the model m.

338 T. Minerva and I. Poli

According to these values a stochastic selection of the individuals to become can-
didates for the new generation is performed. Selection is based on ranking the
individuals by the f values and then assigning each individual a transition probability
which is proportional to the f values. We select the individuals by sampling with
replacement from the population, so that each individual can be selected more than
once to become a member of the next generation. This allows the good models to be
reproduced in more than one copy in next generation.

The crossover operator is performed by randomly choosing pairs of individuals
with probability pc and crossing over parts of these individuals at randomly chosen
points. We perform a multi-crossover operator because of the field representation of
the individuals. Crossover works by recombining "building blocks" in the population
and designing a (hopefully) improved set of solutions. Recombination, however, may
result in the loss of some good building blocks that can include relevant variables for
the prediction problem. A multimutation operator is then introduced and applied with
probability pm to recreate good predictive components. In our experiment, whose
results will be presented in following section, we also assume an elitistic transition
which involves copying the best 10% of the individuals in the population into the next
one to replace the lowest fitness individuals. We stop the procedure after a fixed
number NG of generations. The resulting best ARMA model is called the EvoARMA
model.

3 Simulation Studies

The proposed procedure is now applied to identify a set of time series generated by
known stochastic processes. We consider a large class of simulated ARMA time series
that includes a diversity of orders for the autoregressive and moving average time
series. In this study ARMA(p,q) denotes p autoregressive predictors and q moving
average predictors which can be selected from a much larger set of predictors We
generate 400 time series with 500 data each (using the System Identification Matlab
Toolbox routines).
The implementation of the genetic algorithm follows these steps:

[1] randomly generate an initial binary population of individual mi, i =1,....M. In
some experiments M is 100, in others 250, as denoted in the results. Each
individual defines an ARMA model, that is the orders of the autoregressive and
moving average representations, and the identified predictors;

[2] decode each chromosome; estimate the model parameters using the learning set of
data given by 400 values out of the 500 of the data set; formulate predictions for
the validation data set (100 values); set the number of generations Ng (50, 100, or
500, depending on the experiment).

[3] compute the fitness function values f(mi) ;
[4] rank each model according to the values f(mi);
[5] perform the elitism transition;

Building ARMA Models with Genetic Algorithms 339

[6] select the values of the procedural parameters for selection, multi-crossover and
multi-mutation, and perform the genetic operators as defined above;

[7] set g = g + 1; if g > Ng then stop, otherwise return to 3.

The first results of these simulations are presented in Table 1. The algorithm has
been applied to different model structures belonging to the ARMA class, and
evaluated for two sizes of the genetic algorithm population, namely 100 and 250
individuals. To determine the effect of the number of generations admitted for the
evolution we have considered three possible values: 50, 100, 500. For each ARMA
structure we then generated 40 different models. Applying the genetic algorithm we
evolved the populations through the generations to identify the generating process of
the data. The values inside of the Table 1 represent the rate (%) of correct
identification of the series randomly generated from the models for two different
predictive horizons: 1 time unit and three time units. We notice the very high values of
the rate of correct identification, in particular for series with low orders. This result
holds for different size of the algorithm population and different lead prediction time;
the rate of correct identification increases for increasing sizes of the population and
increasing number of generations before stopping.

Table 1 Rate (%) of correct model identification for different predictive lead time
varying the number of generation while keeping constant the population size. For each
structure we tested 40 simulated time series.

Lead time 1 time unit 3 time units

Generations 50 100 500 50 100 500

Individuals 250 250 250 250 250 250

ARMA(1,0) 100 100 100 100 100 100

ARMA(2,0) 100 100 100 95 100 100
ARMA(3,0) 95 100 100 95 100 100

ARMA(4,0) 95 95 100 95 95 100

ARMA(5,0) 90 95 97 95 90 97
ARMA(0,1) 95 100 97 85 90 97

ARMA(0,2) 90 100 97 80 90 92

ARMA(1,1) 95 95 95 85 85 90
ARMA(1,2) 90 92 95 75 85 87

ARMA(2,1) 90 90 95 80 85 90

ARMA(2,2) 85 90 95 70 80 85

340 T. Minerva and I. Poli

 In Table 1 we maintain a fixed population size increasing the allowed number of
generation. We consider the models as identified only if the GA correctly indicated the
AR and MA orders and the AR and MA terms of the generating process of the data in
a single run. We notice that as the number of generations increases for a fixed number
of individuals (250), the rate of correct model identification increases.

Table 2 Rate (%) of correct model identification for different predictive lead time
varying the population size while keeping constant the number of generation. For each
structure we tested 40 simulated time series.

Lead time 1 time unit 3 time units

Generations 500 500 500 500
Individuals 100 250 100 250

ARMA(1,0) 100 100 100 100

ARMA(2,0) 100 100 100 100
ARMA(3,0) 100 100 97 100

ARMA(4,0) 95 100 95 100

ARMA(5,0) 95 97 95 97
ARMA(0,1) 97 97 97 97

ARMA(0,2) 95 97 92 92

ARMA(1,1) 95 95 90 90
ARMA(1,2) 95 95 87 87

ARMA(2,1) 92 95 82 85

ARMA(2,2) 90 95 82 82

 In Table 2 we maintain a fixed number of generations and we increase the number
of individuals in each generation: the rate of correct model identification increases
with the number of individuals in each population.
 In the case of an incorrect model identification the algorithm can, however, give
good answers identifying the best predictive model on the validation data set which
can be different from the model of the generating process of the data.
 Moreover, the genetic algorithm we proposed has been able to identify the correct
model also in cases where the gaussian white noise has comparable amplitude with the
deterministic part of the time series.
 Finally, a study on the behaviour of the fitness function with respect to the
generation iteration shows that the convergence is reached in the majority of the cases
after few generations. It was found that more generations can help in identify the data
generating process without improving the predictive capabilities.
 The GA has been developed within the Matlab environment because it provides a
full programmable and flexible language and a large set of specialized libraries

Building ARMA Models with Genetic Algorithms 341

(System Identification Toolbox, Statistics Toolbox, etc…). We implemented the
algorithm on a biprocessors SUN Sparc Ultra II where the required CPU time (in
seconds) to evaluate each generation ranges from 5 to 80 seconds depending on the
population size.
 In conclusion we regard these first results as quite satisfactory. The GA seems to
perform quite well in model identification, with a high rate of correct identification.
In addition, as will be reported later, when the model is not correctly identified or
when the gaussian noise is quite high, the procedure is still able to generate good
predictions. Moreover, the EvoARMA models seem to solve the problems of the Box-
Jenkins identification procedure, since they do not require the competence and
experience of a researcher to identify the generating process of the data, but represent
an automatic and fast search of the time series model from the data.

References

1. Chen, C.W.S, Subset Selection of Autoregressive Time Series Models, Journal of
Forecasting, 18, 505-516, (1999)

2. Choi, B.S. Arma Model Identification, Springer Series in Statistics, Springer-
Verlag, (1992)

3. Hamilton, J.D., Time Series Analysis, Princeton University Press, (1994).
4. Toscano, E.M.M., Reisen, V.A., The use of Canonical Correlation Analysis to

Identify the Order of Multivariate ARMA Models: Simulation and Application,
Journal of Forecasting, 19, 441.456, (2000).

5. Mills, T.C., The econometric Modelling of Financial Time Series, Cambridge
University Press. (1999)

6. Shah, C., Model Selection in Univariate Time Series Forecasting Using
Discriminant Analysis, International Journal of Forecasting, 13, 489-500, 1997.

7. Tong, H., Non Linear Time Series: a Dynamical System Approach, Oxford
University Press, 1990.

8. Weigend, A.S. and Gershenfield, N.A. (editors) Time Series Prediction:
Forecasting the Future and Understanding the Past, Santa Fe Institute Studies in
the Sciences of Complexity XV; Proceedings of the NATO Advanced Research
Workshop on Comparative Time Series Analysis (Santa Fe, NM, May 1992.)
Reading, MA: Addison-Wesley. Time Series Prediction, (1994).

9. Box, G.E.P., Evolutionary Operation: a method for increasing industrial
productivity. Journal of the Royal Statistical Society, C, 6, 2, 81-101, (1957).

10. Box, G.E.P, Jenkins, G.M., Reinsel, G.C. Time Series Analysis. Forecasting and
Control, San Francisco: Holden-Day, (1994).

11. Beveridge, S. and Oickle, C., A comparison of Box-Jenkins and objective
methods for determining the order of non-seasonal ARMA model, Journal of
Forecasting, Vol. 13, 419-34, (1994).

12. Lusk, E. J. and Neves, J. S., A comparative ARIMA analysis of the 111 series of
the Makridakis competition, Journal of Forecasting, 3, 329-32, (1984).

13. Fogel, D.B., Evolutionary Computation, IEEE Press, New York, (1995)

342 T. Minerva and I. Poli

14. Forrest, S., Genetic Algorithms: Principles of natural selection applied to
computation, Science, 261, 872-878, (1993).

15. Holland, J.H. Adaptation in natural and artificial systems, University of Michigan
Press, (1975)

16. Holland, J.H. Adaptation in natural and artificial systems, the MIT Press,
Cambridge Mass, (1992).

17. Mitchell, M., An introduction to genetic algorithms, The MIT Press,
Cambridge Mass. 1996.

18. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine
Learning, Reading: Addison Wesley, (1989).

19. Minerva, T., Paterlini S. and Poli I., Algoritmi ibridi per l’analisi di serie storiche
finanziarie, Scienza e Business, 1, 3-4, 56-77 (in italian), (1999).

20. Minerva T., Poli I., Genetic Algorithms to Identify Time Series Models,
Department of Economics of the University of Modena Working Papers, 229,
(1997)

21. Minerva, T. and Poli, I., A Neural Net Model to Predict High Tides in Venice, in
S. Borra, R. Rocci, M. Vichi e M. Schader "Studies in Classification, Data
Analysis and Knowledge Organization" Springer, 2001.

Evolving Market Index Trading Rules Using
Grammatical Evolution

Michael O’Neill2, Anthony Brabazon1, Conor Ryan2, and J.J. Collins2

1 Dept. Of Accountancy, University College Dublin, Ireland.
Anthony.Brabazon@ucd.ie

2 Dept. Of Computer Science And Information Systems,
University of Limerick, Ireland.

{Michael.ONeill|Conor.Ryan|J.J.Collins}@ul.ie

Abstract. This study examines the potential of an evolutionary auto-
matic programming methodology to uncover a series of useful technical
trading rules for the UK FTSE 100 stock index. Index values for the pe-
riod 26/4/1984 to 4/12/1997 are used to train and test the model. The
preliminary findings indicate that the methodology has much potential,
outperforming the benchmark strategy adopted.

1 Introduction

The objective of this study is to determine whether an evolutionary automatic
programming methodology, Grammatical Evolution, is capable of uncovering
useful technical trading rules for the UK FTSE 100 index.

The paper is organised as follows. Section two discusses the background to
the technical indicators utilised in this study. Section three describes the evolu-
tionary algorithm adopted, Grammatical Evolution [1] [2]. Section four outlines
the data and function sets used. The following sections provide the results of the
study followed by a discussion of these results and finally a number of conclusions
are derived.

1.1 Technical Analysis

A market index is comprised of a weighted average measure of the price of indi-
vidual shares which make up that market. The value of the index represents an
aggregation of the balance of supply and demand for these shares. Some market
traders, known as technical analysts, believe that prices move in trends and that
price patterns repeat themselves [3]. If we accept this premise, that there are
rules, although not necessarily static rules, underlying price behaviour it follows
that trading decisions could be enhanced through use of an appropriate rule
induction methodology such as Grammatical Evolution (GE). Although contro-
versy exists amongst financial theorists regarding the veracity of the claim of
technical analysts, recent evidence has suggested that it may indeed be possible
to uncover patterns of predictability in price behaviour. Brock, Lakonishok and

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 343–352, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

344 M. O’Neill et al.

LeBaron [4] found that simple technical trading rules had predictive power and
suggested that the conclusions of earlier studies that technical trading rules did
not have such power were “premature”. Other studies which indicated that there
may be predictable patterns in share price movements include those which sug-
gest that markets do not always impound new information instantaneously [5]
[6], that stock markets can overreact as a result of excessive investor optimism or
pessimism [7], that returns on the market are related to the day of the week [8]
or the month of the year [9]. The continued existence of large technical analysis
departments in international finance houses is consistent with the hypothesis
that technical analysis has proven empirically useful.

1.2 Potential for Application of Evolutionary Automatic
Programming

As noted by Iba and Nikolaev [10] there are a number of reasons to suppose
that the use of an evolutionary automatic programming (EAP) approach can
prove fruitful in the financial prediction domain. EAP can conduct an efficient
exploration of the search space and can uncover dependencies between input vari-
ables, leading to the selection of a good subset for inclusion in the final model.
Additionally, use of EAP facilitates the utilisation of complex fitness functions
including discontinuous, non-differentiable functions. This is of particular impor-
tance in the financial domain as the fitness criterion may be complex, usually
requiring a balancing of return and risk. EAP, unlike for example basic neural
net approaches to financial prediction, does not require the ex-ante determina-
tion of optimal model inputs and their related transformations. Another useful
feature of EAP is that it produces human-readable rules that have the potential
to enhance understanding of the problem domain.

1.3 Motivation for Study

This study was motivated by a number of factors. Much of the existing literature
concerning the application of genetic algorithms (GA) or GP to the generation
of technical trading rules [11] [12] [13] [14] [15] concentrates on the US and
to a lesser extent the Japanese stock markets. Published research on this area
is both incomplete and scarce. To date, only a limited number of GA / GP
methodologies and a limited range of technical indicators have been considered.
This study addresses these limitations by examining index data drawn from the
UK stock market and by adopting a novel evolutionary automatic programming
approach.

2 Background

As with any modelling methodology, issues of data pre-processing need to be
considered. Rather than attempting to uncover useful technical trading rules
for the FTSE 100 index using raw current and historical price information, this

Evolving Market Index Trading Rules 345

information is initially pre-processed into technical indicators. The objective of
these pre-processing techniques is to uncover possible useful trends and other in-
formation in the time series of the raw index data whilst simultaneously reducing
the noise inherent in the series.

2.1 Technical Indicators

The development of trading rules based on current and historic market price
information has a long history [16]. The process entails the selection of one
or more technical indicators and the development of a trading system based
on these indicators. These indicators are formed from various combinations of
current and historic price information. Although there are potentially an infinite
number of such indicators, the financial literature suggests that certain indicators
are widely used by investors [4][3][17].

Four groupings of indicators are given prominence in prior literature:

i. Moving average indicators
ii. Momentum indicators
iii. Trading range indicators
iv. Oscillators

Given the large search space, an evolutionary automatic programming
methodology has promise to determine both a good quality combination of, and
relevant parameters for, trading rules drawn from individual technical indicators.

We intend to use of each of these groupings as our model is developed, but in
our preliminary investigation, we have limited our attention to moving average
indicators.

Moving Average Indicators. The simplest moving average systems compare
the current share price or index value with a moving average of the share price
or index value over a lagged period, to determine how far the current price has
moved from an underlying price trend. As they smooth out daily price fluctu-
ations, moving averages can heighten the visibility of an underlying trend. A
variation on simple moving average systems is to use a moving average conver-
gence divergence (MACD) oscillator. This is calculated by taking the difference
of a short run and a long run moving average. In a recursive fashion, more
complex combinations of moving averages of values calculated from a MACD
oscillator can themselves be used to generate trading rules. For example, a nine
day moving average of a MACD oscillator could be plotted against the raw value
of that indicator. A trading signal may be generated when the two plotted mov-
ing averages cross. Moving average indicators are trend following devices and
work best in trending markets. They can have a slow response to changes in
trends in markets, missing the beginning and end of each move. They tend to
be unstable in sideways moving markets, generating repeated buy and sell sig-
nals (whipsaw) leading to unprofitable trading. Trading systems using moving
averages trade-off volatility (risk of loss due to whipsaw) against sensitivity. The

346 M. O’Neill et al.

objective is to select the lag period which is sensitive enough to generate a useful
early trading signal but which is insensitive to random noise.

A description of the evolutionary automatic programming system used to
evolve trading rules now follows.

3 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algorithm that can evolve com-
puter programs in any language. Rather than representing the programs as parse
trees, as in traditional GP [18], a linear genome representation is adopted. A
genotype-phenotype mapping process is used to generate the output program
for each individual in the population. Each individual, a variable length bi-
nary string, contains in its codons (groups of 8 bits) the information to select
production rules from a Backus Naur Form (BNF) grammar. The BNF is a
plug-in component to the genotype-phenotype mapping process, that represents
the output language in the form of production rules. It is comprised of a set of
non-terminals that can be mapped to elements of the set of terminals, accord-
ing to the production rules. An example excerpt from a BNF grammar is given
below. These productions state that S can be replaced with either one of the
non-terminals expr, if-stmt, or loop.

S ::= expr (0)
| if-stmt (1)
| loop (2)

The grammar is used in a generative process to construct a program by
applying production rules, selected by the genome, beginning from the start
symbol of the grammar.

In order to select a rule in GE, the next codon value on the genome is
generated and placed in the following formula:

Rule = Codon V alue MOD Num. Rules

If the next codon integer value was 4, given that we have 3 rules to select from
as in the above example, we get 4 MOD 3 = 1. S will therefore be replaced
with the non-terminal if-stmt.

Beginning from the left hand side of the genome codon integer values are
generated and used to select rules from the BNF grammar, until one of the
following situations arise:

i. A complete program is generated. This occurs when all the non-terminals
in the expression being mapped, are transformed into elements from the
terminal set of the BNF grammar.

Evolving Market Index Trading Rules 347

ii. The end of the genome is reached, in which case the wrapping operator is
invoked. This results in the return of the genome reading frame to the left
hand side of the genome once again. The reading of codons will then continue
unless an upper threshold representing the maximum number of wrapping
events has occurred during this individual’s mapping process. This threshold
is currently set to ten events.

iii. In the event that a threshold on the number of wrapping events is exceeded
and the individual is still incompletely mapped, the mapping process is
halted, and the individual assigned the lowest possible fitness value.

GE uses a steady state replacement mechanism, such that, two parents pro-
duce two children the best of which replaces the worst individual in the current
population if the child has a greater fitness. The standard genetic operators of
point mutation, and crossover (one point) are adopted. It also employs a dupli-
cation operator that duplicates a random number of codons and inserts these
into the penultimate codon position on the genome. A full description of GE can
be found in [1] [2].

4 Problem Domain & Experimental Approach

We describe an approach to evolving trading rules using GE. This study uses
daily data for the UK FTSE 100 stock index drawn from the period 26/4/1984 to
4/12/1997. The training data set was comprised of the first 440 trading days of
the data set. The remaining data was divided into five hold out samples totaling
2125 trading days. The division of the hold out period into five segments was
undertaken to allow comparison of the out of sample results across different
market conditions in order to assess the stability and degradation characteristics
of the developed model’s predictions. The extensive hold out sample period helps
reduce the possibility of training data overfit. The rules evolved by GE are used
to generate one of three signals for each day of the training or test periods.
The possible signals are Buy, Sell, or Do Nothing. Permitting the model to
output a Do Nothing signal reduces the hard threshold problem associated with
production of a binary output. This issue has not been considered in a number
of prior studies. A variant on the trading methodology developed in Brock et
al. [4] is then applied. If a buy signal is indicated, a fixed investment of $1,000
(arbitrary) is made in the market index. This position is closed at the end of a
ten day (arbitrary) period. On the production of a sell signal, an investment of
$1,000 is sold short and again this position is closed out after a ten day period.
This gives rise to a maximum potential investment of $10,000 at any point in
time (the potential loss on individual short sales is in theory infinite but in
practice is unlikely to exceed $1,000). The profit (or loss) on each transaction
is calculated taking into account a one-way trading cost of 0.2% and allowing a
further 0.3% for slippage. The total return generated by the developed trading
system is a combination of its trading return and its risk free rate of return
generated on uncommitted funds.

348 M. O’Neill et al.

The rate adopted in this calculation is simplified to be the average interest
rate over the entire data set (8.5%).

The only technical indicator that we adopt for these experiments is the mov-
ing average, where the period is determined by evolution. We choose to do this
for the sake of simplicity in these preliminary experiments.

As well as the moving average the grammar also allows the use of the binary
operators f and, f or, and the standard arithmetic operators, and the unary
operator f not. The operations f and, f or, and f not are fuzzy logic operators
returning the minimum, maximum, of the arguments, and 1 - the argument, re-
spectively. We are therefore getting a mix of types for free, through the grammar
and the genotype-phenotype mapping process of GE.

The signals generated for each day, Buy, Sell, or Do Nothing, are post-
processed using fuzzy logic. The trading rule, a fuzzy trading rule, returns values
in the range 0 to 1. We use pre-determined membership functions, in this case, to
determine what the meaning of this value is. The membership functions adopted
were as follows:

Buy = 0.0 >= V alue < .33

Sell = .33 >= V alue < .66

DoNothing = .66 >= V alue <= 1.0

4.1 Data Preprocessing

The value of the FTSE 100 index increased substantially over the training and
testing period, rising from 1130.9 to 5082.3. Before the trading rules were con-
structed, these values were normalised using a two phase preprocessing. Initially
the daily values were transformed by dividing them by a 75 day lagged moving
average. These transformed values are then normalised using linear scaling into
the range 0 to 1. This procedure is a variant on that adopted by Allen and
Karjalainen [11]and Iba and Nikolaev [10].

4.2 Selection of Fitness Function

A key decision in applying a GP methodology to construct a technical trading
system is to determine what fitness measure should be adopted. A simple fitness
measure such as the profitability of the system both in and out of sample is
inadequate as it fails to consider the risk associated with the developed trading
system. The risk of the system can be estimated in a variety of ways. One pos-
sibility is to consider market risk, defined here as the risk of loss of funds due to
a market movement. A measure of this risk is provided by the maximum draw-
down (maximum cumulative loss) of the system during a training or test period.
This measure of risk can be incorporated into the fitness function in a variety
of formats including: (return / maximum drawdown) or return - ’x’(maximum
drawdown), where ’x’ is a pre-determined constant dependent on an investor’s
psychological risk profile. For a given rate of return, the system generating the
lowest maximum drawdown is preferred.

Evolving Market Index Trading Rules 349

This study incorporates drawdown in the fitness function by subtracting the
maximum cumulative loss during the training period from the profit generated
during that period. This is a conservative approach which will encourage the
evolution of trading systems with good return to risk characteristics. This will
provide a more stringent test of trading rule performance as high risk / high
reward trading rules will be discriminated against. The adoption of a risk con-
servative approach will facilitate the comparison of the final results with those
of a benchmark buy and hold trading strategy.

5 Results

The results from our preliminary experiments are now given. Runs were con-
ducted with a population size of 500 for 100 generations. Trading rules were
evolved with a performance superior to that of a benchmark buy and hold strat-
egy. Under this benchmark, an amount of $10,000 is invested in the market at
the beginning of each of the test periods. The gain on this investment to the
end of each period is then calculated. The best individual (set of trading rules)
found to date made a profit of US$2491 over the training period.

When tested on the 5 out of sample periods following the training data set we
find that this individual was consistently profitable, with the exception of a small
loss in test period 4. It is noteworthy that the performance of this individual
showed no significant evidence of degradation in succeeding out of sample test
periods. In some cases the individual performed better out of sample than in
the training period. This individual demonstrated robust performance, showing
an ability to adapt to a period of crisis in the market in the second test period
caused by the market collapse in Oct 1987. Plots of the index over each of the
test periods and the training period can be seen in Fig. 1.

To facilitate assessment of these results, they are compared with those of the
benchmark buy and hold strategy. The results of this buy and hold strategy can
be seen in table 1.

Table 1. A comparison of benchmarks with the best of run individual.

Trading Period Buy & Hold Best-of-run Best-of-run
(Days) Profit (US$) Profit(US$) Avg. Daily Investment

Test 1 (440 to 805) 5244 1190 7959
Test 2 (805 to 1170) -1376 5459 4356
Test 3 (1170 to 1535) 1979 2122 6973
Test 4 (1535 to 1900) 1568 -595 7109
Test 5 (3196 to 3552) 3852 10143 6315

Total 11267 18319

In assessing these results, the market risk profile of each trading strategy
should be considered. The buy and hold strategy maintains an investment of

350 M. O’Neill et al.

$10,000 in the market at all times whereas the maximum investment of the
developed trading system, ignoring drawdown, is $10,000. Looking at table 1
we can see the average daily investment made by the best of run individual for
each test period. Averaged over all 5 test periods the developed system has an
investment of $6542 in the market.
There is no clear evidence that the trading system has higher market risk than
the buy and hold strategy.

6 Discussion

In evaluating the performance of any market predictive system, a number of
caveats must be borne in mind. Any trading model constructed and tested using
historic data will tend to perform less well in a live environment than in a test
period for a number of reasons. Live markets have attendant problems of de-
lay in executing trades, illiquidity, interrupted / corrupted data and interrupted
markets. The impact of these issues is to raise trading costs and consequently
to reduce the profitability of trades generated by any system. An allowance for
these costs (“slippage”) has been included in this study but it is impossible to
determine the scale of these costs ex-ante with complete accuracy. In addition
to these costs, it must be remembered that the market is competitive. As new
computational technologies spread, opportunities to utilise these technologies
to earn excess risk-adjusted profits are eroded. As a result of this technologi-
cal “arms-race”, estimates of trading performance based on historical data may
not be replicated in live trading as other market participants will apply similar
technology. This study ignores impact of dividends. Although a buy-and-hold
strategy will generate higher levels of dividend income than an active trading
strategy, the precise impact of this factor is not determinable ex-ante. It is no-
table that the dividend yield on most stock exchanges has fallen sharply in recent
years and that the potential impact of this factor has lessened.

7 Conclusions & Future Work

GE was shown to successfully evolve trading rules with a performance superior to
the benchmark buy and hold strategy. These preliminary results, with regard to
the potential utility of technical analysis, are more positive than those reported
in some earlier studies. Allen and Karjalainen [11] found that after transaction
costs, the technical trading rules developed in their study, using a more tradi-
tional GP methodology, did not produce excess returns. However, the scope of
their finding is limited as the methodology adopted in the study did not com-
pare returns with a similar risk profile. The risk of the benchmark buy-and-hold
portfolio exceeded that of the portfolio generated by the technical trading rules
because an investor following the technical trading system was only invested in
the market 57% of the time.

There is notable scope for further research utilising GE in this problem do-
main. Our preliminary methodology has included a number of simplifications,

Evolving Market Index Trading Rules 351

for example, we only considered moving averages, a primitive technical indicator.
The incorporation of additional technical may further improve the performance
of our approach.

References

1. O’Neill M., Ryan C. (2001) Grammatical Evolution. IEEE Trans. Evolutionary
Computation. 2001.

2. Ryan C., Collins J.J., O’Neill M. (1998). Grammatical Evolution: Evolving Pro-
grams for an Arbitrary Language. Lecture Notes in Computer Science 1391, Pro-
ceedings of the First European Workshop on Genetic Programming, pages 83-95.
Springer-Verlag.

3. Murphy, John J. (1999). Technical Analysis of the Financial Markets, New York:
New York Institute of Finance.

4. Brock, W., Lakonishok, J. and LeBaron B. (1992). ’Simple Technical Trading Rules
and the Stochastic Properties of Stock Returns’, Journal of Finance, 47(5):1731-
1764.

5. Hong, H., Lim, T. and Stein, J. (1999). ’Bad News Travels Slowly: Size, Analyst
Coverage and the Profitability of Momentum Strategies’, Research Paper No. 1490,
Graduate School of Business, Stanford University.

6. Chan, L. K. C., Jegadeesh, N. and Lakonishok, J. (1996). ’Momentum strategies’,
Journal of Finance, Vol. 51, No. 5, pp. 1681 - 1714.

7. Dissanaike, G. (1997). ’Do stock market investors overreact?’, Journal of Business
Finance & Accounting (UK), Vol. 24, No.1, pp. 27-50.

8. Cross, F. (1973). ’The Behaviour of Stock prices on Friday and Monday’, Financial
Analysts’ Journal, Vol. 29(6), pp.67-74.

9. DeBondt, W. and Thaler, R. (1987). ’Further Evidence on Investor Overreaction
and Stock Market Seasonality’, Journal of Finance, Vol. 42(3):pp.557-581.

10. Iba H. and Nikolaev N. (2000). ’Genetic Programming Polynomial Models of Fi-
nancial Data Series’, In Proc. of CEC 2000, pp. 1459-1466, IEEE Press.

11. Allen, F., Karjalainen, R. (1999) Using genetic algorithms to find technical trading
rules. Journal of Financial Economics, 51, pp. 245-271, 1999.

12. Colin, A. (1994). ’Genetic Algorithms for Financial Modelling’, in Guido Deboeck
(Editor) (1994). Trading on the edge: neural, genetic and fuzzy systems for chaotic
and financial markets, New York: John Wiley & Sons Inc.

13. Bauer R. (1994). Genetic Algorithms and Investment Strategies, New York: John
Wiley & Sons Inc.

14. Neely, C., Weller P. and Dittmar, R. (1997). ’Is technical analysis in the foreign ex-
change market profitable? A genetic programming approach”, Journal of Financial
and Quantitative Analysis, Vol. 32, No. 4, pp. 405 - 428.

15. Deboeck G. (1994). ’Using GAs to optimise a trading system’, in Guido Deboeck
(Editor) (1994). Trading on the edge: neural, genetic and fuzzy systems for chaotic
and financial markets, New York: John Wiley & Sons Inc.

16. Brown, S., Goetzmann W. and Kumar A. (1998). ’The Dow Theory: William Peter
Hamilton’s Track Record Reconsidered’, Journal of Finance, 53(4):1311-1333.

17. Pring, M. (1991). Technical analysis explained: the successful investor’s guide to
spotting investment trends and turning points, New York: Mc Graw-Hill Inc.

18. Koza, J. (1992). Genetic Programming. MIT Press.

352 M. O’Neill et al.

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 500 1000 1500 2000 2500 3000 3500

In
de

x
V

al
ue

Time

FTSE 100

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

0 50 100 150 200 250 300 350 400

In
de

x
V

al
ue

Time

FTSE 100

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

450 500 550 600 650 700 750 800

In
de

x
V

al
ue

Time

FTSE 100

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

850 900 950 1000 1050 1100 1150

In
de

x
V

al
ue

Time

FTSE 100

1700

1800

1900

2000

2100

2200

2300

2400

2500

1200 1250 1300 1350 1400 1450 1500

In
de

x
V

al
ue

Time

FTSE 100

1900

2000

2100

2200

2300

2400

2500

2600

2700

1550 1600 1650 1700 1750 1800 1850 1900

In
de

x
V

al
ue

Time

FTSE 100

3600

3800

4000

4200

4400

4600

4800

5000

5200

5400

3200 3250 3300 3350 3400 3450 3500 3550

In
de

x
V

al
ue

Time

FTSE 100

Fig. 1. A plot of the FTSE 100 over the entire data set (top), over the training period
(middle-left), over the first two test periods. Days 365 to 730 (middle-center), and days
730 to 1095 (middle-right), and the third, fourth & fifth test periods (bottom row, from
left to right).

Autonomous Photogrammetric Network Design
Using Genetic Algorithms

Gustavo Olague

Departamento de Ciencias de la Computación, División de F́ısica Aplicada, Centro de
Investigación Cient́ıfica y de Educación Superior de Ensenada, B.C. Km. 107

carretera Tijuana-Ensenada, 22860, Ensenada, B.C. México.
golague@cicese.mx

Abstract. This work describes the use of genetic algorithms for au-
tomating the photogrammetric network design process. When planning
a photogrammetric network, the cameras should be placed in order to
satisfy a set of interrelated and competing constraints. Furthermore,
when the object is three-dimensional a combinatorial problem occurs.
Genetic algorithms are stochastic optimization techniques, which have
proved useful at solving computationally difficult problems with high
combinatorial aspects. EPOCA (an acronym for “Evolving POsitions of
CAmeras”) has been developed using a three-dimensional CAD inter-
face. EPOCA is a genetic based system that provides the attitude of
each camera in the network, taking into account the imaging geometry,
as well as several major constraints like visibility, convergence angle, and
workspace constraint. EPOCA reproduces configurations reported in the
photogrammetric literature. Moreover, the system can design networks
for several adjoining planes and complex objects opening interesting new
research avenues.

1 Introduction

Photogrammetric network design is the process of placing cameras in order to
perform photogrammetric tasks. An important aspect of any close range pho-
togrammetric system is to achieve an optimal spatial distribution of the cameras
comprising the network. Planning an optimal photogrammetric network for some
special purpose, such as for monitoring structural deformation or for determin-
ing the precise shape characteristics of an object demands special attention from
the quality of the network design. Previous approaches to photogrammetric net-
work design have attempted to identify the main stages in the process. Following
the widely accepted classification scheme of Grafarend [1], network design has
been divided into four design stages from which only the first three are used in
close-range photogrammetry:

1. Zero Order Design (ZOD): This stage attempts to define an optimal datum
in order to obtain accurate object point coordinates and exterior orientation
parameters.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 353–363, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

354 G. Olague

2. First Order Design (FOD): This stage involves defining an optimal imaging
geometry, which in turn determines the accuracy of the system.

3. Second Order Design (SOD): This stage is concerned with adopting a suitable
measurement precision for the image coordinates. It consists usually in taking
multiple images from each camera station.

4. Third Order Design (TOD): This stage deals with the improvement of a
network through the inclusion of additional points in a weak region.

Photogrammetric measurement operations attempt to satisfy, in an optimal
manner, several objectives such as precision, reliability and economy. The ZOD
and SOD are greatly simplified in comparison to geodetic networks for which the
four stages were originally developed. Indeed FOD, the design of network config-
uration or the sensor placement task needs to be comprehensively addressed for
photogrammetric projects. This design stage must provide an optimal imaging
geometry and convergence angle for each set of points placed over a complex
object [2]. Photogrammetrists have acknowledged the degree of expertise needed
to carry out a photogrammetric project. For example, Mason and Grün [3] de-
veloped a work called CONSENS that follows the expert system approach and
uses multiple cameras in combination with optical triangulation. It outlines a
method of overcoming the set of constraints and objectives presented in cam-
era station placement. The method is based on the theory of generic networks,
which constitutes compiled expertise, describing an ideal configuration of four
camera stations that can be employed to provide a strong imaging geometry for
the class of planar network design problems. Complex objects are divided into
planes; each plane is evaluated through one of these networks and then connected
with some additional cameras with the purpose of establishing just one common
datum. However, the expert system approach has shown it unlikely that full
automation of the network design process will be achieved, due in large part to
human expert’s extensive use of common-sense reasoning [2]. On the other hand,
the Grafarend classification just presented serves the photogrammetric user by
identifying what set of tasks needs to be implemented in designing a network.
Despite the progress that photogrammetrists have made in understanding this
design problem, the photogrammetric measurement technique has rarely been
applied by other than experienced photogrammetrists. Although its definition
seems simple, it reaches a high complexity mainly due to the numerous con-
straints and design decisions that need to be made. Photogrammetric network
design is also difficult to obtain due to the unknown number of configurations
all having very similar accuracy, but with a very different imaging geometry.
Consequently, photogrammetric network design in many machine vision appli-
cations is often conducted in a trial-and-error fashion or using heuristic reasoning
strategies [4]. These strategies fail at solving the problem for the case of complex
objects. Moreover, the main question, how to obtain an initial configuration with
an optimal imaging geometry, is unsolved and left as the responsibility of the
designer. The motivation of this research is to reduce the cost of vision system
design and to equip autonomous inspection systems with photogrammetric net-

Autonomous Photogrammetric Network Design 355

work capabilities, e.g., measurement robots used in flexible manufacturing, see
Figure 1.

Fig. 1. Photogrammetric network simulation of four robots, each camera is mounted
on the robot’s hand, with the goal of measuring the box on the table.

Expert photogrammetrists regard simulation as a viable strategy to the prob-
lem of photogrammetric network design [2]. Computer simulation of close range
photogrammetric networks has been successfully employed and, with the sophis-
tication of computers, a considerable boost to interactive network design has
been achieved. The process of photogrammetric network design optimization
through computer simulation can follow a number of approaches. One tradi-
tional procedure is based on the stages ZOD, FOD and SOD. Given the criteria
related to required triangulation precision, the initial step is to adopt a suitable
observation and measuring scheme (FOD stage). This entails the selection of
an appropriate camera format, focal length, and image measurement system,
as well as a first approximation to suitable network geometry. Once this design
stage is finished, the network is evaluated against the specified criteria. If the
network fails to achieve the criteria, a new stage to diagnose and identify the
problem is performed. FOD or SOD will be applied to produce the new solution.
If both corrections are insufficient a completely new network will be proposed
until a solution to the problem is achieved. In this way, network design is it-
erative in nature. The aim of this paper is to present a new simulation-based
method for solving the most fundamental stage in network design. The problem

356 G. Olague

is set in terms of a global optimization design [5,6], which is capable of manag-
ing the problem using an adaptive strategy. It explores the solution space using
both non-continuous optimization and combinatorial search. The approach then
is to minimize the uncertainty of the three dimensional measurements using as
a criterion the average variance of the 3D object points, presuming that the
optimization satisfies a number of primary constraints.

This paper is organized as follows: first the bundle adjustment, the mathe-
matical model universally accepted by photogrammetrists, is reviewed in order
to obtain a criterion useful to the optimization process. Then, a brief summary of
the constraints on network design is presented. The problem of photogrammetric
network design in terms of a stochastic global optimization is described together
with implementation details about visibility and occlusion constraints related to
the complexity of the search space. Finally, results are presented followed by a
conclusion.

2 Photogrammetric Network Modeling

Brown originally developed the bundle method in a fully general form. Today,
the bundle method is recognized as a critical factor in exploiting the mensura-
tion potential of photogrammetry and is almost exclusively used in applications
requiring high accuracy. The method accords simultaneous consideration to all
sets (or bundles) of photogrammetric rays from all cameras. The bundle method
is based on a mathematical camera model comprised of separate functional and
stochastic models. The functional model describing the relationship between the
desired and measured quantities consists of the well-known collinearity equa-
tions. The collinearity equations, derived from the perspective transformation,
are based on the fundamental assumption that the perspective center, the ground
point and its corresponding image point, all lie on a straight line. For each pair
of image coordinates (xij , yij) observed on each image, the following pair of
equations is written:

xij = xp − f

[
m11(Xj −Xc

i) + m12(Yj − Y c
i) + m13(Zj − Zc

i)
m31(Xj −Xc

i) + m32(Yj − Y c
i) + m33(Zj − Zc

i)

]

yij = yp − f

[
m21(Xj −Xc

i) + m22(Yj − Y c
i) + m23(Zj − Zc

i)
m31(Xj −Xc

i) + m32(Yj − Y c
i) + m33(Zj − Zc

i)

]
,

(1)

where (xij , yij) denote the coordinates of point j on photograph i, f and (xp, yp)
are the camera constant and image coordinates of the principal point of the sen-
sor defining the sensor’s orientation, (Xj , Yj , Zj) are the object space coordinates
of the corresponding point feature, (Xc

i , Y
c
i , Zc

i) are the object space coordinates
of the perspective center, and mkl are elements of an orthogonal matrix which
defines the rotation between the image and object coordinate systems. This sys-
tem of equations assumes that light rays travel in straight lines, that all rays
entering a camera lens system pass through a single point and that the lens

Autonomous Photogrammetric Network Design 357

system is distortion-less or, as is usual in highly accurate measurement, that dis-
tortion has been cancelled out after having been estimated. Due to the nature
of the measurement process, observations are accompanied by errors. Because
of random errors, as evidenced by the small differences between observations of
the same quantity, observations can be regarded as random variables and their
effects described by means of a stochastic model. Equation 1 can be linearized
through the first order development using the Taylor series. A functional model
can be given as

v = Ay − l
C1 = σ2

0P
−1

where l, v and y are the vectors of observations, residuals and unknown param-
eters, respectively; A is the design or configuration matrix; C1 the covariance
matrix of observations; P the weight matrix; and σ2

0 the variance factor. In
situations where A is of full rank (i.e., where redundant or explicit minimal con-
straints are imposed), the parameter estimates y and the corresponding cofactor
matrix Qy and covariance matrix Cy are obtained as

y = (ATPA)−1ATPL = QyATPL , (2)

and
Cy = σ2

0Qy . (3)

The ultimate aim of any photogrammetric measurement is the determination of
triangulated object point coordinates along with estimates for their precision.
The bundle method is simplified by considering two groups of parameters in the
vector ŷ: y1 comprising exterior orientation (self-calibration parameters were
not considered for simplicity), and y2 containing object coordinate corrections.
Equation 2, then assumes the form

(
y1

y2

)
=
(

AT
1 PA1 AT

1 PA2

AT
2 PA1 AT

2 PA2

)−1(ATPL
ATPL

)
,

and the cofactor matrix Qy can be written

Qy =
(

Q1 Q1,2

Q2,1 Q2

)
.

The design optimization goal for precision is to achieve an optimal form of Q2

and therefore the covariance matrix of object point coordinates (Xj , Yj , Zj), con-
sidering the applicable design constraints. The criterion used in the minimization
process was the average variance along the covariance matrix σ2

c

σ2
c =

σ2
0

3n
(trace Q2) .

Before dramatic improvements in computer processing power in recent years, a
valid criticism of designing close range networks by simulation was the compu-
tation time required for a bundle adjustment after each design-iteration even for

358 G. Olague

relatively small networks. As shown in [7], the covariance matrix can be obtained
through the equation

Q2 = σ2
0 [(AT

2 PA2)−1 + K] ,

where
K = MQ1MT ,

and
M = (AT

2 PA2)−1AT
2 PA1 .

In this way, the determination of Q2 using this approach represents a rigorous
approach that is termed Total Error Propagation (TEP.) On the other hand, it
has been demonstrated [8] that for a wide range of convergent photogrammetric
networks, K = 0. This consideration is non-rigorous in that it implicitly assumes
that exterior orientation parameters exhibit no dispersion and is called Limited
Error Propagation (LEP). The perspective parameters are assumed to be error
free and the variances in object point coordinates arise solely from the propaga-
tion of random errors in the image coordinate measurements. What is remark-
able from a network design standpoint is that for strong networks (convergent
networks) LEP is sufficiently accurate compared to TEP, causing considerable
computation savings.

3 Constraints on Network Design

The problem of photogrammetric network design (PND) must deal with a series
of constraints in order to propose an optimal camera distribution. The accuracy
of the system is related to the imaging geometry (main objective in PND) as
well as the convergence angle of each camera with respect to each object surface.
In order to answer the most basic question of a favorable imaging geometry
(FOD or the configuration problem) we must distinguish among the several
constraints limiting the search space. Mason [9] has proposed a set of constraints
and objectives that we separate into two parts:

3.1 Main Objective and Primary Constraints

Considering the constraints limiting the search space we identify the following
main objective and three constraints due to the characteristics of the FOD prob-
lem:

– Contribution to intersection angles or the imaging geometry. Within a cam-
era placement system the main objective is to know the contribution of each
camera with respect to the others. Two fundamental questions need to be an-
swered: how many cameras will be needed and where should they be placed.
However, before answering the first question we need to answer the second
one. Once we know where to place a given number of cameras, it is a trivial
matter to decide on the number.

Autonomous Photogrammetric Network Design 359

– Convergence angle. The reliability of image measurements from directions
close to coplanar are difficult and even impossible to obtain. The minimum
allowable incidence angle is dependent on the type of feature, its geometry
and material. The accuracy of the measurement with respect to the conver-
gence angle is a function of the viewing direction and the surface normal at
the feature. In the case of circular targets the minimum convergence angle
is about 20 to 30 degrees for the kind of retro-reflective targets that are
normally used.

– Working space constraint. The workspace in which the photogrammetric sur-
vey is conducted can impose restrictions on the selection of an ideal imaging
geometry. This constraint includes the walls of the room, any obstructions in
the working environment, and the workspace of the robot where the camera
could be mounted.

– Visibility. This constraint is related to the problem of obstructions in the
environment. Viewpoints affected by occlusions caused by other objects in
the workspace, or the object itself, should be avoided if possible. A ray
tracing technique (POV-RAY, a free software package) was used in order
to obtain visibility information of an object from different viewpoints. We
created a database that was then used into our optimization process.

3.2 Secondary Constraints

Optical constraints such as field of view, depth of field, resolution, and image
scale will not be taken into account when estimating a favorable imaging geome-
try. PND is mainly a function of the imaging geometry, as well as the convergence
angle. Optical constraints lack significant importance once the camera observes
the entire object. In this way, an optimal distance of the camera to the object
can be defined a priori in order to measure the different object points. Thus, for
the purpose here all object points appear within the field-of-view, in focus, at a
given resolution and depth of field. In addition, in order to compute the exterior
orientation parameters photogrammetrists affirm that the total number of points
is irrelevant once a sufficient number of points are used during the simulation.

4 The Multi-cellular Genetic Algorithm

The multi-cellular genetic algorithm (MGA) then proceeds as follows:

1. An initial random population of N convergent networks that satisfy the
environment constraints is chosen and is represented by (αn, βn), coded into
a binary string representation.

2. Next, we evaluate each network, and store the corresponding maximum value
of the diagonal of ΛPn for each tree structure. This corresponds to the fitness
value which says how good the network is, compared with other solutions in
the population P (t).

360 G. Olague

 eval(L eval(L

Cam_1 Cam_2

P_1)

a a a a ab b b_1 _1 _2 _1 b_1 _2 _2ab _2

P_N)

Cam_M

_M _M _M _Mb

Cam_1 Cam_2 Cam_M

9 bits

0 --> 511

1 0 1 0 0 1 0 1 0

Fig. 2. The multi-cellular genetic algorithm is represented by a tree structure composed
of a main node where the evaluation process is stored and several leaves corresponding
to each camera. All cameras are codified in two parameters (α, β), which correspond
to the cells of an artificial being. As network evaluation uses only the cells that satisfy
the visibility constraints a combinatorial problem is then involved.

3. Then, we select a population of “good” networks by tournament selection:
two networks are selected from P (t) and are compared selecting the best
individual according to its fitness, yielding the population P (t + 1).

4. From this population, we recombine the binary strings (αn, βn) for each
camera using the following operations:
– Crossover, with a probability1 Pc = 0.7. This operation was implemented

using one-cut-point2. Let the two parents be:

αx = [αx1 αx2 αx3 αx4 αx5 αx6 αx7 αx8 αx9] ,

αy = [αy1 αy2 αy3 αy4 αy5 αy6 αy7 αy8 αy9] .

If they are crossed after the random kth position = 4, the resulting
offspring are:

α′
x = [αx1 αx2 αx3 αx4 αy5 αy6 αy7 αy8 αy9] ,

α′
y = [αy1 αy2 αy3 αy4 αx5 αx6 αx7 αx8 αx9] .

– Mutation, with a probability Pm = 0.005. This operation alters one or
more genes. Assume that the αy5 = 1 gene of the chromosome α′

x is
selected for a mutation. Since the gene is 1, it would be flipped into 0.

These operations yield a new population, which we copy into P (t).
5. Steps 2,3 and 4 are repeated until the optimization criterion stabilizes.
1 The threshold values associated to Pc and Pm were adopted from to the literature.
2 Due to the classification of the MGA this operation works like a multiple-cut-point.

Autonomous Photogrammetric Network Design 361

Finally, this algorithm minimizes the maximum average variance along the co-
variance matrix σ2

c :
fitness = min

i=1...N
(max σ2

c) . (4)

Thereby, the camera placement Mi relative to the world coordinate frame is
optimized. Geometrically, each ΛPi represents a hyper-ellipsoid, which changes
its orientation and size as each sensor placement Mi does. Thus, an optimal
placement solution is proposed, where the combined uncertainty of all points is
minimal.

c) Fraser’s [10] configuration. d) Multi-robot system.

a) 6 cameras over a plane. b) Similar to Mason [3].

Configurations produced by our evolutionary system.

Fig. 3. Configurations reported in the literature b) and c) were reproduced by EPOCA.
Figure a) improves upon Fraser’s configuration due to SOD operation, which is auto-
matically generated. Moreover, EPOCA can be used in the case of complex objects, as
can be appreciated from Figure d).

362 G. Olague

5 Examples and Conclusion

We have run a series of experiments to test the validity of our approach. We
present select results in Figure 3, which show four configurations designed by
EPOCA. The cameras are looking at a set of targets represented by their er-
ror ellipsoids aligned in one or two planes, as well as over a complex object.
These configurations are a product of our evolutionary system. In fact, within a
stochastic optimization process we cannot make conclusions from just one trial.
Each configuration presented is the product of about 50 independent runs. Fig-
ure 3c illustrates a solution with four cameras looking at a planar surface. This
solution is not the standard one used by the expert photogrammetrists: a pho-
togrammetrist usually puts the four cameras at four-corners of a cube whose
center contains the targets to be measured. In fact, Fraser [10] has already dis-
cussed our configuration; he noticed that this configuration is not atypical. Our
experiments confirm Fraser’s statement, hence the equivalence between both
configurations [9].

Acknowledgements. This work was supported by CONACyT under project
35267-A. Prof. Roger Mohr contributed to the development of EPOCA with
many useful ideas, criticisms and suggestions. I am also grateful to Dr. Scott
Mason and Dr. Marc Schoenauer for his helpful comments and interest.

References

1. Grafarend, E.W., 1974, Optimization of Geodetic Networks, Bollettino di Geodesia
e Scienze Affini, 33(4):351-406.

2. Fraser, C.S., 1996, Network Design, Close-Range Photogrammetry and Machine
Vision, K.B. Atkinson, editor, Whittles Publishing, Chapter 9, pp. 256-281.

3. Mason, S.O. and A. Grün, 1995, Automatic Sensor Placement for Accurate Di-
mensional Inspection, Computer Vision and Image Understanding, 61(3):454-467.

4. Mason, S.O., 1997, Heuristic Reasoning Strategy for Automated Sensor Placement,
Photogrammetric Engineering & Remote Sensing, 63(9):1093-1102, September.

5. Olague, G., 1998, Planification du placement de caméras pour des mesures 3D
de précision, PhD Thesis, Institut National Polytechnique de Grenoble, France.
ftp://ftp.imag.fr/pub/Mediatheque.IMAG/theses/98-Olague.Gustavo/notice-francais.html

6. Olague, G. and R. Mohr, 1998, Optimal Camera Placement to Obtain Accurate 3D
Point Positions, In Proceedings of the 14th International Conference on Pattern
Recognition, Vol. 1, pages 8-10.

7. Brown, D.C., 1980, Application of Close-Range Photogrammetry to Measurements
of Structures in Orbit, Vol. 1 and 2, GSI Technical Report No. 80-012, Melbourne.

8. Fraser, C.S., 1987, Limiting Error Propagation in Network De-
sign,Photogrammetric Engineering & Remote Sensing, 53(5):487-493, May.

9. Mason, S.O., 1994, Expert System-Based Design of Photogrammetric Networks,
PhD Thesis, Institut für Geodásie und Photogrammetrie, Zurich.

10. Fraser, C.S., 1982, Optimization of Precision in Close-Range Photogrammetry,
Photogrammetric Engineering & Remote Sensing, 48(4):561-570, April.

Autonomous Photogrammetric Network Design 363

11. Olague, G., 2000, Design and Simulation of Photogrammetric Networks using Ge-
netic Algorithms, In American Society for Photogrammetry and Remote Sensing
2000, Annual Conference Proceedings, 12 pages, Washington DC, USA, Copyright.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 364-373, 2001.
© Springer-Verlag Berlin Heidelberg 2001

The Biological Concept of Neoteny in Evolutionary
Color Image Segmentation – Simple Experiments in

Simple Non-memetic Genetic Algorithms

Vitorino Ramos

CVRM – GeoSystems Centre, Technical Univ. of Lisbon (IST),
Av. Rovisco Pais, Lisboa, 1049-001, PORTUGAL
vitorino.ramos@alfa.ist.utl.pt

Abstract. Neoteny, also spelled Paedomorphosis, can be defined in biological
terms as the retention by an organism of juvenile or even larval traits into later
life. In some species, all morphological development is retarded; the organism is
juvenilized but sexually mature. Such shifts of reproductive capability would
appear to have adaptive significance to organisms that exhibit it. In terms of
evolutionary theory, the process of paedomorphosis suggests that larval stages and
developmental phases of existing organisms may give rise, under certain
circumstances, to wholly new organisms. Although the present work does not
pretend to model or simulate the biological details of such a concept in any way,
these ideas were incorporated by a rather simple abstract computational strategy,
in order to allow (if possible) for faster convergence into simple non-memetic
Genetic Algorithms, i.e. without using local improvement procedures (e.g. via
Baldwin or Lamarckian learning). As a case-study, the Genetic Algorithm was
used for colour image segmentation purposes by using K-mean unsupervised
clustering methods, namely for guiding the evolutionary algorithm in his search
for finding the optimal or sub-optimal data partition. Average results suggest that
the use of neotonic strategies by employing juvenile genotypes into the later
generations and the use of linear-dynamic mutation rates instead of constant, can
increase fitness values by 58% comparing to classical Genetic Algorithms,
independently from the starting population characteristics on the search space.

1 Introduction

Evolution is carried out by a process dependent on mutation and natural selection.
Expositions of this thesis, however, tend to overlook the fact that mutation occurs in
the genotype, whereas natural selection acts only on the phenotype, the organism
produced. It follows from this that the theory of evolution requires as one of its
essential parts a consideration of the developmental or epigenetic processes (due to
external not genetic influences) by which the genotype becomes translated into the
phenotype. There are, of course, not only natural selective pressures that operate.
Another evolutionary pressure strategy [1] has been to transfer the reproductive phase
from the final stage of the life history to some earlier larval stage. If such a process is
carried to its logical evolutionary conclusion, the final previously adult stage of the

The Biological Concept of Neoteny 365

life history may totally disappear, the larval stage of the earlier evolutionary form
becoming the adult stage of the later derivative of it. It has been suggested that such
process of Neoteny (i.e., the retention of juvenile characteristics in adulthood - the
term was coined by Kollman) have played a decision role in certain earlier phases of
evolution, evidence of which is now lost. More details on neoteny could be found in
[2]. As his known, the process of diversity loss in genetic algorithms is often the
cause of premature convergence, and as a consequence, the early convergence to an
inferior local maximum. A large number of existing techniques are used to maintain
diversity in Genetic Algorithms (GA, [3,4,5]). The present approach uses the concept
of Neoteny. This last strategy was incorporated in simple non-memetic genetic
algorithms, by simply preserving some individuals in the earlier generations (using
elitism), and by randomly re-injecting this genetic material into the later generations,
allowing for substantial increases in diversity, and (as it seems) for an appropriate
balance between exploration and exploitation of the search space. Sections 4 and 5 are
dedicated to detailed questions. Finally, and in order to study the impact of such
abstract concept, yet computationally possible, a difficult combinatorial problem was
chosen: color image segmentation. The aim of this paper is to study the impact of
different mutation types (dynamic) and the use of older pseudo-solutions (neoteny) in
the genetic implementation towards image segmentation.

2 Genetic Representation and Clustering in Image Segmentation

Image segmentation is a low-level image processing task that aims at partitioning an
image into homogeneous regions [6]. How region homogeneity is defined depends on
the application. A great number of segmentation methods are available in the
literature to segment images according to various criteria such as for example grey
level, colour, or texture. Recently, researchers have investigated the application of
genetic algorithms [3,4,5] into the image segmentation problem. Probably the most
extensive and detailed works are those from Bhanu [7] and Pal [8]. But we could find
applications in parameter set optimization for these particular problems [7], in
clustering using self-organized maps and GAs [9], within elastic-contour models [10],
or in relaxation methods [11], which is and idea closely related to [12]. Finally, a
fairly comprehensive review of other GA approaches in image processing is available
in [13] - references include, animation, classification, feature extraction, filtering,
image analysis, image processing, pattern recognition and naturally, image
segmentation. As mentioned by Andrey [11], whether the GA is used to search in the
parameter space of an existing segmentation algorithm [7], or in the space of
candidate segmentations, an objective fitness function, assigning a score to each
segmentation, has to be specified in both cases. However, evaluating a segmentation
result is itself a difficult task. To date, no standard evaluation method prevails [14],
and different measures may yield distinct rankings (the present author is nowadays
developing image noise measures by MM [15], allowing for instance, their use in
image filtering design by GAs). Another possible criterion is to think of homogeneous
regions as the result of any appropriate and optimized clustering process, within the
image feature space. Applications of GAs in clustering and grouping problems are
intensively described in [16]. In the present approach, gray level intensities of RGB
image channels are seen as feature vectors, and the k-mean clustering model proposed

366 V. Ramos

(a) (b) (c)

Fig. 1. (a) Original Luanda (Angola) Color Map ([8º50’ S; 13º15’ E], from Nº89, 1:100.000,
Aerial Photo – 1956 / Published – 1960) and as an example (b,c) the respective 3rd/5th color
clusters (pointed by the GA) segmenting roads, some buildings, names, topographic lines (in
red-b), and rivers, lagoons, and water lines (in blue-c).

by J.MacQueen in 1967, is then applied as a quantitative criterion (or GA fitness
function), for guiding the evolutionary algorithm in his appropriate search. Since the
k-mean clustering model allows to minimize the internal feature variance of each
color cluster (or the maximization of the variances between different color clusters
[17]), natural and homogeneous clusters can emerge if the GA is properly coded. In
other words, the image segmentation problem is simply reformulated as an
unsupervised clustering problem, and GAs are then used for finding the most
appropriate and natural clusters. Since the clustering task cannot be successfully
applied within the image 2D space itself (e.g., similar pixels can be very far apart) the
problem is coded within another space - that one of their color features - in 3D (gray
level intensities, for the three channels). By this reformulation, one can in fact
guarantee that similar pixels will belong to the same color cluster. Ramos designed
preliminary efforts in 1997 [17,18]. The standard minimization is then based on the
different clustering combinations, of all points in the feature space. However, for high
number of points in this 3D color space this minimization is hard to compute, since
the combinatorial search space becomes very large. Nevertheless, the partition of this
3D histogram into different clusters must take in account the value of each point (that
is, his frequency for a given RGB point). That is, the standard minimization described
by MacQueen, suffers a little modification (the method becomes weighted by the
frequency f, since the number of colors of any RGB point are an important
information in the overall process [18]). Another important issue in the GA
implementation is the problem’s genetic coding. In order to do it appropriately, each
chromosome codes the binary values of uij [2]. However, to improve the GA search
time and since the number of different colors in one image can be high, each 3D
feature color was submitted to a pre-partition. By this pre-procedure, the
combinatorial search space is reduced, as also as the number of bits in each GA
chromosome. That is, each 3D color cube (with side 256 - 8 bit images) that could
represent up to 563 colors, was reduced to a maximum of 512 points (i.e., 512 small
cubes with side 32). In other words, all RGB points that fall into a small cube are
agglomerated, being the new point represented by the center of this small cube, and
his frequency being equal to the sum of all frequencies of those points. Figure 1
shows some results applying this strategy.

The Biological Concept of Neoteny 367

3 Testing Dynamic Mutation Rates

Since the search space can be huge for similar applications (consider for example,
satellite images or normal images at higher resolutions), and in order to speed-up the
GA convergence (if possible), some experiments were conducted with dynamic
mutation rates (i.e. time-dependent). As pointed by Rudolph [19] in 1994, one
possible route to achieve global optimal convergence might be the introduction of
time varying mutation and selection probabilities. Rudolph suggests using two
simultaneous strategies instead of one, referring the work of Davis (1991, [20]),
where it has been shown that the introduction of time varying mutation probabilities
alone does not help. Anyway, all experiments were conducted in one-point crossover
genetic algorithms (pc = constant = 0.8), with 100 individuals (each pair of individuals
selected via roulette wheel selection and windowing scaling, yields two new
individuals), and within 3000 generations. Each individual was represented by a
binary vector of length n = 531 (each 3 bit can code up to 8 color clusters, although
only 6 are needed, since only 6 prominent colors are present in this maps / 177 color
small cubes present). In these conditions, each generation g takes on average 0.0693
seconds (PENTIUM II - 333MHz / 128Mb RAM), which means about 3.5 minutes on
3000 generations (except for test #9, gmax = 6000 - see table 2 / image with 5002 pixels
and 214385 different colors - fig.1a). Then, 2 tests were run with constant mutation
rates pm = 0.15 (table 2 / column D=C), 8 with linear-dynamic mutation rates (column
D=LD), and finally 25 with quadratic-dynamic mutation rates (column D=QD). C, LD
and QD tests can be expressed by the following mutation rate expressions: � C Ã pm =
0.15; g ³ [0,3000]; � LD Ã pm = 0.15 (g=0) / pm = 0.15/g ; g ³ [1,100] / pm = 0.0015 ;
g ³ [101,3000]; � QD Ã pm = 0.15 (g=0) / pm = 0.15/g2 ; g ³ [1,100] / pm = 0.000015 ;
g ³ [101,3000].

Many other functions were tried, some of them inspired on Simulated Annealing
methods (SA, [21]) or in variants of it (e.g. Adaptive Simulated Annealing, Re-
Annealing, Quenching, [22,23,24]), as the present problem seems similar [20]. In fact,
both methods are applied in search-combinatorial-optimization problems, and both
start from random points in the search space. Particularly interesting in the present
case is that, the mutation rate in GAs can be seen as the temperature parameter in SAs

(they both affect the convergence of the respective strategy and the balance between
an appropriate exploring/exploiting character of the algorithm). Similarly, scheduling
temperatures in SAs (one of the most difficult problems to solve for this method) can
be seen as the implementation of dynamic mutations on GAs. Surprisingly (and even
if several SA temperature scheduling rates were tried, generally of logarithmic or
exponential nature [22,23,24,25,26,27]), the GA mutation settings that yields the best
results were always the simplest ones (i.e. LD and QD - see table 1 for average
results). Another fact, seems to be that the best dynamic rate should change with the
starting population (compare for instance tests #2,11 and #3,12), suggesting that
possibly the optimal mutation probability depends on the search landscape, the GA
coding (introducing or not a multi-optimization problem and eventually several
genotype mappings to the same phenotype), and finally on the objective function
itself. All the previous results appear to be in some accordance with those from Bäck
[28,29,30] and Mühlenbein [31]. As observed by Bäck [30] studying the objective

368 V. Ramos

function f(x)=Ên

i=1 xI (“counting ones”) the optimal mutation probability depends
strongly on the objective function value f(x) and follows a hyperbolic law of the form

() () () 11
1 .

1

0
0

--
-

÷÷
ł

ö
çç
Ł

æ
-

-
+= g

T

pn
pgp m

mm (1)

pm = (2.(f(x)+1)-n)-1. In order to model the hyperbolic shape of the last equation,
independently of the objective function, Bäck used a time-dependent mutation rate
pm(g) (where n denotes the chromosome length, and T a given maximum of
generations g). From the condition pm(T-1)=1/n, the hyperbolic formulation pm =
(a+b.g)-1 then yields Eq.1. There is however, at least one substantial difference. As
mentioned by Bäck based on his own research and on Muhlenbein’s work, practical
applications of genetic algorithms often favor larger or non-constant settings of the
mutation rate, and the optimal mutation rate schedule analysis for a simple objective
function provides a good confirmation of the usefulness of larger, varying mutation
rates (in classical approaches they are generally pm ³ [0.001,0.01], see [3,4]). For
these reasons, Bäck imposed pm(0)=½. However, comparing the GA efficiency based
in Bäck’s function (Eq. 1 / with pm(0)= ½ or pm(0)=0.15 / T=3000 / n=531), with the
LD/QD functions, we come up with significant differences (tests #2,3,4,5). These
results (although, they are statistically insufficient) probably point that optimal
dynamic mutation rates should also be characterized in function of the problem’s
search landscape (which are manifestly different - “counting ones” vs. “K-means
minimization function”).

Bäck followed this same route [30], adapting the mutation rates according to the
topology of the objective function, using the principle of strategy parameter self-
adaptation as developed by Schwefel [29,32] for Evolution Strategies (ES), or
similarly and independently by Fogel for Evolutionary Programming (EP, [32]).
These models, however, were not applied or have been analyzed in the present
framework; instead, a novel approach was considered: artificial neoteny (aNeoteny).

4 Implementing and Testing Artificial Neoteny (aNeoteny)

In order to implement aNeoteny, the preservation of older genotypes is a key-aspect.
In general, this preservation was possible through capturing elitist individuals
(neotonic individuals) from generations g=0 till g=100 (one per generation), and
throwing them randomly into later generations (i.e. a randomly individual give his
place in the population array, to one randomly chosen neotonic individual, generally
for g ³[1000,3000]). Some questions however, are pertinent. For instance, at which
period in the whole evolutionary process should this neotonic individuals be captured,
how many should be thrown in (in the later generations), and when thus this throwing
process should start? In order to answer these questions and to evaluate the possible
contribution of Neoteny in the GA fitness convergence, several tests (38) were
conducted (table 2). These tests can be roughly classified into six groups. The first
group include tests #1 trough #8, and his purpose was to evaluate and compare the
GA performance for different types of mutation with or without the implementation
of neoteny (#7, 8) for the same random seed. The second group (tests #10-14) aims to

The Biological Concept of Neoteny 369

performance (J value) in each generation, we can conclude that similar results can be
evaluate the same effect but now for a different starting population (the nature of
different starting populations can be analyzed, in terms of fitness, by table 3). The 3rd

Table 1. Analysis of different GA strategies with different starting populations (in the first
column numeric values are from the test cardinality in table 2 / values for 3000 generations /
best values for each random seed are in bold).

GA Strategy R=9 R=7445 R=917 R=14 R=27 Average

C; 1,7. 201.61 191.15 183.36 205.07 201.52 196.54
LD; 2,8. 325.53 306.48 275.41 322.07 314.29 308.76
QD; 3,9. 312.69 326.55 286.61 290.89 270.74 297.50
LD/N; 4,10. 326.43 308.92 285.14 323.07 313.87 311.49
QD/N; 5,11. 314.13 321.01 310.42 281.46 279.56 301.32
LDN+R;35,37 323.25 290.81 284.94 317.57 312.83 305.88
QDN+R;36,38 315.93 326.28 292.87 297.81 305.70 307.72
Average 302.80 295.89 274.11 291.13 285.50 289.89

group (tests #15-25) was dedicated to evaluate if neotonic injection of genotypes
could achieve the same results when incorporating that material at different
generation intervals (i.e., at different evolutionary periods). Following the same
concern, tests #26-30 (fourth group) analyses the effect on the average number of
thrown neotonic individuals. The fifth group (tests #31-34) concerned the generation
interval where neotonic individuals should be captured, and finally the sixth group
(tests #35-38) analyses the effect of re-injecting one neotonic individual
simultaneously with one complete random created individual. Average results, for
different starting populations and strategies, can be found at table 1, and table 3
presents the random seed effect on some characteristics for these different starting
populations used. The convergence of some GA strategies for each generation, in the
present problem, are possible to visualize in [2].

5 Discussion and Future Work

The above strategy was applied in color maps (214385 different colors - see figure 1).
For color skin mark segmentation and/or ornamental stone segmentation, see Ramos
and Muge, [18]. Since the color maps have 6 prominent colors, the aim was to search
for 6 color clusters. Overall results point to highly satisfactory results, namely for the
segmentation of ornamental stones (29349 different colors) and for the case of human
skin mark segmentation (303 colors). There is however some problems with the color
map examples. The main reason is that the problem is by itself difficult (with large
combinatorial search spaces), and that the pre-partition tends to reduce the
discriminatory power of the overall strategy. This is mainly observed within pixels
that form bounds of any important color object. Image acquisition with low
resolutions interpolates somehow their gray level intensities into intermediate values
(between inner and outer bounds), and the result (with pre-partition) is significantly
altered, since similar pixels can belong to different small cubes (naturally with low
probability). However if the number of these kind of pixels is high, the strategy tends

370 V. Ramos

to create himself another cluster. On the other hand, and by observing the GA
achieved with half of the generations run (3000), since after this point, J values are

Table 2. Fitness for 38 GA runs (column H: 109/J). A : Random seed; The number of
generations for each test (#) was 3000, except for test#9 with 6000; Crossover probability was
equal to 0.8; D: Mutation (C=constant=0.15, LD or QD / B = Bäck’s function with p

m
(0)= ½ or

p
m
(0)=0.15); E: Average number of Neotonic individuals re-injected in the generation interval

at column G (*one completely random individual is re-injected with one Neotonic individual);
F: Generation interval where Neotonic individuals were captured (one for each generation).

A D E F G H
1 9 C 0 - - 201.611623
2 9 LD 0 - - 325.528410
3 9 QD 0 - - 312.694066
4 9 B [0.15] 0 - - 203.964332
5 9 B [0.50] 0 - - 180.236736
6 9 LD 1 [1,100] [1000,3000] 326.426236
7 9 QD 1 [1,100] [1000,3000] 314.125107
8 9 B [0.15] 1 [1,100] [1000,3000] 207.823020
9 9 LD 0 - - 326.993288
10 7445 C 0 - - 191.146788
11 7445 LD 0 - - 306.475341
12 7445 QD 0 - - 326.549272
13 7445 LD 1 [1,100] [1000,3000] 308.919431
14 7445 QD 1 [1,100] [1000,3000] 321.010773
15 7445 QD 1 [1,100] [500,3000] 319.063587
16 7445 QD 1 [1,100] [350,3000] 320.481312
17 7445 QD 1 [1,100] [320,3000] 316.784335
18 7445 QD 1 [1,100] [300,3000] 322.772565
19 7445 QD 1 [1,100] [285,3000] 316.366818
20 7445 QD 1 [1,100] [280,3000] 324.908299
21 7445 QD 1 [1,100] [279,3000] 317.947635
22 7445 QD 1 [1,100] [277,3000] 318.843974
23 7445 QD 1 [1,100] [275,3000] 319.100290
24 7445 QD 1 [1,100] [200,3000] 316.244083
25 7445 QD 1 [1,100] [150,3000] 316.556148
26 9 LD 2 [1,100] [1000,3000] 319.990759
27 7445 QD ½ [1,100] [280,3000] 312.452034
28 7445 QD 2 [1,100] [280,3000] 311.933670
29 7445 QD 3 [1,100] [280,3000] 303.136676
30 7445 QD 5 [1,100] [280,3000] 297.281200
31 7445 QD 1 [100,200] [1000,3000] 317.683124
32 7445 QD 1 [100,200] [280,3000] 309.894177
33 7445 QD 1 [1,50] [280,3000] 322.543241
34 7445 QD 1 [1,30] [280,3000] 317.450920
35 9 LD 2* [1,100] [1000,3000] 323.254605
36 9 QD 2* [1,100] [1000,3000] 315.927842
37 7445 LD 2* [1,100] [1000,3000] 290.810651
38 7445 QD 2* [1,100] [1000,3000] 326.281866

The Biological Concept of Neoteny 371

Table 3. Random seed effect on the initial population, in terms of fitness (109/J) for g=0 (100
chromosomes).

Random
Seed

Best
Fitness

Worst
Fitness

Average
Fitness

Std.
Dev.

Sum

R=9 126.1 81.0 104.8 12.2 10484.0
R=14 125.6 78.4 100.7 11.8 10068.7
R=27 128.5 78.2 100.1 11.7 10005.4
R=917 132.9 79.0 101.3 12.3 10125.8
R=7445 128.5 79.3 101.9 12.1 10192.1

increasing very slow (compare tests #2,9 - a double value of generations adds around
0.45% in the fitness value, which is counter-productive). Future work includes three
main lines. First, to study the cluster relations (clouds of points) for each
segmentation problem. This can bring useful information into the GA approach, and
simply geodesic neighborhood relations can be computed by using Mathematical
Morphology [34] on the 3D color cube. Second, more relevant evaluating methods
for image segmentation must be studied. In this topic, Zhang’s work [14] should be
followed if possible. Significant improvements on the automatic design could also be
achieved by using ISODATA models - since the number of clusters can be
automatically chosen by the hybrid search model. Regarding the neotonic strategies,
and by analyzing the results of tests #1 trough #14, it is clear that the strategy of
implementing neotonic strategies and dynamic mutation rates can yield substantially
(around 58%) the fitness values for the same number of generations, comparing to the
use of constant mutation rates (table 1). The best result was achieved by using
dynamic mutation rates and neotonic strategies (#6), although when we change the
starting population the same result was only achieved by using non-neotonic
implementations (test #12). It appears that starting populations with above-average
individuals on it (see table 3 - random seeds R=917, R=27 and R=7445) do not need
for higher exploring natures in the search space to achieve above-average fitness,
either by incorporating a slowest decay in the mutation rate (e.g. LD versus QD) or by
yielding the population diversity into the later generations via neotonic strategies. In
fact, they appear to achieve good results simple by exploiting the above-average
fitness and schema of their population. This is probably why, at constant mutation
rates, the starting population with R=9 (#1) with greater average fitness, achieves
better results than test#10 (R=7445). It appears also (#15-25) that under these
circumstances, no optimal neotonic strategy can be found. In fact, throwing neotonic
individuals at different temporal periods point that results can be different and only
near fitness values could be found (#20). However, introducing diversity by neotonic
implementations and simultaneously incorporating diversity into this diversity, by
adding complete random created individuals (#35-38) could yield the fitness values to
the same level, for R=7445. Apparently this last argument is in contradiction with the
one of the last paragraph. However, is the author belief that for some starting
populations (e.g., R=7445) the increase of diversity (increasing the exploring
capabilities of the algorithm) by neotonic strategies cannot fulfill the exploiting power
of simple genetic algorithms, unless, this diversity is himself increased. In other
words, for a finite number of generations and for the precedent contexts, the best
convergence could only be achieved either by increasing the exploring character of
the algorithm, or by increasing his exploiting character, that is, renouncing for the

372 V. Ramos

suppose-to-be appropriate exploring/exploiting balance. This last point suggests that
probably, a diversity critical-mass is needed within the evolutionary process, for some
starting points in the search landscape. On the other hand, tests #26-30 suggest that no
better results could be found by re-injecting more than one neotonic individual per
generation. In fact, results decay when the number of neotonic individuals increases.
Results also change if neotonic individuals are captured in different time-windows
(tests #31-34 / column F - table 2). Why the interval [1,100] for capturing neotonic
individuals, and the interval [1000,3000] for throwing them appear to be optimal,
however, is hard to answer. Nevertheless, it appears to be important to give to the
evolutionary search some time before re-injecting neotonic individuals, i.e. some
evolutionary period where genetic exploitation should be processed in the classical
way. Finally, a note about the neotonic strategy effect on the genetic image
segmentation processing. In the case of color images, the differences between both
techniques (classical versus neotonic) clearly affects the visual quality, namely at
enhancing objects extracted (also) by the classical way.

Acknowledgements. The author wishes to thank to David Fogel (Natural Selection Inc. /
USA), Thomas Bäck (Center for Applied Systems Analysis – CASA / Germany), and to Rajeev
Ayyagary (Indian Statistical Inst. / India) for their useful references and comments on Dynamic
Mutation Rates and Neoteny at COMP.AI.GENETIC (Jan.-Feb. 2000). Ramos work is possible
under the PhD Research Fellow FCT-PRAXIS XXI (BD20001-99), PORTUGAL.

References:

1. Dawkins, Richard, 1976, The Selfish Gene, Oxford University Press, Oxford.
2. Ramos, V., “Artificial Neoteny in Evolutionary Image Segmentation”, Proc. of

SIARP'2000 - 5th IberoAmerican Symp. on Pattern Recognition, F. Muge, M. Piedade &
R. Caldas Pinto (Eds.), ISBN 972-97711-1-1, pp. 69-78, Lisbon, Portugal, 11-13 Sep. 2000.

3. Davis, L.D., 1991, Handbook of Genetic Algorithms, Van Nostrand Reinhold, New-York.
4. Goldberg, D.E., 1989, Genetic Algorithms in Search, Optimisation and Machine Learning,

Addison-Wesley Reading, Massachusetts.
5. Michalewicz, Z., 1996, Genetic Algorithms + Data Structures = Evolution Programs, 3rd

Ed., Springer-Verlag.
6. Duda, R. O. and Hart, P. E., 1973, Pattern Classification and Scene Analysis, John Wiley &

Sons, New-York.
7. Bhanu, B. and Lee, S., 1994, Genetic Learning for Adaptive Image Segmentation, Kluwer

Acad. Press.
8. Pal, S.K. and Wang P.P. (Eds.), 1996, Genetic Algorithms for Pattern Recognition, CRC

Press.
9. Stern, J. M., 1992, “Simulated annealing with a temperature dependent penalty function”,

ORSA Journal on Computing, vol. 4, pp. 311-319.
10. Cagnoni, S., Dobrzeniecki, A.B., Poli, R. and Yanch, J.C., 1999, “Genetic Algorithm-based

Interactive Segmentation of 3D Medical Images”, Image and Vision Computing 17, pp.
881-895.

11. Andrey, P., 1999, “Selectionist Relaxation: Genetic Algorithms applied to Image
Segmentation”, Image and Vision Computing 17, pp. 175-187.

12. Ramos V., Almeida F., 2000, “Artificial Ant Colonies in Digital Image Habitats - A Mass
Behaviour Effect Study on Pattern Recognition”, Proceedings of ANTS'2000 – 2nd Inter.
Workshop on Ant Algorithms (From Ant Colonies to Artificial Ants), M. Dorigo, M.
Middendorf & T. Stüzle (Eds.), pp. 113-116, Brussels, Belgium, Sep. 7-9.

The Biological Concept of Neoteny 373

13. Bounsaythip, C. and Alander J.T., 1997, “Genetic Algorithms in Image Processing - A
Review”, Proc. of the 3rd Nordic Workshop on Genetic Algorithms and their Applications,
Metsatalo, Univ. of Helsinki, Helsinki, Finland, pp. 173-192.

14. Zhang, Y.J, 1996, “A Survey on Evaluating Methods for Image Segmentation”, Pattern
Recognition 29(8), pp. 1335-1246.

15. Ramos V., Muge F., 2000,” On Image Filtering, Noise and Morphological Size Intensity
Diagrams”, RecPad'2000 – 11th Portuguese Conf. on Pattern Recognition, in A.C.
Campilho and A.M. Mendonça (Eds.), ISBN 972-96883-2-5, pp. 483-491, Porto, Portugal,
May 11-12.

16. Falkenauer, E., 1998, Genetic Algorithms and Grouping Problems, John Wiley & Sons,
Boston.

17. Ramos, V., 1997, Evolution and Cognition in Image Analysis, MSc Thesis dissert. (in
Portuguese), 230 pp., Instituto Superior Técnico - IST, Lisbon, Portugal, December.

18. Ramos V., Muge F., 2000, “Map Segmentation by Colour Cube Genetic K-Mean
Clustering”, Proc. of ECDL'2000 – 4th European Conference on Research and Advanced
Technology for Digital Libraries, J. Borbinha and T. Baker (Eds.), Lecture Notes in
Computer Science, Vol. 1923, pp. 319-323, Springer-Verlag , Heidelberg.

19. Rudolph, G., 1994, “Convergence Analysis of Canonical Genetic Algorithms”, IEEE
Trans. on Neural Networks, special issue on EP.

20. Davis, T.E., 1991, Toward an Extrapolation of the Simulated Annealing Convergence
Theory onto the Simple Genetic Algorithm, PhD dissert., Gainesville: University of Florida.

21. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E., 1953;
“Equation of State Calculations by Fast Computing Machines”, J. Chem. Phys., vol. 21, n.
6, pp. 1087 – 1092.

22. Ingber, Lester, 1989, “Very Fast Re-Annealing”, J. Mathl. Comput. Modelling, v. 12, pp.
967-973.

23. Ingber, Lester, 1993, “Simulated Annealing: Practice versus Theory”, J. Mathl. Comput.
Modelling, v. 18, n. 11, pp. 29-57.

24. Ingber, Lester, 1995, “Adaptive Simulated Annealing (ASA): Lessons Learned”, invited
paper, Special issue (Simulated Annealing Applied to Combinatorial Optimization) of
Control and Cybernetics.

25. Goldstein, J., 1988, “Mean Square Rates of Convergence in the Continuous Time
Simulated Annealing Algorithm on {R}^d”, ADVAM: Adv. in Applied Mathematics, vol. 9.

26. Rajasekaran, S., 1990, “On the Convergence Time of Simulated Annealing”, Computer and
Information Science, University of Pennsylvania.

27. Yoshimura, M. and Oe, S., 1999, “Evolutionary Segmentation of Texture Image using
Genetic Algorithms towards Automatic Decision of Optimum Number of Segmentation
Areas”, Pattern Recognition 32, pp. 2041-2054.

28. Bäck, Th., 1992, “The Interaction of Mutation Rate, Selection, and Self-Adaptation within
a Genetic Algorithm”, in, Männer, R. and Manderick, B. (Eds.), Parallel Problem Solving
from Nature, 2, pp. 85-94, Elsevier, Amsterdam.

29. Bäck, Th., Schwefel, H.-P., 1993, “An Overview of Evolutionary Algorithms for Parameter
Optimization”, Evolutionary Computation, 1(1), pp. 1-23.

30. Bäck, Th., Schütz, M., 1996, “Intelligent Mutation Rate Control in Canonical Genetic
Algorithms”, in, Ras, W. and Michalewicz, M. (Eds.): Foundation of Intelligent Systems -
9th Int. Syposium, ISMIS’96, pp. 158-167, Springer, Berlin.

31. Mühlenbein, H., 1992, “How Genetic Algorithms Really Work: I. Mutation and
Hillclimbing”, in, Männer, R. and Manderick, B. (Eds.), Parallel Problem Solving from
Nature, 2, pp. 15-25, Elsevier, Amsterdam.

32. Schwefel, H.-P., 1981, Numerical Optimization of Computer Models, Chichester: Wiley.
33. Fogel, D.B., 1995, Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence, IEEE Press, Piscataway, NJ.
34. Serra, J., 1982, Image Analysis and Mathematical Morphology, Academic Press, London.

Using of Evolutionary Computations in Image
Processing for Quantitative Atlas of Drosophila

Genes Expression

Alexander V. Spirov1, Dmitry L. Timakin2, John Reinitz3, and David Kosman3

1 The Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez
Ave., St. Petersburg, 194223, Russia,

2 Dept. of Automation and Control Systems, Computer Science and Engineering
Faculty, St.-Petersburg State Technical University, 29 Polytechnic St, St.-Petersburg,

194064, Russia
3 Dept. of Biochemistry and Molecular Biology, Box 1020 Mt. Sinai Medical School,

One Gustave L. Levy Place, New York, NY 10029 USA

Abstract. It is well known, that organism of animal, consisting of many
billions cells, is formed by consequent divisions of the only cell - zygote.
In so doing, embryo cells are permanently communicating by means of
biochemical signals. As a result, proper genes were being activated at
proper time in proper cells of the embryo.
Modern confocal microscopes being equipped by lasers and computers
give possibility to trace-through the cell fate of early embryo for such
a classical model object, as fruit fly Drosophila melanogaster. By this
approach, it is possible to retrace the detailed dynamics of activity of
genes-controllers of development with the resolution on the level of indi-
vidual nuclei for each of 4-6 thousand cells, composing early fly embryo.
The final result of this analysis will be the quantitative atlas of Drosophila
genes action (expression): http://www.iephb.nw.ru/ spirov/atlas. To
achieve this aim we need to receive statistically authentic summary pic-
ture of detailed pattern dynamics proceeding from a large number of
scanned embryos. This presupposes the elaboration of the methods of
preprocessing, elastic deformation, registration and interpolation of the
confocal-microscopy images of embryos.
For this purpose we apply modern heuristic methods of optimization to
the processing of our images. Namely classic GA approach is used for
finding a suitable elastic deformation, for registering the images and for
finding a Fourier interpolation of concentration (gene-expression) sur-
faces. All GA programs considered are the developments of ”evolution
strategies program” from EO-0.8.5 C++ library (Merelo).

1 Introduction

1.1 Computer-Aided Analysis of Biological Images

The ongoing revolution in molecular genetics has progressed from the large scale
automated characterization of genomic sequence to the characterization of the

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 374–383, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Using of Evolutionary Computations in Image Processing 375

biological function of the genome. These investigations mark the beginning of the
era of ’functional genomics’ [1]. A key feature of the genomic scale approach is
the automated treatment of large amounts of data. Both current and future work
in this field is impossible without automated processing of images and updating
of electronic image databases as well as computer-aided analysis of images [2].

Key aspects of the processing involve the segmentation of individual images,
the registration of serial images, and the interpolation of 2D fields of concen-
trations of morphogenetic factors. Many problems of recognition, classification,
segmentation, registration, and interpolation of images can be formulated as
optimization problems. These optimization problems are typically difficult, in-
volving multiple minima, grooves and a complex search space topology. Contem-
porary approaches based on evolutionary computations are a promising avenue
for the solution of such problems.

Confocal laser scanning microscopy is a powerful tool for the imaging of gene
expression in a developing embryo. Processing of images obtained by confocal
scanning of stained embryos is a promising approach for acquisition of quanti-
tative gene-expression data at the resolution of a single cell. Its advantage over
other approaches is its ability to measure expression levels over embryo’ space
that gives 2D expression fields and makes possible 3D reconstruction of a whole
embryo. But a concomitant disadvantage is its inability to measure more than a
relatively small number of gene products from a given sample.

In this paper, we give a description of our computational tools by means of
which observations of the expression of a small number of different genes in many
samples can be synthesized into an integrated gene- expression dataset at cellular
resolution (quantitative atlas of gene- expression). We are developing methods
for the acquisition of such data for the segment determination genes in the
fruit fly Drosophila melanogaster. It is well-known model organism for molecular
biology studies and many biomedical problems of fundamental importance were
first investigated in this organism.

The current technology of confocal scanning permits the observation of only
three gene products simultaneously from an embryo. This means that a spatial
expression map of all the segmentation genes must be synthesized from many
observations, each made on a separate embryo. Although data can be taken from
different combinations of three gene products, these patterns cannot be directly
superimposed because of distortions caused by observational errors and implicit
individual differences among the embryos treated.

If each embryo were stained for a common gene product and two others
that vary among the dataset, it would be possible to make small coordinate
transformations on each embryo, so that expression domains of the common
gene product would be superimposed.

But it is impossible to perform this on a direct nucleus by nucleus basis
because of individual differences among embryos and irregularity of the ar-
rangement of nuclei, which do not lie on a rectangular or hexagonal grid. As
a matter of fact, when we are making processing of such images, we have to deal
with data-arrays with irregular spatial mesh. These coupled issues constitute the

376 A.V. Spirov et al.

“registration-interpolation problem” for gene expression data. Here we describe
our evolutionary computations-based approach to this registration-interpolation
problem for quantitative atlas of Drosophila genes expression.

1.2 Elastic Deformations: ”Stripe Straightening” Procedure

Early in the development the fruit fly embryo is shaped roughly like a hollow
prolate ellipsoid, composed of a shell of nuclei which are not separated by cell
membranes (Fig. 1).

Fig. 1. Image of early (blastoderm stage) fly embryo with crescent-like stripes, in Carte-
sian physical coordinates. This is a confocally scanned image of an embryo stained
by indirect fluorescence (immunostaining with polyclonal antisera against the EVEN-
SKIPPED segmentation protein). Each small dot is an individual nucleus.

Fig. 1 shows that so called pair-rule stripes (early markers of the future
segmental pattern [3]) are not parallel and straight, but have a crescent-like
form. The curvature of the stripes is highest at the termini, and minimal at
the central part. Each stripe specifies an anterior-posterior (A-P) location, and
these stripes can be regarded as contours in an intrinsic coordinate system that
is being created by the embryo itself. Another set of embryonic determinants
exists for the dorsal-ventral (D-V) axis.

Our data processing begins with a smooth transformation of spatial coor-
dinates. If the image is smoothly transformed such that the curvilinear coordi-
nates are plotted orthogonally, the stripes appear straight, so the determination
of these coordinates can be viewed as a “stripe straightening” procedure.

Using of Evolutionary Computations in Image Processing 377

1.3 Registration of Serial Images

Our next procedure is registration of serial images. The registration cannot be
performed on a direct nucleus by nucleus basis because of individual differences
among embryos. Moreover, close inspection of the edge of a well-demarcated
expression domain (see Fig. 1) shows irregularity due to the arrangement of
nuclei, which do not lie on a rectangular or hexagonal grid. What is more, any
two embryos of the same age can differ in size and form.

Our preliminary at hand computations demonstrated that the registration
of Drosophila early images takes elastic deformations. So we can use practically
the same approach, as is the case of the stripe straightening problem [4].

1.4 Interpolation

In a view of blastoderm nuclei don’t form either regular square or hexagonal
mesh, two-dimensional interpolation of expression patterns is non-trivial com-
putational task. Hence following data-processing drastically depend on correct
identification of interpolation function for such irregular meshes.

We used and compared several standard approaches for 2D interpolation.
Particularly it was cubic spline and Fourier interpolations. However all these
procedures require either regular mesh or are based on transition to a regular
mesh. And it has appeared unacceptable for the level of precision, which is
pursued in our project.

All this has motivated us to take advantage of interpolation by truncated two-
dimensional Fourier polynomials. The power of series was chosen empirically. The
Fourier coefficients were found by optimization techniques, while comparison of
the interpolation result was performed on given irregular mesh of each image
under treatment.

2 Methods and Approaches

The work reported here is part of a large scale project to construct a model of
segment determination in the fruit fly D. melanogaster based on coarse-grained
chemical kinetic equations [5]. The acquisition and mapping of gene expression
data at a heretofore unprecedented level of precision is an integral part of this
project. The current emphasis in our work is on the automated transformation
of gene expression data in confocally scanned images into an electronic database
of expression.

2.1 Images of Drosophila Genes Expression: The Dataset

In our experiments gene expression was measured using fluorescence tagged an-
tibodies as described [6]. For each embryo a 1024 × 1024 pixel image with 8 bits
of fluorescence data in each of 3 channels was obtained. To obtain the data in
terms of nuclear location an image segmentation procedure was applied [7]. The

378 A.V. Spirov et al.

segmentation procedure transforms the image into an ASCII table containing a
series of data records, one for each nucleus. (About 2500- 3500 nuclei are de-
scribed for each image.) Each nucleus is characterized by a unique identification
number, the x and y coordinates of its centroid, and the average fluorescence
levels of three gene-products.

At present over 1000 images were scanned and processed [6]. Our dataset
contains data from embryos stained for 15 gene-products. Each embryo was
stained for EVE (See Fig.1) and two other gene-products.

2.2 Technique of Genetic Algorithms

Following classical GA algorithm, the program generates a population of floating-
point chromosomes. Initial chromosomes are randomly generated. After that the
program evaluates every chromosome as described below; then, according to the
truncation strategy, the average score is calculated. Copies of chromosomes with
above average scores replace all chromosomes with a score less than average.

On the next step a predetermined proportion of the chromosome population
undergoes mutation, so that one of the coefficients gets a small increment. This
cycle is repeated: all chromosomes are consecutively evaluated, the average score
is calculated and the winners’ offspring substitutes for the losers in the process
of reproduction.

All GA programs considered there are the developments of ”evolution strate-
gies program” from EO-0.8.5 C++ library [8]. This program implements a sim-
ple evolution strategy as defined by Rechenberg and Schwefel. It includes the so
called floating-point chromosomes with increments, random selection, random
reproduction, with replacement and generational termination.

Each chromosome is composed of genes, each gene is composed of values and
standard deviations (sigma), used for mutation. The genetic operators used are
uniform crossover and mutation. Mutation-operator acts on the gene values and
sigmas: each gene in the chromosome has it’s own sigma. Replacement takes the
old and the new population, eliminate those that are not needed, and leave the
rest for the other generations. Generational termination means that the program
ends run after a fixed number of generations.

We developed our own fitness functions [9], suitable for our problems. Our
initial populations is created by random variations of initial set of values from
init-file. Our fitness functions read data from input-file. We had to modify the
ES.cpp as well. All other files are taken from the initial ”evolution strategies
program” [8]. The program was compiled in the Microsoft Visual C++ 6.0.

2.3 Elastic Deformation Algorithm

Our goal here is to find the new, true A-P and D-V coordinates on the image (See
Fig.1). We denote the true A-P coordinate by x̂ and the true D-V coordinate by
ŷ. For now, we can assume that ŷ = y.

We approximate the true coordinate system by a Taylor series. We expand
in a Taylor series to third order around the origin (For details See[4]). After

Using of Evolutionary Computations in Image Processing 379

elimination all but three terms from the series, we found the model of image
transformation as

x̂ = x + Axy2 + Bx2y + Cx3. (1)

The Fitness Function for Elastic Deformation. Our own fitness function for
EO-0.8.5 C++ library performs evaluation of values of A, B and C parameters
from eq.(1). The function applies the discussed Tailor transformation (1) to an
image coordinates and then calculates cost function for the results of it’s elastic
deformation.

The Cost Function for Elastic Deformation. We use the following cost func-
tion. Each image under consideration was subdivided into a series of longitudi-
nal strips. Then each strip is subdivided into boxes and the mean value of the
brightness is calculated for each box. Each row of means gives the local profile
of brightness along each strip. The cost function is computed by comparing each
profile and summing the squares of differences between the strips. The task of
the GA is to minimize this cost function.

2.4 Image Registration Algorithm

The stripe straightening procedure essentially simplified the organization of the
patterns, so search of registration algorithm was simplified too. As a result, we
had an opportunity to concentrate only on an A-P (X) coordinate to neglect the
contribution of D-V (Y) one. Registration is implemented using pairs of digitized
images. According to our approach, the spatial coordinates x of nuclei of one of
the couple of embryos are transformed using the following polynomial expression
(one-dimensional elastic transformation):

x̂ = αx + βx2 + γx3 + δx4. (2)

Now the problem is reduced to the determination of factors α, β, γ and δ.
The Fitness Function for Registration. Our own fitness function for EO-

0.8.5 C++ library performs evaluation of the parameters of elastic deformation
α, β, γ and δ from eq.(2). The function (2) applies the discussed polynomial
transformation of coordinates to an image and then calculates cost function for
the result of elastic deformation.

The Cost Function for Registration. We use the cost function similar to the
previous one. We take the longitudinal strip from equatorial part of each embryo
image. Then the strip is subdivided into boxes and the mean value of brightness is
calculated for each box. Each row of means gives the local profile of the brightness
along each embryo. The cost function is computed by comparing the profiles of
pair of registered images and summing the squares of differences between the
profiles.

2.5 Interpolation Algorithm

Our preliminary investigations show that all available mathematical packages
and libraries give no possibility to achieve perfect Fourier interpolations for our

380 A.V. Spirov et al.

expression surfaces with the irregular mesh. That is why we had to work out our
own approach for our 2D-interpolation problem.

We found empirically that following truncated two-dimensional Fourier series
are appropriate for solving of the problem:

Cfourier = C0+[
C1 cos

(
x
4

)
+ C2 sin

(
x
4

)]
+ ... + [C35 cos (16 · x) + C36 sin (16 · x)] +[

C37 cos
(
y
2

)
+ C38 sin

(
y
2

)]
+ ... + [C43 cos (3 · x) + C44 sin (3 · x)] ,

(3)

where x = 2Pi · x0, y = 2Pi · y0and x0, y0 are raw co-ordinates of nuclei.
The power of the Fourier series was chosen empirically. The suitable power

for x-coordinate is 36 and for y-coordinate is 8. The problem is to find all 45
coefficients for this series.

The Fitness Function for Interpolation. Our own fitness function for EO-0.8.5
C++ library performs evaluation of 45 coefficients for truncated 2D Fourier series
(3). The function applies the Fourier transformation (3) to an image and then
calculates cost function for the results of image interpolation.

The Cost Function for Interpolation. The cost function in this task is sim-
ply the sum the squares of differences between initial and calculated values of
expression for all 2500-3500 nuclei of an embryo under treatment.

3 Results and Discussion

3.1 Search Spaces Features

The above-described task of image elastic deformations turned out to be a dif-
ficult numerical problem. This is caused first of all by the unusual geometry of
search space with grooves, the bottom of which have several local minima [4].

On the contrary, owing to quasi-unidimensional form of the straightened
images, the search space for our registration tasks turned to be smooth with
unique extemum. Gradient methods are faster, then evolutionary search, but not
robust enough. Large scale mis-registrations (e.g. where stripe 1 is mis-registered
to stripe 2) is a problem for simplex method.

We fail to find any unusual features doing cross-sections through search space
in case of our 2D Fourier interpolation for irregular mesh. Apparently the only
serious difficulty is the number of coefficients under estimation.

3.2 Construction of a Quantitative Atlas of Gene-Expressions

One of the main objectives of our project is to construct a map of all relevant
expression domains at each stage of early Drosophila embryo development. The
purpose of registration-interpolation approach, considered there, is to construct
a map of all segmentation gene products from a set of embryos of the same age.

The early fruit fly embryo has a form of prolate ellipsoid of revolution. The
morphogenetic factors of the early Drosophila embryo are distributed along it’s

Using of Evolutionary Computations in Image Processing 381

surface and have features along the principal axis of ellipsoid (i.e., anterior-
posterior axis) as well as along the transverse axis (dorsal-ventral axis). These
differences explain the necessity construction of the bank of these 2D expression
patterns followed by 3D reconstruction of an embryo. Construction of an inte-
grated dataset of the representative one-dimensional expression profiles can be
considered as a first approximation of the real bank of patterns [10].

By now, we have got a representative surfaces of concentrations for 14 seg-
mentation factors, by 8 temporal classes. These materials are represented on the
corresponding pages of the Web database HOX Pro: http://www.iephb.nw.ru/
hoxpro and specialized Web base DroAtlas: http://www.iephb.nw.ru/ spirov/
atlas

General view of expression gradient (surface of expression) of primary mor-
phogen bicoid (bcd) is shown in Fig.2 in the form of 3D diagram. There are
good reasons to suppose that the early embryo organization along the anterior-
posterior axis is under primary control of this gradient [3]. In turn, the different
segmentation genes are activated at different concentration values of bcd. The
superposition of the bcd gradient and domains of activity of four primary seg-
mentation genes is shown in Fig.3.

Fig. 2. 2D morphogenetic exponential gradient of bicoid.

Fine spatial and temporal details of segmentation patterns are very important
for the understanding of general mechanisms of control of embryo development.
But, the revealing of these details is possible only by using of rather sophisticated

382 A.V. Spirov et al.

Fig. 3. Superposition of surfaces of expressions of bcd gradient and four zygotic genes
from gap group.

methods of computer processing, classification and image analysis supported by
the development and maintenance of data bank of these patterns.

4 Conclusions

The present state-of-art in the developmental genetics urgently faced with the
problem of the analysis of the genes-controllers activity simultaneously (in paral-
lel) for all cells of developing embryo. This actual problem produces new higher
demands both to the experimental approaches and to the computer processing
of the experimental data.

The variability of gene activity under the experimental resolution on the
level of individual nuclei still stay high. The embryo cells does not form an
ideal mosaic, though, they are arranged in layers close to the hexagonal packing.
High variability of gene activity and the geometry of the cell-layers arrangement
make the problem of unification of large arrays of expression-data very actual.
In so doing, the important problem is not to lose the valuable details of the
experimental data.

The using of the heuristic procedures of optimization is the most natural
method of comparing, registration and interpolation of these data sets without
losing of important details.

Using of Evolutionary Computations in Image Processing 383

Among the all modern heuristic approaches we have chosen the Genetic Al-
gorithms technique applied per se as well as in combination with the simplex
method. Using of this technique in framework of the project gave possibility to
perform the full range of procedures of processing of embryo confocal images,
necessary for the construction of the computer data bank and atlas of unified
gene activity patterns.

Acknowledgments. This work is supported by RFBR grant No 00-04-48515;
INTAS grant No 97-30950; USA National Institutes of Health grant RO1-
RR07801 and GAP awards RBO-685 and RBO-895.

References

1. Lander,E.S.: The new genomics: Global view of biology. Science 274:536, 1996.
2. Sanchez,C., Lachaize,C., Janody,F., et al.: Grasping at molecular interactions and

genetic networks in Drosophila melanogaster using FlyNets, an Internet database.
Nucleic Acids Research 27:89–94, 1999.

3. Akam,M.: The molecular basis for metameric pattern in the Drosophila embryo.
Development 101:1–22, 1987.

4. Spirov,A.V., Timakin,D.L., Reinitz,J. and Kosman,D. Experimental Determina-
tion Of Drosophila Embryonic Coordinates By Genetic Algorithms, the Simplex
Method, And Their Hybrid. In S. Cagnoni et al., editors, Springer Verlag Lecture
Notes in Computer Science, Number 1803, pages 97–106. 2000.

5. Reinitz,J., Kosman,D., Vanario-Alonso,C.E. Sharp,D.: Stripe forming architecture
of the gap gene system. Developmental Genetics. 23:11–27, 1998.

6. Kosman,D. and Reinitz,J.: Rapid preparation of a panel of polyclonal antibodies
to Drosophila segmentation proteins. Development, Genes, and Evolution 208:290–
294, 1998.

7. Kosman,D., Reinitz,J. and Sharp D.H. Automated assay of gene expression at
cellular resolution. In Altman,R., Dunker,K., Hunter,L. and Klein,T. editors, Pro-
ceedings of the 1998 Pacific Symposium on Biocomputing, Singapore: pages 6–17.
World Scientific Press, 1997.

8. Merelo,J.J.: EO Evolutionary Computation Framework.
http://geneura.ugr.es/ jmerelo/eo

9. Spirov,A.V., Timakin,D.L., Reinitz,J. and Kosman,D. Using of Genetic Algorithms
in Image Processing for Quantitative Atlas of Drosophila Genes Expression.
http://www.mssm.edu/molbio/hoxpro/atlas/atlas.html

10. Myasnikova,E., Kosman,D.,Reinitz,J. and Samsonova,M.: Spatio-temporal regis-
tration of the expression patterns of Drosophila segmentation genes, Proc.7-th
Int.Conf. on Intelligent Systems for Molecular Biology, pages 195–201, AAAI Press,
1999.

Selection of Behavior in Social Situations
Application to the Development of Coordinated

Movements

Samuel Delepoulle1,2?, Philippe Preux2, and Jean-Claude Darcheville1

1 Unité de Recherche sur l’Évolution des Comportements et des Apprentissages
(URECA), UPRES-EA 1059, Université de Lille 3, B.P. 149, 59653 Villeneuve d’Ascq

Cedex, France, lastname@univ-lille3.fr
2 Laboratoire d’Informatique du Littoral (LIL), Université du Littoral Côte d’Opale,

UPRES, B.P. 719, 62228 Calais Cedex, France, lastname@lil.univ-littoral.fr

Abstract. The law of effect is a very simple law which relates the prob-
ability of emission of a behavior by a living being to the consequences of
the emission of this behavior by this living being in the past. As such,
this law models very basic learning. This law can be considered as an
experimental fact as far as it has been observed for a whole range of
living beings including human beings. In this paper, we first show that
this general law can be the result of a selection process such as natural
selection. Then, we show that the implementation of this law can lead
to the design of adaptive systems which can mimic very closely the way
a new-born develops coordinated movements. To sum-up, we show that
the ability to learn such coordinated movements and exhibit adaptive
behaviors can result from a multi-stage process of selection.

1 Introduction

The selection of behaviors by their consequences is of paramount importance
in the study of behavior of living beings among behavior psychologists, and
ethologists. Initially introduced by Thorndike as the “law of effect” [1,2], this
principle has been put to the test, verified, and reported in an innumerable
amount of situations and publications. The law of effect holds for all living
beings, and it has been investigated for creatures ranging from flies to human
beings. The law of effect solely deals with learning during lifetime: hence, it
deals with the evolution of behavior of a living being (that is, the evolution
of its behavioral repertoire) during its lifetime. We want it to be clear that
the law of effect has nothing to do with natural selection proposed by Darwin
and successors. Natural selection acts along generations on populations of living
beings; selection of behaviors by their consequences and its model, the law of
effect, acts along lifetime among populations of behaviors. Given a living being,
natural selection has produced innate abilities, while selection of behaviors by
? during this work, Samuel Delepoulle acknowledges the support from “Conseil

Régional Nord-Pas de Calais, France”, under contract n 97 53 0283

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 384–393, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Selection of Behavior in Social Situations 385

their consequences produces its acquired, or learnt, abilities. In the following, we
consider that natural selection is well-known by the reader but we will describe
selection of behaviors by their consequences in more details.

The law of effect merely states that when a living being emits a behavior
that brings it back favorable consequences, the probability that the living being
emits this behavior again in the “same” situation increases. This process leads
to a selection of behaviors during the lifetime of an animal. It may seem strange,
and even unbearable, to state that human behaviors (at least, some of them)
are driven by such a simple law. However, two things should be made clear:
it is not claimed that all animal behaviors follow this law; it is also clear that
so-called “cognitive” activities are taking place in human beings, as well as in
most animals. Anyway, some people argue that cognitive activities may also be
explained using the law of effect, but this old and important debate is clearly out
of the scope of this paper. The fact is that the evolution of complex behaviors of
living beings (including human beings) have successfully been explained using
the law of effect [3]. Indeed, the interaction of a set of agents which behavior
is driven by the law of effect can show complex patterns of activity, and a con-
tinuously adaptive behavior. In this regard, adaptation is considered as learning
[4]. A nice thing is that the law of effect is a selectionist law, just like natural
selection [5]. However, natural selection works along generations on populations
of individuals, while the law of effect works on populations of behaviors during
lifetime. Clearly, the law of effect may also have indirect consequences on future
generations according to the Baldwin effect. Different authors have studied the
influence of learning on evolution (see e.g. [6,7,8]). The interaction between the
learning process and the evolution process being important, we come back to
this issue in Sec. 4. It is also worth noting that the implementation of the law
of effect in computer programs is not obvious although it is simple to express
verbally. If that was the case, the problem of creating truly adaptive artefacts
would probably be solved to a greater extent.

In this contribution, we aim to set a bridge between different results we have
recently obtained. This work is the result of a collaboration between psycholo-
gists specialized in the experimental analysis of behavior and computer scientists.
The line of thought will give the organization of the sequel of this contribution.
First, we show that the law of effect may be acquired by way of genetic selection.
Second, we show that agents which behaviors are selected according to the law
of effect perform well in a social situation. Then, grounded on a parallel between
the law of effect and reinforcement learning, we show that it is possible to model
in a very realistic way the development of the reaching arm movement in human
beings using reinforcement algorithms. While these results are interesting to sci-
entists studying life, they are also interesting for computer scientists to build
new adaptive systems that are deeply inspired by available knowledge on the
behavior of living beings, the most adaptive systems we are aware of so far.

386 S. Delepoulle, P. Preux, and J.-C. Darcheville

2 The Selection of the Law of Effect

In this section, we present briefly the result of computer simulations showing that
the law of effect can have been selected among generations by natural selection.
As far as we are aware of, this important result has never been demonstrated so
clearly up to now. This section summarizes chapter 12 of [9].

In this simulation, a population of agents evolves by way of a genetic algo-
rithm. Each agent interacts with its environment via a set of N input sensors,
and N behavior units. The input sensors are sampled at each time step. The
emission of a behavior is performed by the behavior units ; at each time step, at
most one behavior unit can be active, emitting the corresponding behavior. The
activity of an agent is coordinated by a neural network. This neural network
is made of C layers of N neurons. A neuron of a layer is never connected to
a neuron of the same layer. A neuron can be connected to any neuron of the
2 surrounding layers. Each input sensor is connected to all N neurons of the
first layer. Each behavior unit is connected to one neuron of the last layer and
feeds these N neurons back. The response of each neuron is characterized by 6
real numbers and a boolean value which indicates whether the neuron is active
or not. Due to the inter-connection topology, each neuron is also characterized
by 2 × N weights. Each weight itself is characterized by a quadruple. Without
going into all details which would require much more space, the parameters of a
weight describe how the weight evolves along time and activations. Finally, the
whole network is characterized by two numbers Ac and Ap. The activation of
the neurons of an agent is made at random: Ac indicates the number of neurons
that are activated at each time step, while Ap specifies the number of weight
updating steps (or, learning step) that are performed by the network. At each
time step, a neuron is drawn at random. So, in general, there are less than Ac
different neurons that are activated at each time step, while some of the neurons
are activated more than once.

An initial population of 10 agents is formed at random, that is that the char-
acteristics of each neuron are drawn at random. Then, the agents are evaluated
and follow the usual genetic algorithm loop of selection, duplication, recom-
bination, and mutation. Recombination is one-point crossover which cuts only
between two neurons (instead of between any two bits). Five different mutations
are used, each with its own probability: mutation of a weight which means chang-
ing the value of a weight of ± at most 10 %; mutation of a neuron which means
resetting all the parameters of a neuron at random; mutation of expression which
means toggling the activation bit; mutation of Ac or Ap.

The task that has to be performed by the agents is a discrimination task: two
stimuli S1 and S2 are presented alternately; in presence of a certain stimulus,
the agent must emit behavior B1; in presence of the other stimulus, the agent
must emit behavior B2. Each stimulus is input on a given neuron of the input
layer. If the agent behavior is correct with regards to the presented stimulus,
then it is reinforced: the evaluation of the agent is equal to the number of rein-
forcers received over 10 sessions, also called its “score”. In each session, a certain
association has to be learnt: S1-B1, and S2-B2, or S1-B2, and S2-B1. Then, the

Selection of Behavior in Social Situations 387

next session, the other association may become the correct one. 50 % of the
sessions reinforce the S1-B1/S2-B2 associations, while the 50 other % of sessions
reinforce the other association. No extra-stimulus indicates which association is
reinforced in a given session. Furthermore, it should be mentioned that sessions
are not known by the agents; for agents, there is no difference except the fact
that they do not receive a reward for the same behavior. Each session is made of
1000 presentations of stimulus. This way of changing the reinforced association
selects adaptive agents, not only agents that can learn a given association.

Though this description of agents may seem complicated, it is rather simple
and natural and seems to be rather minimal with regards to the task we wish to
accomplish.

Simulations have been performed. After 200 generations, approximately 90
% of the agents are able to accomplish the discrimination task.

So, this means that a rather simple neuron architecture can be selected along
generations to realize a discrimination task. Thus, discrimination abilities in
living beings might be the product of evolution. Being able to discriminate, that
means that these agents follow the law of effect: their behaviors are selected by
their consequences. So, this means that agents whose behavior are selected by
their consequences can be selected by selection along generations, that is, by
natural selection.

3 The Law of Effect Selects Social Behaviors

In this section, we show that agents which behaviors are selected by the law of
effect outperform by far other agents in a social task, the minimal social situation
[10]. This situation is well-known in the social psychology literature. This section
summarizes [11].

We do not describe the minimal social situation itself but how we have mod-
eled it to simulate it: this will provide the reader enough information to follow
the line of thought. Interested readers are kindly asked to refer to [10] for a
thorough description of this situation. We have simulated the realization of this
experience by the agents described in the previous section. In this case, the task
to be accomplished is as follows: in 50 % of the sessions, if the behavior of agent
A is B1, then the agent B receives +1; if A emits B2, then B receives -1; if B
emits B1, then A receives +1; if B emits B2, then A receives -1. In the other 50
% of sessions, the consequences of each agent behavior are exchanged: B1 pays
-1 to the other agent while B2 pays +1 to the other agent. So, one’s behavior
only affect his party’s reward. The best strategy is for both to emit the behavior
that provide +1 to its party. This behavior is a cooperation.

Two sets of simulations have been performed. The only difference between
these two sets is the way how the initial population is formed. In the first set
Sr, the initial population is formed at random; in the second set Ss, the initial
population is formed with agents that have been able to select their behaviors
according to their consequences at least some times to times: they are not very
good at this task, but they are able to achieve it with statistical significance.

388 S. Delepoulle, P. Preux, and J.-C. Darcheville

The performance of an agent in the minimal social situation is measured by
the number of +1 it receives. Figure 1 plots the evolution along the simula-
tion of these two populations. There is a very clear advantage for agents of Ss
which obtain good performances after 50 generations, and already much better
performances than Sr after only 20 generations.

-200

0

200

400

600

800

1000

0 50 100 150 200

S
co

re

Generation

A

B

Fig. 1. Evolution of the performance of agents that succeed in the minimal social
situation. The curve (A) corresponds to the case where the initial population is formed
with agents selects their behaviors according to their consequences that at least some
times to times. The curve (B) corresponds to the case where the initial population is
formed at random. The difference in performance of the two populations is striking.
The best possible performance would be rated 1000.

Thus, in this section, we have shown that agents which select their behav-
iors according to their consequences can show a striking advantage in a social
situation which selects behaviors that lead to cooperation. We emphasize the
similarities between the dynamics observed here with the population Ss and
with human subjects. So, in this situation, the law of effect selects cooperative
behaviors.

4 Social Behaviors Select the Dynamics of the Arm
Reaching Movement

Up to now, we have shown that the law of evolution of the behavioral repertoire
of a living being during its lifetime can be the product of natural selection. So,
natural selection (NS) has induced the behavior selection mechanism (BS), that
is, the law of effect which yields the selection of behaviors by their consequences
along lifetime; this induction is denoted by thick arrows in figure 2. It is known
that behavior during lifetime can modify the genetic material of species by the

Selection of Behavior in Social Situations 389

Baldwin effect [6]; this feedback is denoted by thin arrows in figure 2. At this
stage, it is worth noting that due to the law of effect, the behavior of a living
being is modified by its environment, among which, the living beings with which
it interacts during its lifetime; this interaction is shown with zigzagged arrows
between two NS/BS feedback loops, that is, between two living beings in figure
2. Then, we have a sketch of the way different evolution processes interact to
yield living being behaviors. It should be clear that these processes happen
at different level (genetic/behavior) and different time scales, as well as the
interactions between these processes (see figure 2). NS deals with the adaptation
of genomes along generations, while BS deals with the adaptation of behavior
during lifetime.

BS

NS

BS

NS

GA

NN

2 & 3

Innate

Section

Q−Learning

4

Learning

Fig. 2. On the left part, we sketch how the natural selection process (NS) interacts with
the behavior selection process (BS), as well as, how the behavior of one living being
interacts with that of other living beings (zigzagged arrows): the upper part and lower
part NS/BS loops each represents one living being, while the zigzagged arrows represent
the interaction between living beings. Clearly, all the environment of a given living
being may alter its behavior, but we have only represented the interaction between two
beings for the sake of clarity. This sketch also shows the interaction between innate
and acquired abilities. It is note worthy that the processes happen on different time
scales: NS acts along generations while BS acts along lifetime; likewise, the time it takes
for one process to alter an other one is variable, ranging from fractions of a second to
generations. The right part indicates how the various processes have been implemented
in our work. The shape of the boxes in the left part (a rectangle for NS, an ellipse for
BS) refers to the table in the right part: NS is implemented with a genetic algorithm
(GA) while BS is implemented by way of neural networks (NN) in Sec. 2 and 3, with
Q-learning in Sec. 4.

390 S. Delepoulle, P. Preux, and J.-C. Darcheville

The two processes are implemented by way of two different algorithms: a
genetic algorithm implements natural selection while neural networks and Q-
learning implement the behavior selection. Natural selection yields the ability to
learn to living beings, while behavior selection lets them acquire, and develop
their behavioral repertoire, and learn new abilities during its lifetime.

We have used two algorithms (NN, and Q-learning) to implement the be-
havior selection process. However, it should be stressed that this is a purely
technical point: it is only a matter of efficiency in computations and simplicity
in software development: we could have used the neural networks of Sec. 3 in
place of Q-learning in Sec. 4. The fact is that we are currently updating the
simulator so that this is done that way, using NN instead of Q-Learning.

This having been said, we now describe the interaction (during their lifetime)
between two agents which behaviors are selected by their consequences.

Lots of organs and members of living beings are made of cooperating el-
ements: muscles, tendons, ligaments, bones, ... not mentioning neurons which
play an important role in the overall organization of movements and behaviors
in general. In this section, we show that a combination of cooperative agents
whose behaviors are selected by their consequences may simulate the develop-
ment of the arm reaching movement showing remarkable similarities with those
of a human baby facing the “same” situation. Instead of using the agents that
have been selected in the simulations reported in the previous sections, we use
the Q-learning algorithm to model the law of effect. Indeed, Q-learning models
rather well the law of effect. This point has been argued at length in [12] and
[13]. This section summarizes [14].

Our goal is to model the reaching movement of an arm. We describe here the
2 dimensional case. An arm is modeled as being composed of two segments joint
by an articulation (see fig. 3). One extremity of the arm is fixed (the “shoulder”)
while the other one can move (the “hand”). Each segment is controlled by a set
of two muscles: an agonist muscle and an antagonist muscle. So, there are four
muscles. Each muscle can be in either 1 of 50 states which indicate its tension.
At each time step, this tension can increase or decrease of 1 unit. Increasing or
decreasing its tension are the two possible behaviors of each muscle-agent. Each
agent receives three inputs: its current state, and two stimuli that provide very
poor visual information. Actually, each agent models a muscle and the motor-
neuron associated to it. This gives relevancy to the fact that the agent receives
visual information. Finally, the behavior of the agent has a cost in energy. The
model, though simple, is rather realistic.

Like the human babies with whom the experiment has been done, the arm
receives a reward only when it puts its hand into a certain region of the space.
Otherwise, it does not get any reward. So, the system of agents has to reach a
balance between the cost of emitted behaviors and the need to put its hand in
the reinforcement zone to get its reward. The agent is not initially aware of the
fact that it can receive any reward. At the beginning of the simulation and as
long as its hand does not come into the reinforcement zone, the agent receives
no consequence for its behaviors, except their energetic cost. The visual system

Selection of Behavior in Social Situations 391

indicates whether the hand is rather close of far from this region with an integer
0, 1, 2, or 3 and the relative position of the hand with regards to the region:
north-west, north-east, south-west, south-east. A very large majority of points
of the space are merely perceived as far, in a certain quadrant (see fig. 3). This
visual system has been designed to be rather crude. There are two reasons for
that: first, in the new-born, the visual system is also very crude. Second, from
a computer scientist point of view, if the visual system was very acute, then, it
would be very simple to solve the problem we have assigned the arm by simply
moving the hand towards the target using a mere gradient algorithm. As far as
the vision does not provide enough information to guide the hand towards the
target, such a trick is not possible. This is precisely what we wanted to avoid:
putting the solution of the problem into the agent.

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

muscle 1

muscle 0

muscle 2

muscle 3

a

b

shoulder

hand

elbow

0

1

2

3

AB

C
D

X

Y

Z

+

+ +

Fig. 3. The leftmost part sketches the architecture of the arm (see text for description).
The rightmost part indicates how the arm perceives its environment. The visual field is
split into 4 quadrants (A, B, C, and D) and 4 circular zones (0, 1, 2, and 3). Positions
X and Z are perceived differently; positions X and Y are perceived as identical though
more remote than X to Z. So, this visual system is rather crude and does not help very
much the arm to reach the reinforcement zone.

The simulation of this arm shows different stages of development of the move-
ment (see fig. 4) : initially, the hand wanders erratically; after some times, it
passes into the reinforcement zone, by chance, but it is unable to remain in it;
after the position of the arm has been reset to its initial position, and after many
attempts, the arm develops a smoother and smoother direct movement to reach
the zone. Then, it is time to change the reinforcement zone. Of course, the arm
will first seek the zone in its former position. The thing is that as far as the
arm will not receive any reward, it will wander again. Then, it will find the new
location. However, it takes less time to reach the new zone than the first one.
This fact shows what psychologists call a capacity of generalization. We can go
on and on. Each time, the arm develops a smooth and direct movement. The
more it has been trained on different positions of the reinforcement, the quicker
the arm finds new positions. Finally, we can also reset the reinforcement zone to
a former position. Then, the arm finds this former position very quickly. So, the

392 S. Delepoulle, P. Preux, and J.-C. Darcheville

arm has learnt many positions of the reinforcement zone and has developed the
ability to reach it by smooth movements.

Fig. 4. The development of the reaching movement: from left to right, the arm first has
an erratic movement; after a while, it occasionally comes through the reinforcement
zone; the movement becomes smoother and smoother; finally, the arm has a direct
and smooth movement. The cross indicates the shoulder of the arm. The circle is the
reinforcement zone. In the 3 leftmost plots, the position of the hand is indicated. In
the rightmost plot, the whole arm is sketched.

Even though the 2 dimensional arm described here may seem too simple as a
system, we have also obtained identical results for a 3 dimensional arm and we
are working towards a multi-armed and multi-legged animat, as well as a real
robot embedding the same techniques.

5 Discussion

In this contribution, we have summarized some recent works we have done and
we have drawn links between these separate results. Our point is three-fold:
first, we have shown that the law of effect can result from natural selection:
as the law of effect models learning during lifetime of living beings, this first
point shows that the way the behavioral repertoire of a living being evolves can
have been produced by natural selection along generations since the emergence
of life on earth; second, we have shown that agents following the law of effect
obtain good performances in a social situation as they come to cooperate; third,
using Q-learning as an implementation of the law of effect (that is, Q-learning
is considered as an efficient implementation of the law of effect, that is, also the
product of natural selection), we have shown that a set of cooperative Q-learners
used in a realistic way to simulate an arm has a dynamics which is very similar
to that of the arm of a human baby acquiring the same movement. All that
work has been done so that artificial agents are built using realistic and well-
tested hypotheses with regards to living beings. We think that such a multi-level
way of tackling the problem of acquiring new behaviors is highly interesting for
two reasons: for the scientists who study living beings, this shows that complex
behaviors may be explained using the law of effect, itself being the product of
natural selection; for scientists aiming at creating artificial adaptive agents either

Selection of Behavior in Social Situations 393

in software, or in hardware, this work shows that a careful implementation of
“natural” laws may give rise to complex self-organized adaptive behaviors.

This work exemplify a multi-stage selectionist process: once the law of effect
have been selected and is rather widespread in a population, the cooperation
between agents becomes more probable which, in turns, can yield more complex
structures among adaptive components.

References

1. E.L. Thorndike. Animal intelligence: An experimental study of the associative
process in animals. Psychology Monographs, 2, 1898.

2. E.L. Thorndike. Animal Intelligence: Experimental Studies. Mac Millan, 1911.
3. J.W. Donahoe and D.C. Palmer. Learning and Complex Behavior. Allyn and

bacon, 1994.
4. J.E.R. Staddon. Adaptive behavior and learning. Cambridge University Press,

1983.
5. B.F. Skinner. Selection by consequences. Science, 213:501–514, 1981.
6. J.M. Baldwin. A new factor in evolution. The american naturalist, 30, 1896.

reprinted in [15, pp. 59-80].
7. G.E. Hinton and S.J. Nowlan. How learning can guide evolution. Complex Systems,

1:495–502, 1987. also reproduced in [15], chapter 25, pp. 447-454.
8. D. Parisi and S. Nolfi. The influence of learning on evolution. In [15], pages

419–428.
9. S. Delepoulle. Coopération entre agents adaptatifs ; étude de la sélection des com-

portements sociaux, expérimentations et simulations. PhD thesis, Université de
Lille 3, URECA, Villeneuve d’Ascq, October 2000. Thèse de doctorat de Psy-
chologie.

10. J.B. Sidowski, B. Wyckoff, and L. Tabory. The influence of reinforcement and
punishment in a minimal social situation. Journal of Abnormal Social Psychology,
52:115–119, 1956.

11. S. Delepoulle, Ph. Preux, and J-C. Darcheville. Learning as a consequence of
selection, 2001. (submitted).

12. A.G. Barto. Reinforcement learning and adaptive critic methods. In D.A. White
and D.A. Sofge, editors, Handbook of intelligent control: neural, fuzzy, and adaptive
approach, pages 469–491. Van Nostrand Reinhold, 1992.

13. R.S. Sutton and A.G. Barto. Reinforcement learning: an introduction. MIT Press,
1998.

14. Ph. Preux, S. Delepoulle, and J-C. Darcheville. Selection of behaviors by their con-
sequences in the human baby, software agents, and robots. In Proc. Computational
Biology, Genome Information Systems and Technology, March 2001.

15. M. Mitchell and R. Belew, editors. Adaptive Individuals In Evolving Population
Models. Santa Fe Institute Studies in the Sciences of Complexity. Addison-Wesley
Publishing Company, 1996.

394

Clustering Moving Data with a Modified
Immune Algorithm

Emma Hart and Peter Ross

School of Computing, Napier University
Edinburgh EH14 1DJ, Scotland
{emmah,peter}@dcs.napier.ac.uk

Abstract. In this paper we present a prototype of a new model for per-
forming clustering in large, non-static databases. Although many ma-
chine learning algorithms for data clustering have been proposed, none
appear to specifically address the task of clustering moving data. The
model we describe combines features of two existing computational mod-
els — that of Artificial Immune Systems (AIS) and Sparse Distributed
Memories (SDM). The model is evolved using a coevolutionary genetic
algorithm that runs continuously in order to dynamically track clusters
in the data. Although the system is very much in its infancy, the ex-
periments conducted so far show that the system is capable of tracking
moving clusters in artificial data sets, and also incorporates some mem-
ory of past clusters. The results suggest many possible directions for
future research.

1 Introduction

As the ability to collect and store vast quantities of data increases, having some
facility to intelligently and efficiently analyse that data in order to detect clusters,
patterns and meaningful correlations becomes essential. Many algorithms have
been proposed to perform some or all of these tasks, however it seems clear that a
successful algorithm must address the following key features of larger databases
if it is to prove useful in the real-world:

– The data-base is likely to be non-static; data is continually added and deleted
– Trends in the data change over time
– The data may be distributed across several servers
– The data may contain a lot of ’noise’
– A significant proportion of the data may contain missing fields or records

Recently, a growing body of work has shown that the biological immune
contains many desirable features which allow it to be used to address some of
the characteristics listed above. In (one) extremely simplified view, the immune
system (IS) can be considered to be a decentralised self-organising system which
operates by producing antibodies which recognise potentially harmful invaders
and eliminate them from the body. The recognition takes place via some kind of

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 394–403, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Clustering Moving Data with a Modified Immune Algorithm 395

sophisticated pattern matching mechanism which allows it to access a content
addressable memory of past invaders. The matching mechanism is imprecise —
an antibody is stimulated by an antigen if the strength or affinity of the match
between the two exceeds some threshold. Any antibody which stimulates an
antigen is said to be within the ball of stimulation of the antigen. Moreover, the IS
is able to dynamically learn about new substances when it encounters them and
add them to its memory. At the same time, any little used information is deleted
from the memory, therefore the memory is continually changing. Several of these
features have been modelled in a number of very different implementations of
artificial immune systems and applied to the problem of clustering data. For
example, Potter et al. describe a model of an AIS that uses a coevolutionary
genetic algorithm (GA) to evolve antibodies to cluster artificial data sets [1] and
Congress voting records [2]; Forrest et. al [3] describe a GA that uses emergent
fitness sharing to find patterns; Hunt et al. [4] describe a system named Jisys
which was used to cluster data for use in mortgage fraud detection and Timmis
[5] has adapted this system to successfully cluster the well known but very small
benchmark data set containing iris petal sizes. Both the Timmis and Hunt work
used a model based on connected networks of antibodies, in which nodes which
are connected recognise similar patterns. So far, none of these methods have
addressed the question of clustering data in time-varying databases. Although
there is no intrinsic barrier to extending either the coevolutionary or network
models to deal with non-stationary data, both methods present obstacles. In
the network model, there are high computational overheads associated with re-
organising large networks as the data changes, which increase as the size of the
database increases also. It is also unclear whether the coevolutionary method of
evolving clusters is able to cope with extremely large databases, particularly as
the antibodies compete to exclusively recognise data, whereas in reality clusters
may overlap.

In other work, Smith et. al [6] have shown that the immune system can be
considered to be representative of the same class of memories as Kanerva’s Sparse
Distributed memory, [7]. The SDM is a content-addressable memory which was
originally proposed as an efficient method for storing a very large number of
large binary data patterns using a very small number of physical data addresses,
in a manner which allows accurate recall of all the data. An SDM is composed
of a set of physical or hard locations, each of which recognises data within a
specified distance of itself — this distance is known as the recognition radius of
the location. Each location also has an associated set of counters, one for each bit
in its length, which it uses to ‘vote’ on whether a bit recalled from the memory
should be set to 1 or 0. An item of data is stored in the memory by distributing it
to every location which recognises it — if recognition occurs, then the counters at
the recognising locations are updated by either incrementing the counter by 1 if
the bit being stored is 1, or decrementing the counter by 1 if the bit being stored
is 0. To recall data from the memory, all locations which recognise an address
from which recall is being attempted vote by summing their counters at each bit
position; a positive sum results in the recalled bit being set to 1, a negative sum

396 E. Hart and P. Ross

in the bit being set to 0. This results in a memory which is particularly robust
to noisy data due to its distributed nature and inexact method of storing data.
These properties make it an ideal candidate for addressing clustering problems
in large databases; For example, we can consider each physical location along
with its recognition radius to define a cluster of data; the location itself can
be considered to be a concise representation or description of that cluster, and
the recognition radius specifies the size of the cluster. Clusters can overlap —
indeed, it is this precisely this property which allows all data to be recognised
with high precision whilst maintaining a relatively low number of clusters. If no
overlap is allowed, then a large number of locations are required to cluster the
data, the system becomes overly specific, and hence general trends in the data
are lost. In the form described, the SDM is also static and inflexible, however
given its powerful and efficient storage and recognition capacities, it is fruitful
to adapt it to operate in a dynamic environment. Therefore, the model we now
describe combines features of SDM and the type of AIS describe by Potter to
produce a system that is dynamic, adaptable and capable of tracking changes
in large volumes of data. For simplicity, during the remainder of this paper we
use immunological terminology — an antigen is equivalent to a piece of data, an
antibody to a description of a cluster, and the ball of stimulation of the antibody
defines the size of the cluster.

2 Description of the Proposed Model

The proposed model is shown in figure 1. The basic proposition is to use a
coevolutionary GA, running continuously, to find quickly the set of antibodies
(and their corresponding balls of stimulation) that best cluster the data currently
visible to the system. An antigen is represented by a bit string of length L. An
antibody is also represented by a bit string of length L, and also defines the
recognition radius R of the antibody. Each antibody has an associated set of
counters, one for each bit, which are used to ‘vote’ on whether the bit should
be set to 1 or 0 as described in the previous section. The accuracy of the SDM
formed by the set of antibodies can be determined by attempting to recall each
data item stored and comparing the results to the actual data in the database.
The coevolutionary GA controls the evolution of k populations of antibodies
— each population is attempting to evolve the location and radius of one of
the antibodies defining the memory (and therefore the clusters). At any time
t, the best antibodies in each population cooperate to form an SDM in which
all data visible to the system at this time can be stored and ideally accurately
recalled (and hence clustered). The mechanism by which the evolution proceeds
is detailed in the next section.

3 Experimental Details

In order to calculate the fitness of an antibody in any population (which only
represents a partial solution to the problem), the antibody is added to a serum

Clustering Moving Data with a Modified Immune Algorithm 397

101010101

111110000 29
location

antigen, e.g.

e.g.
radius

Antibody
Species 1

Antibody
Species 2

Antibody
Species 3

Antibody
Species 4

Antibody
Species 5

form "serum" consisting
of the best antibody from
each species

ball of stimulation
 = cluster

������ ����������
����
����
����

Genetic Algorithm

Database an antibody

SDM

present data

Fig. 1. The proposed model, combining features from an SDM, AIS and coevolutionary
genetic algorithm

consisting of itself and the best members of the other populations.1 The counters
of each antibody in the serum are set to 0. All the antigens in the database are
then stored in the SDM defined by this serum, and then recall attempted of each
antigen. Antigens not recognised by any of the antibody species are allocated to
a default cluster which is defined by the antibody ‘0000...000’ with a recognition
radius of L. Otherwise, the antigen is assigned a match-score equivalent to the
number of correctly recalled bits. The fitness of the antibody is then set to
the average value of M . Antibodies which cooperate with other antibodies to
more accurately represent the dataset are thus more highly rewarded. Note that
antibodies are not exclusively competing for antigen — several hard locations in
the serum may recognise an antigen and thus collaborate in order produce the
recalled data, which should result in a higher recall accuracy than in the system
described in [1]. This bears a close analogy to the real immune system in which
a cross-reaction between antibodies can occur.

3.1 Control of Number of Species

The number of species is dynamic, that is species are added and deleted from the
algorithm as becomes necessary. The rate at which this happens is controlled by
4 parameters; the extinction threshold, e, the learning phase, l, the stagnation
phase length, sp and the stagnation level st. If the fitness of the serum com-
posed of the best member of each species does not increase by at least st over
spgenerations, then a new species is added to the system, with randomly gener-
ated members. Similarly, if the best member of a species does not recognise at
1 In the initial generation of the algorithm, antibodies are chosen at random from

populations that have not yet been evaluated when forming the serum

398 E. Hart and P. Ross

least e antigens from the current antigen population, and the species has been in
existence for at least l generations then that species is removed from the system,
with the caveat that if the species recognises an antigen that is not recognised by
any other antibody then the species is allowed to remain. A limit of M species
is imposed on the system to prevent it growing too large (and therefore too
specialised).

4 Experiments

Two series of experiments were performed in order to investigate the capability
of the system. The first series of experiments investigated the ability of the
system to track clusters which vary in a random manner with time. The second
series was concerned with investigating the performance of the system in an
environment in which data appears in cycles, and is designed to test the ability
of the system to react more quickly to clusters of data which it has previously
encountered.

Generating Data. In all experiments, the system is continually exposed to a set
of 100 antigen. The antigen are generated from s schemas. Each schema consists
of a string of 64 bits, in which d contiguous bits are set to 1, with the start
position of the d bits randomly chosen. All remaining bit positions contain wild-
cards. Antigen are generated in equal proportion from each schema by randomly
replacing wild-cards with either 0 or 1. In order to generate non-stationary data,
the following procedure is followed. 100 antigens are generated at time t = 0 from
s schema. Every U time-steps, g schemas are chosen at random and replaced by
g new randomly generated schema. New antigens are generated from the new
schema and replace those antigens generated from the schema being replaced.

Tolerization Period. In each experiment, the system is allowed to undergo a
tolerization period of T iterations in order to learn the data present at t = 0.
This is necessary in order to accurately measure the response of the system to
data changes from a state in which it has accurately clustered the current data.
If this was not present, the system may still be learning the original data when
changes occur, and hence we are not measuring the ability of the system to adapt
to new data from an already stable state. This can be considered similar to the
neonatal period in humans in which the body is thought to become tolerant of
‘normal’ proteins, [8]. In all experiments described, T is set to 200.

5 Simple Pattern Tracking

In the first series of experiments, a number of tests were performed for an update
rate U = 50, varying the parameters s, d, and g. In this paper, due to space
constraints, we report the results from experiments with s = 5,d ∈ (8, 16, 32)
and g ∈ (1, 2, 3, 4, 5). Each experiment was repeated 5 times, and the resulting
fitness at each time averaged. In each experiment, the size of each population

Clustering Moving Data with a Modified Immune Algorithm 399

was set to 50. Initially, 2 populations are created, and a maximum limit of 10
populations is imposed. The populations are evolved using fitness proportionate
selection, 2-point crossover, and bit-flip mutation at a rate of 1/L per gene.
The parameters controlling the dynamics of the evolution were set to e = 5, l =
10, sp = 5, st = 0.5.

1 group

3 groups

2 groups

4 groups 5 groups

16 defined bits

5 groups
1 group

3 groups
4 groups 2 groups

32 defined bits

Generations

1 group 5 groups

2 groups3 groups
4 groups

8 defined bits

Fi
tn

es
s

43

43.5

44

44.5

45

45.5

46

46.5

47

200 250 300 350 400 450 500 550 600 650 70

49.5

50

50.5

51

51.5

52

52.5

53

200 250 300 350 400 450 500 550 600 650 700
49.5

50

50.5

51

51.5

52

52.5

53

200 250 300 350 400 450 500 550 600 650 700

40.5

41

41.5

42

42.5

43

43.5

200 250 300 350 400 450 500 550 600 650 700

"Av.SDM.U50.S5.B8.G4"
"Av.SDM.U50.S5.B8.G5"

Fig. 2. The figure shows the performance of the proposed system for 3 experiments in
which groups of 1 → n schema are replaced at each update. The vertical axis shows
the fitness of the best SDM found, where fitness is equal to the average number of
correctly recalled bits across the entire data set.

5.1 Results

Figure 2 shows the results of the experiments for each combination of d and
g, i.e. number of defined bits and number of schemas replaced. The results are
shown from the end of the tolerization period only so that trends can be more
clearly observed. In order to analyse the trends more thoroughly, the magnitude
of the average drop in fitness in the system whenever a change in antigen occurs
is plotted against the number of schemas replaced. This is shown in figure 3.
In all experiments, a single antibody with all bits set to 1 and a radius of L
should provide the most general clustering of the system, as this would match
all of the possible sequences of d defined bits comprising the data set. This
antibody would produce a recall score for the entire data set of 36,40 or 48,
for the cases when d = 8, d = 16 and d = 32 respectively. This is calculated by

400 E. Hart and P. Ross

considering that exactly d bits would match perfectly and on average (l−d)/2 of
the remaining bits would match. This gives a baseline against which to compare
the performance of the system.

The first observation to note from Figure 2 is that in all experiments, the
fitness of the system immediately before any antigen change always exceeds the
baseline fitness described above, therefore the system is clearly performing some
clustering. The success of the system varies as the number of antigen replaced
at each update changes, and also as the number of bits defining the schema
change. The greatest effect on performance of the number of antigens replaced
is observed when d = 32. This is as expected — if the number of defined bits is
large compared with the length of the antigen, then the number of bits that must
change in order to recognise different schema may be very large (for example,
in the extreme case, if schema consisting of ‘11111.....#####’ is replaced by
one described by ‘#####....11111’ then L/2 bits may need to change.) Hence
we expect to see a large variation in performance as the number of antigen
replaced increases. At the other end of the scale, when d = 8, and therefore small
compared with the length of string, it is likely that common patterns exist in the
schema other than those described by the section of defined bits, and therefore
introducing new antigen produces much less overall change in the composition of
the entire antigen data set, as these spurious patterns can always be generated by
chance. In the case where d = 16, slightly anomalous results are observed, as the
worst fitness values are obtained when g = 1, i.e. when only 20% of the antigen
population is updated. This requires further investigation, particularly as figure
3 indicates that the drop in fitness between updates increases approximately
linearly as the number of schemas replaced increases for d = 16 but that the
drop is higher than in the case when d = 32. Figure 3 shows that although the
drop in fitness increases with number of schema replaced, the drop is actually
small in proportion to the relative fitness of the system; the largest drop obtained
is approximately 1.3, whereas the fitness of the system is generally higher than
41.

6 Investigating the Memory Retention

The second series of experiments aimed to investigate whether the system could
retain some memory of past clusters so that if a cluster reappears the system
responds to it more rapidly. In this series of experiments, antigen sets were again
generated from sets of schema in the following manner:

c ∗ s schema are initially generated in the manner previously described. At
any time t, only s of these schema are used to generate the antigen population.
A sliding window of size s defines which schemas are used; this window is moves
w schemas along the schema list every U generations. The schema list is treated
as cyclic and wraps around when the window reaches the end. Thus, if c = 2 and
s = 4, then 8 schemas are initially generated. If w is equal to c, then all antigens
are replaced at each update; thus at time t = 0, antigens {0, 1, 2, 3} define the
data set. At time U , antigens {4, 5, 6, 7} define the data, at time 2U , antigens

Clustering Moving Data with a Modified Immune Algorithm 401

32 bits
16 bits

8 bits

A
ve

ra
ge

 D
ro

p
in

 F
itn

es
s

Number of schemas replaced

Average Drop in Fitness Following Each Antigen Change

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1 2 3 4 5

Fig. 3. The figure shows the drop in fitness experienced following a change in antigen
for three experiments using schema containing 8,16, or 32 defined bits.

{0, 1, 2, 3} again define the data etc. A more incremental update is achieved by
setting w < s.

The experiments reported have s = w where s ∈ (2, 5, 10). The update rate U
is set to 50 generations, and c is set equal to 2. Again, a tolerization period of T
generations is allowed, in which the system learns the first s schemas. Thereafter,
the schema set alternates between the two possible schemas (referred to as set
A and B in the following discussion) every 50 generations. Figure 4 shows the
results of these experiments. In each case, the experiments are compared to
an equivalent experiment in which the antigen set is updated from randomly
generated schema at each update. Clearly, the experiments which replace antigen
with previously encountered antigen outperform the random set, showing that
the system must be displaying some kind of memory. Again, the results are only
shown from the end of the tolerization period.

To investigate the ‘period’ of this memory, we analyse the best fitness found
for schema set A each time it appears. The experiment described above is re-
peated for values of c equal to 3, and 4, so that 3 ∗ s schemas are generated
in the former case, and 4 ∗ s in the latter. In each case, the experiments are
run for sufficient generations that the schema set A appears 5 times. The best
fitness found on each occasion is averaged over the entire experiment and the
results are shown in table 1. t-tests applied to each pair of results shows that
the only significant difference in values is found between cases (c = 2, s = 2)
and (c = 3, s = 2), (c = 3, s = 2) and (c = 4, s = 2), and finally between cases
(c = 3, s = 10) and (c = 4, s = 10). Therefore, the system appears relatively
robust to the parameter c which controls the period of the memory.

402 E. Hart and P. Ross

A

Repeating Schema Groups

Random Schemas Schemas=10

Generations

Fi
tn

es
s

B

B

B

B
B

A

A

AB
AB

Fi
tn

es
s

A

B

A

B
B

B

B
B

A

A
A

A
B

Generations

Schemas=5
Random Schemas

Repeating Schema Groups

B

Random Schemas

AB

AA
B

Repeating Schema Groups

Schemas=2

B
A

Generations

Fi
tn

es
s

550

700

40.5

41

41.5

42

42.5

43

43.5

200 250 300 350 400 450 650500 700

650600550

600

41.5

42

42.5

43

43.5

44

44.5

45

45.5

200 250 300 350 400 450 500 550 600 650 700 500450400350300250200

44

43.5

43

42.5

42

41.5

41

40.5

Fig. 4. Comparison of experiments in which new antigen are generated from new,
randomly generated, schema to those in which antigen are generated from schema that
the system has previously been exposed to

Table 1. The mean and standard deviation (shown in brackets) of the maximum
fitness found for schema set A averaged across 5 occurrences of the set

Number of Schemas Mutltiplier for Number of Schema c
s 2 3 4
2 44.63 (0.186) 44.37 (0.274) 44.77 (0.322)
3 43.06 (0.382) 44.1 (0.342) 43.01 (0.405)
4 42.72 (0.266) 42.78 (0.474) 42.79 (0.281)

7 Conclusion

So far, only a very preliminary investigation of the capabilities of the proposed
new system have been investigated. However, in light of those experiments re-
ported here, and others to be reported in future publications, we make the
following observations;

– The model appears capable of clustering data sets; this has been tested with
up to 10 clusters.

– The model satisfactorily copes with moving data; the experiments show that
the model tracks both incremental and large changes in data, but perfor-
mance degrades as the amount of data changing increases.

Clustering Moving Data with a Modified Immune Algorithm 403

– The model exhibits a basic form of memory; when re-exposed to familiar
antigen, it reacts more rapidly than to previously unseen antigen.

Clearly, there is much more work to do to fully assess the performance of
the model, however the results found so far are promising. The model described
seems to provide a sensible method of addressing the difficulties concerned with
clustering data in non-stationary databases. Issues that must be addressed in
future however include investigating the scalability of the system, the robustness
of the system to noise in the data and to the distance between clusters. Although
the system produced satisfactory results with arbitrarily chosen parameters, we
wish to investigate the sensitivity of the parameter choices. Finally, we intend
to compare the model to other methods which potentially could be employed to
track non-stationary data.

References

1. M.A. Potter and K.A De Jong. Cooperative coevolution: An architecture for evolv-
ing coadapted subcomponents. Evolutionary Computation, 8(1):1–29, 2000.

2. M.A Potter and K.A De Jong. The coevolution of antibodies for concept learning. In
Parallel Problem Solving From Nature - PPSN V, pages 530–540. Springer-Verlag,
1998.

3. S Forrest, B Javornik, R.E Smith, and A.S Perelson. Using genetic algorithms
to explore pattern recognition in the immune syste. Evolutionary Computation,
1(3):191–211, 1993.

4. D Dasgupta, editor. Artificial Immune Systems and Their Applications, chapter
Jisys: The Development on An Immune System for Real World Applications, pages
157–184. Springer-Verlag, 1999.

5. J. Timmis and M. Neal. A resource limited artifical immune system for data analysis.
In Expert Systems 2000: International Conference on Knowledge BAsed Systems and
Applied Artificial Intelligence. Springer-Verlag.

6. D.J Smith, S Forrest, and A.S Perelson. Artificial Immune Systems and Their Ap-
plications, chapter Immunological Memory is Associative, pages 105–112. Springer-
Verlag, 1999.

7. P Kanerva. Sparse Distributed Memory. MIT Press,Cambridge,MA, 1988.
8. R.E Billingham, L. Brent, and P.B. Medawar. Actively acquired tolerance of foreign

cells. Nature, 172:603–606, 1953.

Belief Revision by Lamarckian Evolution

Evelina Lamma1, Lúıs Moniz Pereira2, and Fabrizio Riguzzi1

1 Dipartimento di Ingegneria, Università di Ferrara,
Via Saragat 1, 44100 Ferrara, Italy

elamma@ing.unife.it, friguzzi@ing.unife.it
2 Centro de Inteligência Artificial (CENTRIA), Departamento de Informática,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2825-114

Caparica, Portugal
lmp@di.fct.unl.pt

Abstract. We propose a multi-agent genetic algorithm to accomplish
belief revision. The algorithm implements a new evolutionary strategy
resulting from a combination of Darwinian and Lamarckian approaches.
Besides encompassing the Darwinian operators of selection, mutation
and crossover, it comprises a Lamarckian operator that mutates the genes
in a chromosome that code for the believed assumptions. These self mu-
tations are performed as a consequence of the chromosome phenotype’s
experience obtained while solving a belief revision problem. They are
directed by a belief revision procedure which relies on tracing the logical
derivations leading to inconsistency of belief, so as to remove the latter’s
support on the gene coded assumptions, by mutating the genes.

1 Introduction

Herein, we propose a genetic algorithm for belief revision that includes, be-
sides Darwin’s operators of selection, mutation and crossover [1], a logic based
Lamarckian operator as well. This operator differs from Darwinian ones precisely
because it modifies a chromosome coding beliefs so that its fitness is improved
by experience rather than in random way.

We venture that the combination of Darwinian and Lamarckian operators
will be useful not only for standard belief revision problems, but especially for
problems where different chromosomes may be exposed to different constraints
and environmental observations. In these cases, the Lamarckian and Darwinian
operators play different rôles: the Lamarckian one is employed to bring a given
chromosome closer to a solution (or even find an exact one) to the current belief
revision problem, whereas the Darwinian ones exert the rôle of randomly produc-
ing alternative belief chromosomes so as to deal with unencountered situations,
by means of exchanging genes amongst them.

We tested this hypothesis on multi-agent joint belief revision problems. In
such a distributed setting, agents usually take advantage of each other’s knowl-
edge and experience by explicitly communicating messages to that effect. As
multiple-population GAs (see [2], for discussion), we allow knowledge and ex-
perience to be coded as genes in an agent and consider several sub-populations

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 404–413, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Belief Revision by Lamarckian Evolution 405

which exchange individuals occasionally. In particular, genes are exchanged with
those of other agents, not by explicit message passing but through the crossover
genetic operator. The new offspring agent chromosomes can be naturally selected
according to their gene coded knowledge governing their behaviour.

Crucial to this endeavour, we introduce a logic-based technique for modifying
cultural genes, i.e. memes, on the basis of individual agent experience. The tech-
nique amounts to a form of belief revision, where a meme codes for an agent’s
belief or assumption about a piece of knowledge, and which is then diversely
modified on the basis of how the present beliefs may be contradicted by obser-
vations and laws (expressed as integrity constraints). These self mutations are
indeed performed as the outcome of the chromosome phenotype’s (i.e., agent’s)
experience while solving a belief revision problem. They are directed by a be-
lief revision procedure, which relies on tracing the logical derivations leading
to inconsistency of belief, so as to remove the latter’s support on gene coded
assumptions by mutating the memes involved. Each agent possesses a pool of
chromosomes containing such diversely modified memes, or alternative assump-
tions, which cross-fertilize Darwinianly amongst themselves. Such an experience-
influenced genetic evolution mechanism is aptly called Lamarckian.

To illustrate how these mechanisms, of individual agent Lamarckian evolu-
tion and of Darwinian agent genetics, can jointly lead to improved single agent
population behaviour in collaborative problem-solving, we apply them to dis-
tributed model-based diagnosis of digital circuits, a natural domain in which
belief revision techniques apply [3].

2 Preliminaries

We consider belief revision of first order theories expressed in the language of
extended logic programs [4]. For this language, we adopt the Extended Well
Founded Semantics (WFSX) that extends the well founded semantics (WFS) [5]
for normal logic programs to programs extended with explicit negation, besides
the implicit or default negation of normal programs.

Extended logic programs are liable to be contradictory because of integrity
constraints, either those that are user-defined or those of the form ⊥ ← L,¬L
that are implicitely assumed. The revisables of a program P are the elements of
a chosen subset Rev(P), of the set of all literals L having no rules for them in
P , and code revisable beliefs.

3 A Genetic Algorithm for Multi-agent Belief Revision

The algorithm here proposed for belief revision extends the standard genetic
algorithm (described for example in [1]) in two ways:

– crossover is performed among chromosomes belonging to different agents,
– a Lamarckian operator called Learn is added in order to bring a chromosome

closer to a correct revision by changing the value of revisables.

406 E. Lamma, L.M. Pereira, and F. Riguzzi

In two-valued belief revision, each individual hypothesis is described by the
truth value of all the revisables. Therefore each hypothesis can be considered
as a set containing one literal, either positive or default, for every revisable. A
chromosome is obtained by associating a bit to each revisable that has value 1
if the revisable is true and 0 if it is false.

The fitness function that has been used takes the following form:

Fitness(hi) =
ni
n

+
fi
|hi| × 0.5

where ni is the number of integrity constraints satisfied by hypothesis hi, n is
the total number of integrity constraints, fi is the number of revisables in hi
that are false, and |hi| is the total number of revisables. In this way, the fitness
function takes into account both the fraction of constraints that are satisfied and
the number of revisables whose truth value must be changed to true, preferring
hypotheses with a lower number of these. Assuming that the initial value of the
revisables is false, this means that minimal revisions are encouraged. The factor
0.5 was chosen in order to give more importance to the accuracy, rather than to
the number of unchanged revisables.

The Lamarckian operator Learn changes the values of the revisables in a
chromosome C so that a bigger number of constraints is satisfied, thus bringing
C closer to a solution.

This is done by modifying the belief revision techniques presented in [6]. In
particular, in [6] an algorithm for belief revision is presented that is based on
the notions of support sets, hitting sets and removal sets. Intuitively, a support
set of a literal is the set of revisable supporting the derivation of the literal. The
hitting set of a collection C of sets is formed by the union of one non-empty
subset from each S ∈ C. A hitting set is minimal iff no proper subset is a hitting
set. A removal set of a literal is a hitting set of all the support sets of the literal.
Contradiction in [6] is removed by finding the removal set of ⊥.

Each agent executes the following algorithm:

GA(Fitness,max gen, p, r,m, l)
Fitness: a function that assigns an evaluation score to a hypothesis coded
as a chromosome, max gen: the maximum number of generations before
termination, p: the number of individuals in the population, r: the fraction
of the population to be replaced by Crossover at each step, m: the fraction of
the population to be mutated, l: the fraction of the population that should
evolve Lamarckianly.

Initialize population: P ← generate p hypotheses at random
Evaluate: for each h in P , compute Fitness(h)
gen← 0
While gen ≤ max gen
Create a new population Ps:

Select: Probabilistically select (1− r)p members of P
to add to Ps. The probability Pr(hi) of selecting

Belief Revision by Lamarckian Evolution 407

hypothesis hi from P is given by
Pr(hi) = Fitness(hi)

Σp
j=1Fitness(hj)

Crossover:
For i=1 to rp

Probabilistically select an hypothesis h1 from P ,
according to Pr(h1) given above

Obtain an hypothesis h2 from another agent
chosen at random

Crossover h1 with h2 obtaining h′
1

Add h′
1 to Ps

Mutate: Choose m percent of the members of Ps with
uniform probability. For each, invert one
randomly selected bit in its representation

Learn: Choose lp hypotheses from Ps with uniform
probability and substitute each of them with the
modified hypotheses returned by the procedure Learn

Update: P ← Ps
Return the hypothesis from P with the highest fitness

The Lamarckian operator Learn works in the following way: given a chromosome
C, it finds all the support sets for ⊥ such that they contain literals in C. These
support sets are called Lamarckian support sets (a formal definition for them is
given in [7]). Therefore, it does not find all support sets for ⊥ but only those
that are subsets of C.

Since the Lamarckian support sets for ⊥ represent only a subset of all the
support sets for ⊥, a hitting set generated from them is not necessarily a con-
tradiction removal set and therefore it does not represent a solution to the belief
revision problem. However, it eliminates some of the derivation paths to ⊥ and,
therefore, may increase the number of satisfied constraints, thus improving the
fitness, as required by the notion of Lamarckian operator.

In the case of the circuit diagnosis problems in section 4, the support sets
procedure becomes simplified in that the occurrences of default negated literals
pertain only to revisables.

When computing the support sets, the Lamarckian operator also modifies an
extra bit associated with each meme each time the meme is considered in the
computation of Lamarckian support sets. This bit indicates whether the meme
has been “accessed” by the operator. This is needed for the crossover operator
that is described below.

procedure Learn(C,C ′)
inputs : C: a chromosome translated into a set of revisables
outputs : C ′ the revised chromosome
Find the support sets for ⊥: Support sets([⊥], C, {}, {}, SS)
Find a hitting set HS: Hitting set(SS,HS)
Change the value of the literals in the chromosome C

that appear as well in HS

408 E. Lamma, L.M. Pereira, and F. Riguzzi

procedure Support sets(GL,C, S, SSin, SSout):
inputs :GL: list of goals, C: a chromosome translated into a set of revisables,
S: the current support set, SSin: the current set of support sets

outputs : SSout: a set containing the support sets for the first goal in the
list

If GL is empty, then return SSout = SSin
Consider the first literal L of the first goal G of GL

(GL = [G|RGL] using Prolog notation for lists)
(1) if G is empty then add the current support set to SSin

and call recursively the algorithm on the rest of GL
Support sets(RGL,C, {}, SSin ∪ {S}, SSout)

(2) if G is not empty (G = [L|RG]) then:
(2a) if L is a revisable and is in C, then add it to S,

set to 1 L’s access bit
and call the algorithm recursively on the rest of G
Support sets([RG|RGL], C, S ∪ {L}, SSin, SSout)

(2b) if L is a revisable and it is not in C, or its opposite
is in C, then set to 1 L’s access bit, discard S
and call the algorithm recursively on the rest of GL
Support sets(RGL,C, S ∪ {L}, SSin, SSout)

(2c) if it is not a revisable then reduce it with all the rules,
obtaining the new goals G1, ..., Gn, one for each
matching rule, add the goals to GL and call
the algorihtm recursively Support sets([[G1|RG], ...,
[Gn|RG]|RGL], C, S, SSin, SSout)

(2d) if it is not a revisable and there are no rules, then return
without adding S to SS (SSout = SSin)

procedure hitting set(SS,HS):
Pick a literal from every support set in SS
Add it to HS if it does not lead to contradiction
(i.e., the literal must not be already present

in its complemented form).
If it leads to contradiction pick another literal.

The crossover operator is an extension of a standard uniform crossover operator.
The crossover operator produces a new offspring from two parent strings by
copying selected bits from each parent. The bit at position i in the offspring is
copied from the bit at position i in one of the two parents. The choice of which
parent provides the bit for position i is determined by the crossover mask that,
in uniform crossover, is generated as a bit string where each bit is chosen at
random and independently of the others.

In our setting, one of the parents comes from the agent local population,
while the other comes from the population of another agent. However, not all the
bits in the chromosome are treated equally. In particular, we distinguish genes

Belief Revision by Lamarckian Evolution 409

from memes: genes are modified only by Darwinian operators, while memes are
modified by Darwinian and Lamarckian operators. Genes in the offspring can be
copied from both parents, while memes can be copied from the parent coming
from another agent only if they have been “accessed” by the other agent as a
result of the application of the Lamarckian operator.

In this way, an agent can acquire from another agent only memes that have
been checked for consistency. Therefore, the flow of memes is asymmetrical and
goes from a “teacher” to a “learner”, but not vice versa. In particular, in the
asymmetrical crossover operator the mask is generated again as a random bit
string and crossover is performed in the following way: if the i-th bit in the mask
is 1 and the i-th bit in the other agent’s chromosome has been accessed, then the
i-th bit of the offspring is copied from the other agent’s chromosome, otherwise
it is copied from the local agent’s chromosome. Simplified versions of this algo-
rithm have also been considered in order to separately test the effectiveness of
each of the features added to the standard genetic algorithm. In particular, five
algorithms have been considered named in the sequel algorithms 1, 2, 3, 4 and 5.
Algorithm 1 is a standard single agent genetic algorithm: crossover is performed
only among chromosomes of the same agent and the Lamarckian operator is
not used. Algorithm 2 adds to algorithm 1 the use of the Lamarckian operator,
with a parameter l (percentage of the population to be mutated Lamarckianly)
equal to 0.6. Algorithm 3 is a multi-agent algorithm without the Lamarckian
operator, i.e., crossover is performed between chromosomes of different agents
but the operator Learn is not applied to them. Algorithm 4 extends algorithm 3
by adding the Lamarckian operator, with a parameter l equal to 0.6. However, it
does not distinguish genes from memes, i.e. crossover is always symmetric. Algo-
rithm 5 differs from algorithm 4 because it treats genes and memes differently,
exchanging only those memes that have been accessed.

These algorithms have been used in order to experimentally prove the fol-
lowing theses:

1. Lamarckism plus Darwinism outperforms Darwinism alone in the single
agent case;

2. the distributed algorithm (with or without the Lamarckian operator) per-
forms better than the non-distributed one, in the same number of genera-
tions, because of parallel exploration;

3. Lamarckism plus Darwinism outperforms Darwinism alone in the multi-
agent case;

4. the distributed algorithm with the distinction between genes and memes
performs better than the one without the distinction.

4 Experiments

The algorithms have been tested on a number of belief revision problems in order
to prove the above theses. In particular, we have considered problems of digital
circuit diagnosis, as per [3]. A problem of digital circuit diagnosis can be modelled
as a belief revision problem by describing it with a logic program consisting of

410 E. Lamma, L.M. Pereira, and F. Riguzzi

Table 1. Experiments on digital circuits debugging

Circuit Algorithm Fitness Standard Deviation Correct solution
voter 1 1.295 0.00634 100 %

2 1.312 0.01728 100 %
alu4 flat 1 1.193 0.03939 20 %

2 1.213 0.01765 33 %

four groups of clauses: one that allows to compute the predicted output of each
component, one that describes the topology of the circuit, one that describes
the observed inputs and outputs, and one that consists of integrity constraints
stating that the predicted value for an output of the system cannot be different
from the observed value. The revisables are literals of the form ab(Name) which,
if true, state that the gate Name is faulty. The representation formalism we use
is the one of [3].

If the digital circuit is faulty, one or more of the constraints will be violated.
By means of belief revision, the values of the revisables are changed in order to
restore consistency.

The system has been tested on some real world problems taken from the
ISCAS85 benchmark circuits [8] that has been used as well for testing the belief
revision system REVISE [3].1

We have considered the voter and alu4 flat circuits: voter has 59 gates
and 4 outputs, corresponding respectively to 59 revisables and 8 constraints,
while alu4 flat has 100 gates and 8 outputs, corresponding respectively to 100
revisables and 16 constraints.

We have first tested algorithms 1 and 2 on the voter and alu4 flat circuits.
The parameters of the genetic algorithms were 30 for the population and 10 for
the number of generations. Both algorithms were run 5 times and the resulting
maximum fitness averaged. In table 1 the Fitness column shows the value of the
fitness function for the best hypothesis after ten generations averaged over the
5 runs together with its standard deviation, while the Correct solution column
shows the percentage of times in which a correct solution was found.

From these results it can be seen that thesis 1 is proved, i.e., that the use
of a Lamarckian operator improves the fitness of the best hypothesis. Moreover,
the algorithm does not heavily depend on the initial population, as shown by
the low values for the standard deviation. Finally, the Lamarckian operator
does not greatly influence the dependency on the initial population, as can be
seen from the fact that in one case (voter) the use of the Lamarckian operator
has increased the standard deviation but in the other case (alu4 flat) it has
decreased it.

Algorithms 2, 3, 4 and 5 have been tested on the voter circuit. Each algo-
rithm was run 5 times. The parameters that have been used for the runs are:

1 These examples can be found at http://www.soi.city.ac.uk/∼msch/revise/.

Belief Revision by Lamarckian Evolution 411

Table 2. Experiments with algorithms 2, 3, 4 and 5

Circuit Algorithm Fitness Standard Deviation Correct solution
voter 2 1.319 0.00415 100 %

3 1.314 0.00928 100 %
4 1.325 0.03321 100 %
5 1.392 0.06296 100 %

10 maximum generations, 40 individuals for algorithm 2 (single agent), 10 indi-
viduals per agent and 4 agents for algorithms 3, 4 and 5. In algorithms 3, 4 and
5 each agent has the same set of observations and program clauses, while the
integrity constraints are distributed among the agents so that each agent knows
only the constraints that are related to one same output.

In table 2 we show, for each algorithm, the value of the fitness function for
the best hypothesis after ten generations averaged over the five runs.

As can be seen, theses 2, 3 and 4 are also confirmed. If we compare the results
of algorithm 1 (table 1) and 3 and those of algorithms 2 and 4 we realize that
the cooperation among agents improves the quality of the results with respect
to the single agent case in the same number of generations (thesis 2). The fitness
increment between algorithms 3 and 4 shows the usefulness of the Lamarckian
operator in the multi-agent case (thesis 3). Finally, the fitness increment between
algorithms 4 and 5 shows the usefulness of the distinction of memes from genes
and of the asymmetrical crossover mechanism among memes (thesis 4). Again,
the low values for the standard deviation in all cases show that the result does
not heavily depend on the initial population.

5 Related Work

Various authors have investigated the integration of Darwinian and Lamarck-
ian evolution into a genetic algorithm [9,10,11,12]. A Lamarckian operator first
translates a genotype into its corresponding phenotype and performs a local
search in the phenotype’s space. The local optimum that is obtained is then
translated back into its corresponding genotype and added to the population
for further evolution. [9] has shown that the traditional genetic algorithm per-
forms well for searching widely separated portions of the search space caused
by a scattered population, while Lamarckism is more proficient for exploring
localized areas of the population that would otherwise be missed by the global
search of the genetic algorithm. Therefore, Lamarckism can play an important
rôle when the population has converged to areas of local maxima that would
not be thoroughly explored by the standard genetic algorithm. The adoption of
a Lamarckian operator provides a significant speedup in the performance of the
genetic algorithm.

Similarly to the approaches in [9,10,11,12], we adopt a procedure for Lamar-
ckian evolution that first translates the chromosome into its phenotype and then

412 E. Lamma, L.M. Pereira, and F. Riguzzi

modifies it in order to improve its fitness. In our case too the Lamarckian oper-
ator improves the performance of the genetic algorithm. Differently from [9,10,
11,12], the procedure does not perform a local search but finds an improvement
by tracing logical derivations causally supporting the undesired behaviour.

Our work is also related to coevolutive approaches and distributed GAs (see
[13,14,2]. It can be considered a cooperative coevolutionary approach(see [13,14]
to belief revision since knowledge about the domain problem (and constraints in
particular) are spread among the agents, each of which is ruled by a GA. In this
respect, each species represents a possibly partial solution to the belief revision
problem. While in [13] the complete solutions (to the problem of function opti-
mization, in that paper) are obtained by assembling the representative members
of each of the species present, in our work the solution is obtained by evolution
and exchange between species, and by the application of the crossover operator
to members of two species, the foreigner of which may have already gained in
experience (i.e., it evolved Lamarckianly).

According to the classification given in [2], our approach is a multiple-popula-
tion coarse-grained GA. Multiple-population (or distributed) GAs consist of
several subpopulations which exchange individuals occasionally by migration.
Rather than migration, we consider instead selection of members of different
sub-population to be merged by crossover. This form of virtual migration is syn-
chronous with the application of crossover operator. Furthermore, the topology
we consider is in fully connected, but again the application of crossover chooses
a chromosome from a selected agent.

6 Conclusions and Future Work

We have proposed a novel way of looking at belief revision, which is GA based,
and hence a new application domain for GAs. Since it is still in the initial de-
velopment stages, and it cannot be expected yet to compete with hard-boiled
methods for belief revision. On the other hand, we believe our method to be
important for situations where classical belief revision methods hardly apply:
Those where environments are non-uniform and time changing. These can be
explored by distributed agents that evolve genetically to accomplish coopera-
tive belief revision, using our approach. Notwithstanding, some type of efficient
hybrid implementation approach might emerge, combining hard-boiled belief re-
vision techniques with the newly introduced GA suplement. Our contribution
has been to get the new approach off the ground.

References

1. T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
2. Erick Cantú-Paz. A survey of parallel genetic algorithms.
3. C. V. Damásio, L. M. Pereira, and M. Schroeder. REVISE: Logic programming and

diagnosis. In Proceedings of Logic-Programming and Non-Monotonic Reasoning,
LPNMR’97, volume 1265 of LNAI, Germany, 1997. Springer-Verlag.

Belief Revision by Lamarckian Evolution 413

4. J. J. Alferes, L. M. Pereira, and T. C. Przymusinski. “Classical” negation in non-
monotonic reasoning and logic programming. Journal of Automated Reasoning,
20:107–142, 1998.

5. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620–650, 1991.

6. L. M. Pereira, C. V. Damásio, and J. J. Alferes. Diagnosis and debugging as con-
tradiction removal. In L. M. Pereira and A. Nerode, editors, Proceedings of the
2nd International Workshop on Logic Programming and Non-monotonic Reason-
ing, pages 316–330. MIT Press, 1993.

7. E. Lamma, L. M. Pereira, and F. Riguzzi. Multi-agent logic aided lamarckian learn-
ing. Technical Report DEIS-LIA-00-004, Dipartimento di Elettronica, Informatica
e Sistemistica, University of Bologna (Italy), 2000. LIA Series no. 44.

8. F. Brglez, P. Pownall, and R. Hum. Accelerated ATPG and fault grading via
testability analysis. In Proceedings of IEEE Int. Symposium on Circuits and Sys-
tems, pages 695–698, 1985. The ISCAS85 benchmark netlist are available via ftp
mcnc.mcnc.org.

9. W. E. Hart and R. K. Belew. Optimization with genetic algorithms hybrids that
use local search. In R. K. Belew and M. Mitchell, editors, Adaptive Individuals in
Evolving Populations. Addison Wesley, 1996.

10. D. H. Ackely and M. L. Littman. A case for lamarckian evolution. In C. G.
Langton, editor, Artificial Life III. Addison Wesley, 1994.

11. Y. Li, K. C. Tan, and M. Gong. Model reduction in control systems by means
of global structure evolution and local parameter learning. In D. Dasgupta
and Z. Michalewicz, editors, Evolutionary Algorithms in Engineering Applications.
Springer Verlag, 1996.

12. J. J. Grefenstette. Lamarckian learning in multi-agent environments. In Proc. 4th
Intl. Conference on Genetic Algorithms. Morgan Kauffman, 1991.

13. M. Potter and K. de Jong. A cooperative coevolutionary approach to function
optimization, 1994.

14. Mitchell A. Potter, Kenneth A. De Jong, and John J. Grefenstette. A coevolu-
tionary approach to learning sequential decision rules. In Larry Eshelman, editor,
Proceedings of the Sixth International Conference on Genetic Algorithms, pages
366–372, San Francisco, CA, 1995. Morgan Kaufmann.

A Study on the Effect of Cooperative Evolution
on Concept Learning

Filippo Neri

Marie Curie Fellow at Unilever Research, Port Sunlight, UK
University of Piemonte Orientale, Italy

neri@di.unito.it

Abstract. A preliminary investigation of the results produced by two
cooperative learning strategies exploited in the system REGAL is re-
ported. The objective is to produce a more efficient learning system. An
extensive description about how to setup a suitable experimental setup
is included. It is worthwhile to note that, in principle, these coopera-
tive learning strategies could be applied to a pool of different learning
systems.

1 Introduction

Concept learning [1] is the task of finding a rule (in a wide sense) that discrimi-
nates between positive and negative instances of a given concept. The relevance
of concept learning is well characterized by the variety of its fielded applications
like prediction of mutagenetic compounds [2], and management of computer
systems and networks [3,4]. Learning concepts means searching large hypothesis
spaces. So, the capability to take advantage of effective search becomes a plus.
Approaches based on Genetic Algorithms [5,6] proved their potentialities on a
variety of concept learning tasks [7,8,9,10].

From these efforts it emerged that the main disadvantage of using GAs, with
respect to alternative approaches, stays in their high user waiting time and in
their high computational cost. A possible way of reducing GA computational
cost is to use distributed computation efficiently: possibly by promoting cooper-
ation among the simultaneous evolving populations. This approach is known as
cooperative evolution or co-evolution [11,12,13,14].

In co-evolution, a complex problem is decomposed into simpler subproblems
at runtime, then the evolution of several species, each one oriented to a subprob-
lem’s solution, is promoted. Periodically, a candidate solution for the problem
is assembled from the species’ best individuals and evaluated. Finally, the solu-
tion evaluation is backpropagated to the existing species through a new problem
decomposition that affects their further evolution.

In the past, we investigated how the adoption of cooperative learning into the
GA-based system REGAL [13] could produce a more efficient learning system.
Research on cooperative learning includes also approaches like: boosting [15] and
bagging [16]. These techniques combine a pool of classifiers in order to improve

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 414–420, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Cooperative Concept Learning 415

their separate classification performances. Generally they exploit re-sampling or
weighting of the learning instances in order to acquire different classifiers to be
combined, and they are independent from the specific used learning method.

The paper organization follows. In Section 2, REGAL and two cooperative
learning strategies are briefly described. In Section 3, the experimental context
is analyzed. In Section 4, the results are reported. The conclusion ends the work.

2 The System REGAL

REGAL [9,13] learns relational disjunctive concept descriptions in a restricted
form of First Order Logic by using cooperative evolution. In REGAL an individ-
ual is a conjunctive formula (encoded as a fixed length bitstring) and a subset
of the individuals in the populations has to be determined to form a disjunctive
description for the target concept. For the scope of this work, we concentrate on
REGAL’s cooperative architecture as a description of the system’s other com-
ponents have already been published. REGAL’s architecture is a network of N
processes GALearners, coordinated by a Supervisor that imposes cooperation
among the evolving populations. Metaphorically speaking, each GALearner re-
alizes a niche, defined by a subset of the learning instances, where some species
live. Each GALearnern tries to find a description for a subset of the learning
instances LSn by evolving its population. In addition, the GALearners may
perform migration (exchange) of individuals. The Supervisor coordinates the
distributed learning activity by periodically assigning different subsets of the
learning instances to the GALearners. The composition of these subsets de-
pends on the specific cooperative policy used. Two policies of cooperation will
be investigated.

2.1 Two Cooperative Learning Strategies

As no a priori information is available on what is a successful assignment of
learning instances, we decided to develop two cooperative learning strategies
based on different assumptions. First, we analyzed the methods used by well
known learning systems (like: AQ [17], C4.5 [18]) to deal with a large set of
instances that cannot be covered by a single conjunctive formula. They all exploit
a ”divide et impera” policy (also known as ”learn one conjunct at a time”):
learns a description, remove the instances covered by it from the learning set,
and restart the learning on the remaining instances. So we decided to implement
similar policies as cooperative learning strategies. The first is named Let Seed
Expand (LSE) and works as follows: when a learner find a description ψ, remove
from its learning set all the instances covered by other already found descriptions
and not covered by ψ, and let ψ improve.

An alternative form of cooperation, named Describe Those Still Uncovered
(DTSU), forces the learners in dealing as soon as possible with the instances
difficult to cover. Essentially, as soon as a promising concept description emerges,

416 F. Neri

the instances not covered by it are included into all the learning sets, whereas
each covered instance is inserted into only one learning set.

The algorithmic description of both cooperative learning strategies is skipped
for space reasons.

3 Empirical Qualitative Evaluation

The effectiveness of any concept learning system is primarily evaluated on the
basis of its averaged prediction error estimate. However, in order to provide
a closer insight in a system behavior, additional measures may be used, such
as, for instance, measures accounting for the structure of the acquired concept
description. The comparison of REGAL’s performances in terms of its aver-
age prediction error has already been analyzed [19]. We are here interested in
the qualitative evaluation of how cooperation affects the structure of the found
concept descriptions. Consequently, we will study REGAL’s behavior with and
without a cooperative strategy at work and considering the effect of migration.
Given all the previous, setting up a suitable experimental context involves deal-
ing with the following three issues:
1) The selection of what characteristics of concept description should be mea-
sured. We chose the following ones: (a) its average prediction error (ε) evaluated
on a independent set of instances; (b) its complexity (C); (c) the number of
conjuncts (NC) in Concept; (d) the maximum (MXC), average (AVC) and min-
imum (SMC) number of positive examples covered by any conjunct in Concept;
(e) and the user waiting time (T), i.e. cpu time of the slowest learners to com-
plete its task. The complexity (C) of a concept description has been defined as
the number of conditions (i.e. its number of constants) to be tested in order to
verify it.
2) The selection of the learning problem. In order to be able to compare the
learned concept descriptions with respect to reasonable target ones, we chose
an applicative domain whose (near to) optimal concept descriptions are a priori
known. These target concept descriptions are characterized by a null predictive
error and by a low complexity value.
3) The selection of a set of operative conditions, including parameters’ values,
under which to run the learning system.
We now discuss issues 2) and 3) in more details.

3.1 Characteristics of the Selected Application

As applicative domain, we selected a known concept learning dataset: the ”Mush-
rooms”1 [20] one. This problem is characterized by the absence in its hypothesis
spaces of a purely conjunctive concept description and by the existence in its
1 The problem consists in recognizing mushrooms from the Agaricus and Lepiota

families as Edible (the firsts) and Poisonous (the seconds). The dataset contains
8124 instances, 4208 of edible mushrooms and 3916 of poisonous ones. Each instance
is described by a vector of 22 discrete attributes, each of which can assume from 2

Cooperative Concept Learning 417

hypothesis spaces of at least a disjunctive concept description. The knowledge
about this hypothesis space comes from results appeared in the literature.

From previous experiments, we know that the Mushrooms application ad-
mits as good description for the poisonous mushrooms concept that requires 15
conditions to be tested.

Three randomly selected sets of 4000 instances (2000 edible plus 2000 poi-
sonous) have been used as learning sets, while the remaining 4124 instances have
been used for testing.

3.2 Choosing Proper Experimental Configurations

In order to run a GA-based system, a set of parameters such as the population
size, the number of generations to be accomplished (in short, the generation
number), the crossover probability, the mutation rate, etc. have to be fixed [6].
In general, the results obtained by any GA-based system are sensitive to the
chosen values. A system is robust to the parameter variation if a little variation
in its parameters values corresponds to a little shift in the ”quality” of its results.
From the point of view of concept learning, we are interested in exploiting a
system that is robust with respect to the parameters settings in order to avoid
uncontrollable fluctuations in the system outputs. In other words, we would like
to use a system whose results only depends on the information provided by the
learning instances and not by the system’s internal behavior. In the past, we
performed series of experiments to understand and set once for ever REGAL’s
parameters [9] and we determined such set of values for the parameters that
we call ”classic” one. It is worthwhile to note that the population size and the
generation number are problem dependent so exploratory run on the application
at hand have to be performed in order to set their values.

In this work, we used our ”classic” parameter setting as reported in Table
1. The population size and the generation number were chosen after some ex-
ploratory runs which allowed to determine a sufficiently small value.

4 REGAL with or without Using a Cooperative Strategy

The experiments reported in this section aims to study what kind of descriptions
are learnt and what computational cost is involved when no cooperation or some
cooperation policy is exploited. A set of basic configurations has been selected to
act as a baseline. The following configurations, corresponding to the parameter
settings appearing in Table 1, have been considered:
CONF1 (16 GAlearners and µ = 0.0) - A basic distributed approach: 16
GA Learners, each one evolving a population of 100 individuals. No cooper-
ative strategy to coordinate the learners. This means that every learner exploits
the whole learning set.

to more than 6 different values. By defining a predicate for each <attribute, value>
pair, the language template for this application could be coded as a bitstring of 126
bits.

418 F. Neri

Table 1. REGAL’s configurations used in this work.

Parameter Value
Population size 1600
Number of GA learner 16
Crossover probability pc 0.6
Mutation probability pm 0.0001
Migration rate µ 0.0 or 0.5
Generation limit 200
Generation gap 0.9
Cooperation None/LSE/DTSU

CONF2 (16 GA learners and µ = 0.5) - As CONF1 plus migration of individuals
among the GA learners.
Plus CONF1 and CONF2 exploiting one cooperative policy.

In Table 2, the results obtained are reported. The leftmost column of the ta-
ble shows the configuration’s identifier. The other columns of the table contains
the parameters already described plus the ’Cons & Compl’ field that summa-
rizes whether the learned concept description is complete and consistent on the
learning set. Finally, the rows, with the value ”Target”, report the features of
the target concept. For each configuration settings three runs have been per-
formed. The reported error rate is an average over the three runs. Instead the
other values are the real values of the description found in the experiment with
the median error rate.

The experimental findings can be summarized as follows:
A) In CONF1, the maintenance of genetic diversity is mainly deferred to the
locality of the evolution: each GA Learner only affects the evolution of its pop-
ulation. When migration of individuals occurs (CONF2), genetic diversity across
population tends to reduce. Thus letting individuals, describing (part of) their
parents’ original niches, merge and favoring the appearance of general descrip-
tions. In turn, this biases the learning system toward the discovery of overfit
concept description [21] that may decrease the classification performances as
observable when passing from CONF1 to CONF2 in the experiments. In addi-
tion, migration increases the computational cost of a factor proportional to the
number of exchanged individuals. This is due to the double evaluation migrating
individuals are subjected to in the leaving and incoming niche. A minor point
to be investigated during the system’s reimplementation would be to reduce this
computational overhead.

Let us evaluate now the contribution of cooperation to REGAL’s perfor-
mances:
1) both forms of cooperation allow to learn good concept descriptions.
2) The effect of migration of individuals is not very evident from the point of
view of the error rate but a decrease in the solution complexity is observable
when it is used.
3) Quite surprisingly using a cooperative strategy does not significantly increase

Cooperative Concept Learning 419

the system running cost. The reason may be that the evolving populations tend
to converge toward simple descriptions at an earlier generation than when no co-
operation is present. In summary, it seems that both cooperative policies perform
reasonably well across a variety of system’s configurations. Of course, additional
study is needed in order to confirm or discard these latter conclusions.

Table 2. REGAL learning the ”Poisonous mushrooms” concept.

CoopLS µ T C ND MXC SMC AVC e[%] Cons &
Compl

CONF1
None 0.0 76 7 2 1946 1139 1542 2 No
LSE 0.0 72 21 4 1946 62 946 0 Yes
DTSU 0.0 73 63 5 1946 329 1064 0 Yes
CONF2
None 0.5 97 14 2 1946 1161 1553 4 No
LSE 0.5 103 16 3 1946 414 1089 0 Yes
DTSU 0.5 99 42 4 1946 317 1063 0 Yes
Target - 15 3 1946 197 1096 0 Yes

5 Conclusion

Some preliminary investigation of two cooperative learning strategies has been
reported. We believe that a distributed genetic base learner able to exploit these
two cooperative strategies may acquire satisfactory concept descriptions across
a wide range of applications. Additional experimentation, required to confirm or
discard this claim, is in progress.

References

1. T.G. Dietterich and R.S. Michalski. A comparative review of selected methods
for learning from examples. In J.G. Carbonell, R.S. Michalski, and T. Mitchell,
editors, Machine Learning, an Artificial Intelligence Approach. Morgan Kaufmann,
1983.

2. R. S. King, S. Muggleton, R. A. Lewis, and M. J. E. Sternberg. Theories for muta-
genecity: a study in first order and feature based induction. Artificial Intelligence,
74, 1995.

3. W. Lee, S. Stolfo, and K. W. Mok. Mining audit data to build intrusion detection
models. In Knowledge discovery in databases 1998, pages 66–72, Fairfax, VA, 1998.

4. F. Neri. Comparing local search with respect to genetic evolution to detect in-
trusions in computer networks. In Congress on Evolutionary Computation 2000,
pages 512–517, IEEE Press, 2000.

420 F. Neri

5. J. H. Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, Mi, 1975.

6. D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, Ma, 1989.

7. K. A. De Jong, W. M. Spears, and F. D. Gordon. Using genetic algorithms for
concept learning. Machine Learning, 13:161–188, 1993.

8. C.Z. Janikow. A knowledge intensive genetic algorithm for supervised learning.
Machine Learning, 13:198–228, 1993.

9. A. Giordana and F. Neri. Search-intensive concept induction. Evolutionary Com-
putation, 3 (4):375–416, 1995.

10. J. Hekanaho. Background knowledge in ga-based concept learning. In 13th Inter-
national Conference on Machine Learning, pages 234–242, Bari, Italy, 1996.

11. P. Husbands and F. Mill. A theoretical investigation of a parallel genetic algorithm.
In Fourth International Conference on Genetic Algorithms, pages 264–270, Fairfax,
VA, 1991. Morgan Kaufmann.

12. M. Potter. The Design and Analysis of a Computational Model of Cooperative Co-
evolution. PhD thesis, Department of Computer Science. George Mason University,
VA, 1997.

13. F. Neri. First Order Logic Concept Learning by means of a Distributed Genetic
Algorithm. PhD thesis, Department of Computer Science. University of Torino,
Italy, 1997.

14. J. L. Shapiro. Does data-mod co-evolution improve generalization performances of
evolving learners? Lecture Notes in Computer Science, LNCS 1498:540–549, 1998.

15. R. E. Schapire. A brief introduction to boosting. pages 1401–1406, 1999.
16. T. Dietterich. An experimental comparison of three methods for constructing en-

sembles of decision trees: Bagging, boosting, and randomization. Machine Learn-
ing, 40:139–158, 2000.

17. R. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The multi-purpose incremental
learning system AQ15 and its testing application to three medical domains. In Fifth
National Conference on Artificial Intelligence, pages 1041–1045, Philadelphia, PA,
1986.

18. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, Cali-
fornia, 1993.

19. F. Neri and L. Saitta. Exploring the power of genetic search in learning symbolic
classifiers. IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-
18:1135–1142, 1996.

20. J. S. Schlimmer. Concept acquisition through representational adjustement. Tech-
nical Report TR 87-19, Dept. of Information and Computer Science, University of
Californina, Irvine, CA, 1987.

21. R. Quinlan. Oversearching and layered search in empirical learning. In Interna-
tional Conference on Machine Learning, Lake Tahoe, CA, 1995.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 421-430, 2001.
© Springer-Verlag Berlin Heidelberg 2001

The Influence of Learning in the Evolution of Busy
Beavers

Francisco B. Pereira1,2 and Ernesto Costa2

1Instituto Superior de Engenharia de Coimbra, Quinta da Nora, 3030 Coimbra, Portugal
2Centro de Informática e Sistemas da Universidade de Coimbra, Polo II, 3030 Coimbra,

Portugal
{xico, ernesto}@dei.uc.pt

Abstract. The goal of this research is to study how individual learning interacts
with an evolutionary algorithm in its search for good candidates for the Busy
Beaver problem. Two learning models, designed to act as local search
procedures, are proposed. Experimental results show that local search methods
that are able to perform several modifications in the structure of an individual in
each learning step provide an important advantage. Some insight about the role
that evolution and learning play during search is also presented.

1 Introduction

Evolution and learning are the two major forces that promote the adaptation of
individuals to the environment. Evolution, operating at the population level, includes
all mechanisms of genetic changes that occur in organisms over generations. Learning
operates at a different time scale. It gives to each individual the ability to modify its
phenotype during its life in order to increase its adaptation to the environment and,
hence, its chance to be selected for reproduction. In standard evolutionary
computation (EC) optimisation, learning has usually been implemented as local
search algorithms [1], [2], [3], [4]. These methods iteratively test several alternatives
in the neighbourhood of the learning individual trying to discover better solutions. At
the end of the learning process, the quality of an individual will be, not only the
measure of its initial fitness, but also of its ability to improve, which leads to a better
understanding of the fitness landscape. The combination of local search heuristics
with EC techniques is, in some contexts and situations, known as memetic algorithms
[5]. This designation is inspired by Richard Dawkin’s concept of meme, which
represents a unit of cultural evolution that can exhibit plastic adaptation.

In our research we are interested in studying how learning and evolution may be
combined in computer simulations. In this paper we use the Busy Beaver (BB)
problem as the testbed to study the above-mentioned interactions. In 1962, Tibor
Rado proposed this problem in the context of the existence of non-computable
functions [6]. It can be defined as follows: suppose a Turing Machine (TM) with a
two-way infinite tape and a tape alphabet={blank,1}. The question Rado asked was:
what is the maximum number of 1’s that can be written by a N-state halting TM when
started on a blank tape? This number, which is a function of the number of states, is
denoted by Ê(N). A TM that produces Ê(N) non-blanks cells is called a Busy Beaver.

422 F.B. Pereira and E. Costa

The BB is considered one of the most interesting theoretical problems and, since its
proposal, has attracted the attention of many researchers. Some values for Ê(N) and
the corresponding TMs are known today for small values of N. As the number of
states increases, the problem becomes harder and, for N�5, there are several
candidates that set lower bounds on the value of Ê(N). To prove that a particular
candidate is the N-state BB we must perform an exhaustive search over the space of
all N-state TMs and verify that no other machine produces a higher number of ones.
This is extremely complex due to the halting problem.

The search space of the BB problem possesses several characteristics, such as its
dimension and its complexity, that make it extremely appealing to the EC field.
Several attempts to apply EC techniques were reported in the past few years with
different levels of success [7], [8]. In a previous work we proposed two local search
algorithms designed to act as learning procedures when seeking for solutions to this
problem [2]. Experimental results showed that both of them were unable to improve
the performance of the evolutionary algorithm. A partial explanation, proposed in the
above-mentioned work, suggested that a combination of two factors made those local
search methods completely ineffective: the structure of the landscape and the
behaviour of the learning procedures. The topology of the search landscape is highly
irregular and has a very complex structure. We performed some empirical analysis
and verified that, in different areas of the search space, there are small groups of
neighbour valid solutions to the BB problem. The size of these groups and the quality
of the TMs that compose them varies but, nevertheless, they tend to be surrounded by
large low fitness areas composed by invalid solutions. The combination of these
factors makes the space very prone to premature convergence. In the beginning of the
simulation, EC methods quickly identify one of these areas. Then there is a high
evolutionary pressure towards this area and it is almost impossible to escape
premature convergence. On the other hand, both of the learning algorithms used in the
study act as typical hill-climbers. In each learning step they perform one modification
in the current solution, accepting it if it does not lead to a decrease in the fitness. In
the described situation, the efforts of learning methods are helpless, since the
exploration of very close neighbourhood will be ineffective to escape the basin of
attraction of the group of valid TMs. In this paper we introduce a new local search
method that is able to perform several modifications in the structure of a TM in each
learning step. Our goal is to determine what is the influence that this new situation has
in the evolutionary process. In the literature there are some reports of other learning
methods that carry out more than one modification in each step to overcome
limitations when searching difficult landscapes [9], [10].

The structure of the paper is the following: in the next section we present a formal
definition of the BB problem. In section 3 we describe our evolutionary model,
including the learning procedures used. Section 4 comprises some experimental
details about the simulation. In section 5 we present results of the experiments
performed and analyse them. Finally, in section 6, we present some conclusions and
suggest directions for future work.

The Influence of Learning in the Evolution of Busy Beavers 423

2 The Busy Beaver Problem

A deterministic TM can be specified by a sextuple (Q,P,G,d, s, f), where:
Q is a finite set of states, P is an alphabet of input symbols, G is an alphabet of tape

symbols, d is the transition function, s ³ Q is the start state and f ³ Q is the final
state. The transition function can assume several forms. The most usual one is:

d: Q�G � Q�G�{L,R}
where L denotes move the head left and R move right. Machines with a transition

function with this format are called 5-tuple TMs. A common variation consists in
considering a transition function of the form:

d: Q�G � Q�{G{L,R}}
Machines of this type are known as 4-tuple TMs. When performing a transition, a

5-tuple TM writes a symbol on the tape, moves the head and enters a new state. A
4-tuple TM either writes a new symbol on the tape or moves its head, before entering
the new state.

The original definition of the BB [6] considers 5-tuple TMs with N+1 states (N
states and an anonymous halt state). The tape alphabet has two symbols, G={blank,
1}, and the input alphabet has one, P={1}. The productivity of a TM is defined as the
number of 1’s present, on the initially blank tape, when the machine halts. Machines
that do not halt have productivity zero. Ê(N) is defined as the maximum productivity
that can be achieved by a N-state TM. This TM is called a Busy Beaver. In the 4-tuple
variant productivity is defined as the length of the sequence of 1’s produced by the
TM when started on a blank tape, and halting when scanning the leftmost one of the
sequence, with the rest of the tape blank. Machines that do not halt, or, that halt on
another configuration, have productivity zero [11]. Thus, the machine must halt when
reading a 1, this 1 must be the leftmost of a string of 1’s and, with the exception of
this string the tape must be blank. In our research we focus our attention on the
4-tuple variant.

3 Experimental Model

3.1 Representation

 In the experiments reported in this paper we are searching for good candidates for the
4-tuple BB(7). Without loss of generality we consider Q={1,2,3,4,5,6,7,f}, set 1 as the
initial state and f as the final state. Since G={blank,1}, the essential information
needed to represent a potential solution is reduced to the state transition table. Figure
1 shows a 4-tuple TM with 7 states (plus the halting state f) and its state transition
table. To codify the information contained in the table we use an integer string with
28 genes (4 genes per state) with the following format:

...New State Action

By blank By 1

New State Action

State 1

New State Action

By blank By 1

New State Action

State N

424 F.B. Pereira and E. Costa

3.2 Simulation and Evaluation

To evaluate an individual we simply decode the information from the chromosome
and then simulate the resulting TM. Due to the halting problem we must establish a
limit for the maximum number of transitions (MaxT). Machines that don’t halt before
this limit are considered non-halting TMs. To assign fitness we consider the following
factors in decreasing order of importance:
� Halting before reaching the predefined limit for the number of transitions;
� Accordance to the 4-tuple rules [11];
� Productivity;
� Number of used transitions;
� Number of steps made before halting.

We consider all these factors to assign fitness because we intend to explore
differences between “bad” individuals. With this fitness function a TM that never
leaves state 1 is considered worse than another one that goes through 3 or 4 states,
even if both are non-halting machines and have the same productivity. In some
preliminary experiments this approach proved to be more effective than using
productivity alone as fitness.

Fig. 1. A seven state 4-tuple TM and its corresponding transition table. The blank symbol is
represented by 0.

3.3 Learning Models

After evaluation an individual might be selected for learning. In this research we
perform experiments with two different local search procedures.

Random Local Search (RLS).
Given a current TM (machine that was built with the information encoded in the
chromosome of the individual selected for learning) perform the following actions:
1. Select one transition T used in the simulation of the current TM.
2. Randomly modify the action performed by transition T1.
3. Evaluate the resulting TM.
4. If the fitness of the resulting TM is equal or higher than the fitness of the current

TM, then the resulting TM becomes the current one.

1 Possible actions for one transition: write blank, write 1, move left or move right.

d By blank By one

Q New State Action New State Action

1 2 1 5 L

2 6 R 2 R

3 2 R F 1

4 5 R 6 L

5 3 R 7 0

6 4 1 1 L

7 4 1 4 0

2

34 5

6 1 0,1

1,L 0,R

1,1

0,R
0,R

1,0

0,1 1,L

f

0,R

1,R

1,L

7
1,0

0,1

The Influence of Learning in the Evolution of Busy Beavers 425

5. If the maximum number of learning steps has been equalled stop learning.
Otherwise go to 1.

RLS is identical to one the proposals from our previous work [2]. In each learning
cycle RLS performs one modification in the structure of the TM accepting it if it does
not lead to a decrease in fitness. Changes in the structure of the TM are limited to
actions performed by transitions. To ensure that this restriction is not biasing results
we performed some additional tests enabling RLS to change either actions or new
states and verified that there was no significant difference in the outcomes. Results
achieved by experiments using RLS will be useful just to have a comparison measure
with results obtained by the new algorithm, Multi Step Learning (MSL). The most
important difference between RLS and MSL is that, with the new method, in each
learning cycle an individual performs 2 or 3 changes in its structure. An algorithmic
description of MSL follows:

Multi Step Learning (MSL).

Given a current TM (machine that was built with the information encoded in the
chromosome of the individual selected for learning) perform the following actions:
1. Select one transition T1 used in the simulation of the current TM and that does not

lead to the final state.
2. Randomly modify the action performed by transition T1.
3. With a probability of 0.5 randomly modify the state to where transition T1 leads.

The final state is not considered as a possibility when selecting the new destiny.
4. Let S be the state to where T1 leads. Select, with equal probability, one transition

T2 from state S.
5. Randomly modify the action performed by transition T2.
6. Evaluate the resulting TM.
7. If the fitness of the resulting TM is equal or higher than the fitness of the current

TM, then the resulting TM becomes the current one.
8. If the maximum number of learning steps has been equalled stop learning.

Otherwise go to 1.

Modifications in the structure of the TM are done in components that are directly
connected, starting with the action of one transition, then the destiny state of the
transition (it changes with 0.5 probability) and, finally, the action of one of the
transitions from this state. With MSL, an individual has the possibility to jump to a
point in space that is not so close to its current position. We hope that this might give
to the learning individual a higher chance to escape from local optima and allow the
evolutionary process to perform better.

In this paper we use a Lamarckian strategy for learning. Lamarckian theory of
evolution claims that phenotypic characteristics acquired by individuals during their
lifetime are somehow re-encoded in their genes and directly inherited by their
descendants. In our experiments, at the end of the learning period, all changes induced
in the current TM are coded back to the genotype of the learning individual. Even
though Lamarckian theory proved to be wrong in biological systems, the idea has
been usefully applied in several experiments in the EC field [12], [13], provided that
some special considerations are taken into account. To prevent the tendency of
Lamarckian learning to increase the convergence rate of the evolutionary algorithm
we use a global parameter, the learning rate (LR), which is defined as the probability
of an individual being subject to learning. This way we are able to restrict the number

426 F.B. Pereira and E. Costa

of individuals that learn in each generation and we hope that this might control the
tendency to premature convergence.

4 Experimental Settings

The experiments presented concern the search for the 4-tuple BB(7). The settings of
the evolutionary algorithm are the following: Number of evaluations: 200,000,000;
Population Size: 500; Elitist Strategy; Tournament Selection with tourney size 5;
Single point Mutation; Mutation rate: 0.025; Graph Based Crossover; Maximum
graph crossover size: 4; Crossover rate: 0.7; MaxT (Maximum number of transitions):
100,000; LR = {0.1, 0.5, 1}.

Graph based crossover was presented in [14]. It was designed to work with
individuals with a graph-like structure. The main idea of this operator is the exchange
of sub-graphs between individuals. Maximum graph crossover size defines the
number of states belonging to each sub-graph. Results presented confirmed that, in
this domain, it clearly outperforms classical crossover operators.

During learning the number of steps (i.e., number of learning cycles) performed by
an individual is set to 10 and remains fixed for all experiments. Each step counts as
one evaluation. The initial population is randomly generated and for every set of
parameters we performed 30 runs with the same initial conditions and different
random seeds. In the next section we present results from 7 distinct experiments: one
where the individuals do not learn (NoLearn) and 3 experiments using each one of the
two learning procedures, RLS and MSL. The only difference between the 3
experiments using the same learning method is the LR value. Even though values for
different settings were set heuristically we performed some tests with other values and
verified that, within a moderate range, there was no significant difference in the
outcomes.

5 Results

In graph 1 we present, for all different experiments, the productivity of the best
individual of the final generation in each one of the 30 runs. A brief perusal of the
results suggests that, with some settings, learning was able to cause a considerable
improvement in the search process. In the remainder of this section we try to identify
the conditions that were required to obtain such improvements. Before the application
of EC techniques to the 4-tuple BB(7) the productivity of the best-known candidate
was 37 [15]. We adopt this value as the threshold of minimum quality and focus our
attention in runs that were able to find TMs with higher productivity. Assuming this
we can see that only experiments with MSL were able to outperform the experiment
without learning. A standard evolutionary approach was able to find TMs with
productivity > 37 in 10% of the runs (3 out of 30 runs were able to find such
machines). Using MSL with LR=0.1 the percentage raises to 20% (6 out of 30 runs).
RLS was never able to help the search process. Results for all LRs are of inferior
quality than those achieved by experiments with MSL and by the NoLearn
experiment. The best experiment with RLS only found two TMs with
productivity > 37. This result confirms our previous conclusions. RLS just performs

The Influence of Learning in the Evolution of Busy Beavers 427

small readjustments in the organisation of the TMs. Given the structure of the
landscape it is unable to help search to escape from local optima areas.

Graph 1. Productivity of the best individual of the final generation for each one of the 30 runs.

Now, we focus our analysis on the results achieved by MSL. It is clear that results
obtained by experiments with MSL are clearly better than those obtained by the
experiments with RLS. This confirms that MSL is a more effective method to help
evolution to escape from the traps that exist in the landscape. When searching for
solutions in highly irregular landscapes there is an important advantage if the learning
individual is allowed enlarge its neighbourhood region (this region includes all points
to where the individual is allowed to jump in just one learning step). There are,
however, significant differences in the results achieved by the three experiments that
use MSL, suggesting that the ability to perform larger jumps is not a sufficient
condition to improve performance. Results from graph 1 show that infrequent
learning (LR=0.1) is most beneficial to this situation. When LR=0.1, MSL helps
evolution to find 6 TMs with productivity > 37. This number decreases to 4 with
LR=0.5 and to 3 with LR=1. It is not surprising that the performance of experiments
with MSL decreases as the LR increases. Since it re-encodes all changes back to the
genotype, Lamarckian learning is a very strong mechanism and it pushes the search
very fast to a local optimum. Given the landscape that we are dealing with, this effect
is even magnified and the search process will, with high probability, converge to such
a local optimum. Looking at the left columns from graph 1 (runs whose best TMs
have productivity�35) it is possible to verify that this situation happens with higher
probability in experiments with LR�0.5. Convergence occurs nearly in the beginning
of the runs and individuals from subsequent generations are not able to escape from
this basin of attraction.

0

2

4

6

8

10

12

14

16

18

20

22

<=35 36-37 38-160 161-164
Productivity

Nr. of Runs

NoLearn RLS 0.1 RLS 0.5 RLS 1 MSL 0.1 MSL 0.5 MSL 1

428 F.B. Pereira and E. Costa

Graph 2. Period in the simulation when TMs with productivity > 37 were found.

In addition to increasing the likelihood of finding promising solutions, MSL also
helps evolution to discover them earlier. In graph 2 we present the period in the
simulation when TMs with productivity>37 were discovered. Even if we discard TMs
that were found before 10 millions steps (they were probably found due to some lucky
move) we see that experiments with MSL consistently found good candidates before
100 million evaluations. The experiment without learning only started to find good
candidates after this period. This gives credit to the conviction that learning is really
helping evolution to find good solutions. Some results collected from the experiments
help to clarify what might be happening during the search process. In table 1 we
present the contribution of evolution and learning to the discovery of new best
individuals. Contribution from evolution includes all new best individuals generated
by crossover and/or mutation and contribution from learning includes all new best
individuals that result from the application of local search procedures. Values
obtained in each one of the experiments are divided over 4 temporal periods. If we
look to the results of the line labelled MSL 0.1 (experiment using MSL with LR=0.1)
there are two important features that distinguish it from all other experiments with
learning. The first one is the number of improvements obtained by evolution. In the
period ranging from 1 million to 100 million evaluations, the number of
improvements due to evolution is similar to the values achieved by the experiment
without learning. Between 10 million and 100 million evaluations this value is even
superior (131 vs. 120), which is a remarkable result, especially if we consider that in
experiments with LR=0.1 approximately half of the evaluations are spent in the
learning process. This result suggests that learning is not preventing evolution from
sampling the space. At the contrary, it is helping evolution in this task. The second
feature concerns the relative weight of learning in the process of finding new
solutions. Values in parenthesis in the columns labelled Learn represent the
percentage of all improvements from that period that were due to learning. The lowest
values are always found on the line labelled MSL 0.1. Evolution is clearly more
effective than learning in the process of finding new best solutions. Only in the final
period, when the search has become stable, the weight of learning increases to values
similar to the ones presented by evolution. This suggests that when an evolutionary
algorithm is starting to explore the space, moderate (i.e., low LR) Lamarckian

0

1

2

3

4

 0-10 11-50 51-100 101-150 151-200
Evaluations (millions)

Nr. of TMs

NoLearn RLS 0.1 RLS 0.5 RLS 1 MSL 0.1 MSL 0.5 MSL 1

The Influence of Learning in the Evolution of Busy Beavers 429

learning might give some clues about the best paths to follow. Nevertheless, it is
evolution that is guiding the process. The role of learning is to present some hints that
might allow the early discovery of promising areas to explore. However, just like it
was shown, this small effect is important to obtain good results. A different scenario
occurs if there is too much pressure (LR too high). In this situation learning acts as the
primary guiding force of the search process and evolution plays a secondary role.
Since learning in this context is, by definition, a local procedure, search will most
likely end up in the nearest local optimum.

Table 1. Contributions from evolution (columns labelled Ev.) and learning (columns labelled
Learn) to the improvement of the best solution during simulation. For each experiment, results
presented are the sum of 30 runs. Results are divided over 4 temporal periods of the simulation.
Values in parenthesis in the columns labelled Learn represent the percentage of all
improvements from that period that were due to learning.

Periods of the Simulation
Evals.

(millions)
0 to 1 1 to 10 10 to 100 100 to 200

Ev. Learn Ev. Learn Ev. Learn Ev. Learn
NoLearn 1096 146 120 43
RLS 0.1 669 302 (31) 110 42 (28) 74 26 (26) 31 22 (41)
RLS 0.5 376 600 (62) 59 103 (64) 50 71 (59) 4 10 (71)
RLS 1 212 768 (78) 44 108 (71) 30 90 (75) 4 14 (78)

MSL 0.1 798 222 (22) 141 50 (26) 131 42 (24) 17 12 (41)
MSL 0.5 365 505 (58) 86 69 (45) 77 67 (46) 12 14 (54)
MSL 1 231 572 (71) 53 91 (63) 70 83 (54) 12 30 (71)

6 Conclusions and Further Work

In this paper we studied the interactions that occur between evolution and learning
when searching for good solutions for the BB problem. We presented the results of
several experiments performed within a Lamarckian framework and showed that a
procedure able to perform several modifications in the structure of the learning
individual in each learning step is most beneficial. We also identified some conditions
that should be met to maximise the search performance of the evolutionary algorithm:
� Evolution should be the primary force responsible for sampling the landscape.
� A moderate contribution of a learning procedure (with a considerable degree of

freedom in what concerns the definition of local neighbourhood) is very important
to help evolution in its task.
As future work we will study the same kind of interactions with another learning

strategy, known as the Baldwin Effect. We intend to analyse if the conditions
identified in the current work are extensible to this learning framework.

430 F.B. Pereira and E. Costa

Acknowledgments. This work was partially funded by the Portuguese Ministry of
Science and Technology, under Program PRAXIS XXI.

References

1. Belew, R. and Mitchell, M. (1996). Adaptive Individuals in Evolving Populations: Models
and Algorithms, Santa Fe Institute in the Sciences of Complexity, Vol. XXVI, Reading,
MA: Addison-Wesley.

2. Pereira, F. B., Machado, P., Costa, E., Cardoso, A., Rodriguez, A. Santana, R., and Soto,
M. (2000). Too Busy to Learn. Proceedings of the Congress on Evolutionary Computation
(CEC-2000), pp. 720-727.

3. Sasaki, T. and Tokoro, M. (1999). Adaptation under Changing Environments with Various
Rates of Inheritance of Acquired Characters: Comparison Between Darwinian and
Lamarckian Evolution. In McKay, B., Yao, X., Newton, C. S., Kim, J. H. and Furuhashi, T.
(Eds.), Proceedings of 2nd Asia-Pacific Conference on Simulated Evolution and Learning
(SEAL-98).

4. Whitley, D., Gordon, S. and Mathias, K. (1994). Lamarckian Evolution, the Baldwin
Effect, and Function Optimization. In Davidor, Y. Schwefel, H. P. and Manner, R. (Eds.)
Parallel Problem Solving from Nature (PPSN-III), pp. 6-15.

5. Corne, D, Glover, F. and Dorigo, M. (1999). New Ideas in Optimization. McGraw-Hill.
6. Rado, T. (1962) On non-computable functions, The Bell System Technical Journal, vol. 41,

no. 3, pp.877-884.
7. Jones, T. and Rawlins, G. (1993). Reverse Hillclimbing, Genetic Algorithms, and the Busy

Beaver Problem. In Forrest, S. (Ed.). Proceedings of the 5th International Conference on
Genetic Algorithms (ICGA-93), pp.70-75, San Mateo, CA, Morgan Kaufmann.

8. Machado, P., Pereira, F. B, Cardoso, A., Costa, E. (1999). Busy Beaver – The Influence of
Representation, In Poli, R., Nordin, P. Langdon, W. and Fogarty, T. (Eds.). Proceedings of
the Second European Workshop in Genetic Programming (EuroGP-99).

9. Bull, L. (1999). On the Baldwin Effect. Artificial Life, Vol. 5(3), pp. 241-246.
10. Pereira, F. B. and Costa, E. (1997). The Influence of Learning in the Optimization of Royal

Road Functions, Proceedings of the 3rd International Mendel Conference on Genetic
algorithms, Optimization Problems, Fuzzy Logic, Neural Networks and Rough Sets
(Mendel’97), pp 244-249.

11. Boolos, G., and Jeffrey, R. (1995). Computability and Logic, Cambridge University Press.
12. Ackley, D. and Littman, M. (1994). A Case for Lamarckian Evolution. In Langton, C.

(Ed.), Artificial Life III, pp. 3-10, Addison-Wesley.
13. Imada, A. and Araki, K. (1996). Lamarckian Evolution of Associative Memory. In

Proceedings of the Third International Conference on Evolutionary Computation (ICEC-
96), pp.676-680.

14. Pereira, F.B., Machado, P., Costa, E. and Cardoso A. (1999). Graph Based Crossover - A
Case Study with the Busy Beaver Problem. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon,
M. H., Honavar, V., Jakiela, M., & Smith, R. E. (Eds.). GECCO-99: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 1149-1155, Morgan Kaufmann.

15. Lally, A., Reineke, J. and Weader, J. (1997). An Abstract Representation of Busy Beaver
Candidate Turing Machines, Technical Report, Van Gogh Group, Rensselaer Polytechnic
Institute.

Automated Solution of a Highly Constrained
School Timetabling Problem – Preliminary

Results

Marc Bufé, Tim Fischer, Holger Gubbels, Claudius Häcker, Oliver Hasprich,
Christian Scheibel, Karsten Weicker?, Nicole Weicker, Michael Wenig, and

Christian Wolfangel

University of Stuttgart, Faculty of Computer Science, Germany

Abstract. This work introduces a highly constrained school timetabling
problem which was modeled from the requirements of a German high
school. The concept for solving the problem uses a hybrid approach.
On the one hand an evolutionary algorithm searches the space of all
permutations of the events from which a timetable builder generates the
school timetables. Those timetables are further optimized by local search
using specific mutation operators. Thus, only valid (partial) timetables
are generated which fulfill all hard constraints.

1 Introduction

Timetabling problems occur in many companies and educational institutions.
Especially in education we can distinguish three different types of problems: the
school timetabling problem, the university timetabling problem, and the exam
timetabling problem. All three problems have a slightly different focus [1]. There-
fore, different techniques are necessary for solving them. In this work we consider
the school timetabling problem. The school timetabling problem is a complex
real-world problem with many interdependencies. Thus, it can be solved seldom
by divide-and-conquer or greedy techniques. Practitioners report that feasible
solutions may be found manually within a rather short period of time. However,
manual solutions satisfying organizational or didactic requirements may need
several person-days work. The timetabling problem has been shown to be NP-
complete as soon as unavailabilities of teachers, classes, or rooms are involved [2].
Organizational requirements are of increasing importance since many teachers
are only working part-time and inconvenient, flexible time arrangements are nec-
essary for them. Moreover, schools put a lot of thought into didactic issues, e.g.
the arrangement of the different subjects within the week. These considerations
should be reflected in the timetables.

? correspondence address: Karsten Weicker, University of Stuttgart, Breitwiesen-
str. 20–22, 70565 Stuttgart, Germany, Email: Karsten.Weicker@informatik.uni-
stuttgart.de

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 431–440, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

432 Marc Bufé et al.

2 The School Timetabling Problem

When talking about school timetabling problems, two different goals in
timetabling must be distinguished. First, the simple form of the problem only
requires that a feasible solution is found concerning certain hard constraints.
However, this is not enough in practice where, second, additional soft constraints
should be fulfilled. The simple timetabling problem involves a set of teachers T ,
a set of classes C, a set of rooms R, a set of time periods P , and a set of events
E. Each event requires a class c(e) ∈ C, a teacher t(e) ∈ T , and a number of
weekly hours hours(e) ∈ N. In order to solve the problem a mapping must be
found which assigns each event to a room and a time period for each required
hour, i.e.

TT : E → 2P×R

where |TT (e)| = hours(e). As an example, let e be chemistry for one class, then
TT (e) = {(M − 1, 101), (W − 3, 102)} assigns the chemistry lectures to the first
hour on Mondays and the third hour on Wednesdays, the according rooms have
the numbers 101 and 102.

Furthermore, a solution of the timetabling problem must suffice the follow-
ing hard constraints. In order to simplify the notation in the constraints, the
components of an assignment a = (p, r) ∈ P × R may be accessed by p(a) = p
for the time period and r(a) = r for the room.

– Each teacher participates in at most one event per time slot.

∀e∈E∀e′∈E\{e}
(

t(e) = t(e′) ⇒ (∀a∈TT (e)∀a′∈TT (e′)p(a) 6= p(a′)
))

(1)

– Each class participates in at most one event per time slot.

∀e∈E∀e′∈E\{e}
(
c(e) = c(e′) ⇒ (∀a∈TT (e)∀a′∈TT (e′)p(a) 6= p(a′)

))
(2)

– Each room is assigned to at most one event per time slot.

∀e∈E∀e′∈E\{e}∀a∈TT (e)∀a′∈TT (e′) (r(a) = r(a′) ⇒ p(a′) 6= p(a′)) (3)

This simple problem is not sufficient for modeling the requirements of a real
schools timetable. In the remainder of this section the necessary extensions with
additional hard and soft constraints are described.

To begin with, in German schools it is common practice to mix several classes
for certain subjects, e.g. for physical education or religious knowledge lessons.
As a consequence, more than one class c(e) ⊂ C is involved in one event. How-
ever it is still required that each event must be scheduled to exactly one room.
That means that religious knowledge lessons must be split for each age-class into
two events. All protestant pupils participate in one event, all catholic pupils in
another event. Although both events comprise pupils of the same classes, they
are distinct and should be scheduled within the same time periods to guarantee
a timetable of high quality. Thus, those events are grouped together in event

Automated Solution of a Highly Constrained School Timetabling Problem 433

groups. All other events are called singular events. The singular events are de-
noted ES ⊆ E, the grouped events EG = E \ ES ⊆ E. For each event e ∈ E, we
denote by [e] ⊆ E the events that belong together, i.e. for e ∈ ES it holds that
[e] = {e} and for e ∈ EG all events in the group of e are contained in [e]. The
following hard constraint is affected slightly by this modification.

– Each class participates in at most one event per time slot.

∀e∈E∀e′∈E\[e]
(
(c(e) ∩ c(e′) 6= ∅) ⇒ (∀a∈TT (e)∀a′∈TT (e′)p(a) 6= p(a′)

))
(2’)

In favor of more flexibility in modeling timetabling problems and due to events
requiring more than one teacher’s attendance, we also allow more than one
teacher t(e) ⊂ T for each event.

– Each teacher participates in at most one event per time slot.

∀e∈E∀e′∈E\{e}
(
(t(e) ∩ t(e′) 6= ∅) ⇒ (∀a∈TT (e)∀a′∈TT (e′)p(a) 6= p(a′)

))
(1’)

Moreover, teachers, classes, and rooms are extended by further attributes
in order to comprise all necessary constraints. First of all, all three basic ele-
ments of the problem may be provided with unavailabilities for certain periods,
unavail(t), unavail(c), unavail(r) ⊂ P . The according hard constraints read as
follows.

∀e∈E∀a∈TT (e) p(a) 6∈ unavail(t(e)) (4)
∀e∈E∀a∈TT (e) p(a) 6∈ unavail(c(e)) (5)
∀e∈E∀a∈TT (e) p(a) 6∈ unavail(r(e)) (6)

In addition to the unavailabilities, most events have special requirements for
the equipment of the room, e.g. a biology lab, speech lab, geography room. Those
requirements are summarized in room features F . The features are assigned to
the rooms f(r) ⊂ F and the required features to the events f(e) ⊂ F . The
required room features must be considered in the assignment process.

∀e∈E∀a∈TT (e) f(e) ⊆ f(r(a)) (7)

All constraints (1’), (2’), (3), . . . , (7) must be fulfilled by a solution to be feasible.
The succeeding conditions are soft constraints which are encouraged to be

fulfilled. They form the didactic quality of the timetable and consider certain
organizational issues a timetable must meet in order to be acceptable.

(S-1) Events should be placed more likely in the morning than in the afternoon,
e.g. an average class has at most once or twice a week lessons in the
afternoon.

(S-2) Many teachers have part-time jobs which means that they should have at
least a minimum number of free days each week.

434 Marc Bufé et al.

(S-3) Further requirements for certain events like a minimal and maximal num-
ber of double hours, fortnightly or marginal placement should be consid-
ered.

(S-4) A uniform distribution of the hours of each event over the week is desired
(cf. [3]). In addition, certain event groups or singular events can be marked
as associated which means that they should not take place at the same
day.

(S-5) There should be no gaps in the morning and afternoon schedules of each
class and teacher (cf. [4]).

(S-6) For each time period a teacher must be available to supervise a class in
case of an unexpected absence of the regular teacher (cf. [3]).

3 Related Work

Automated timetabling has been an issue within the last 30 years. Schaerf [1]
gives an overview of the techniques used for the different problems of school
timetabling, university timetabling, and exam timetabling. Junginger [5] pro-
vides a list of the early approaches to the school timetabling problem in Ger-
many. A survey on the usage of evolutionary techniques used for timetabling
and scheduling can be found in [6] The most available evolutionary approaches
to the school timetabling problem use a direct representation of the timetable
(e.g. [7,3,4]). Those algorithms have the huge disadvantage that the evolutionary
operators may produce infeasible timetables which must be repaired by a genetic
repair function. This has very often the effect that the correlation between the
parent timetables and the offsprings is very low. Where the mutation operator
can be chosen appropriately to minimize these effects, this is not possible for
the crossover operator. Thus often the crossover acts more like a macromuta-
tion than a recombination. Fernandes et. al. [4] used standard operators where
Colorni et. al. [7,3] designed special operators which can only guarantee partial
feasibility. As a consequence in [3] it is reported that tabu search outperforms the
genetic algorithm in most test cases. Another high-quality tabu search algorithm
was presented by Schaerf [8].

Instead of using a direct representation, there are also approaches in uni-
versity timetabling where a timetable builder is used which generates a feasible
timetable from an individual containing several parameters for the timetable
builder (e.g. [9]).

4 Concept

In the previous section two different techniques have been pointed out to be
very promising in evolutionary timetabling: phenotypic mutations and timetable
builders using genotypic operators since in both approaches operators may be de-
fined in such a way that a high correlation between parent and offspring timeta-
bles is guaranteed. Furthermore, they can always generate feasible (probably

Automated Solution of a Highly Constrained School Timetabling Problem 435

partial) timetables fulfilling all hard constraints. As a consequence a hybrid ap-
proach was used to combine the positive aspects of both standard approaches
and to minimize their negative drawbacks. The individuals use two different
representations of the timetable: a parametric representation and a high level
representation. The parametric representation consists of a permutation of the
events which is understood as a queue for the timetable builder. The timetable
builder is a deterministic algorithm, described in the next section, which creates
a timetable from the queue. Its result is stored in the second half of the indi-
vidual. Note, that this timetable builder might create only partial timetables
where certain events remain unplaced. The different levels of this approach are
sketched in Figure 1. The timetable builder is an essential technique since it

Permutations
of Event
Population

Switch MutationPMX

High Level
Mutations

Timetable Builder

Fig. 1. Hybrid approach using a timetable builder and operators on both levels of
representation.

may use many deterministic “intelligent” heuristics to create a timetable. Thus
a high quality can already gained by the timetable builder. However, the use of
those heuristics narrows the search space critically. Given the huge amount of
constraints no timetable builder could be found which actually placed all events
as we will discuss in Section 6. As a consequence the phenotypic mutations are
necessary to optimize those timetables in order to get all events placed or to
fulfill more violated soft constraints.

On the event queues, the evolutionary algorithm uses a mutation swapping
two elements and the partial matching crossover (PMX) with the first crossing
point fixed at the beginning of the queue to increase the correlation between par-
ents and children. These operators provide the exploration of the search space.
Since the timetable builder is deterministic the resulting timetable may be repro-
duced anytime and slightly changed permutations should also result in related
timetables.

436 Marc Bufé et al.

1: INPUT: list with all hours of one event
2: for daytime = morning , afternoon do
3: for constraints = all , hardOnly do
4: for day = M,W,Th, Tu, F do
5: check for each slot ∈ daytime whether there is a room such that
6: no unavailability (room, class, teacher) for slot ∧
7: room, class, and teacher are disposable ∧
8: constraints = all ⇒ soft constraints are fulfilled
9: if such a room and slot exists then

10: assign first hour in list to slot
11: end if
12: end for
13: end for
14: end for
15: if not all hours in list are placed then
16: undo all assignments of the event
17: end if

Fig. 2. Placing algorithm within the timetable builder.

Furthermore, various mutation operators are defined on the complex timeta-
bles. They respect the feasibility of the timetable and apply little changes to the
timetable. The result of this mutation has no effect on the permutation used by
the timetable builder. This local optimization of the timetables should encour-
age a high exploitation of interesting solutions in the search space. Currently
three different types of mutation operators are used. The first operator unplaces
an event or a part of an event. The second operator tries to place an unplaced
event or a partially unplaced event. A the third operator combines both oper-
ations by moving an event from one time slot to a different time slot. Also all
three operators try to place the unplaced events after their primary operation.

Since the algorithm uses uniform parental selection and only replaces the
worst 40 percent of the population in each generation those operators are able
to perform an extensive parallel hill-climbing search on the better individuals.

5 Details

Different kinds of constraints need different constraint handling within the
evolutionary algorithm. The timetable builder considers the hard constraints
(1’), (2’), (3), . . . , (7), i.e. all solutions generated from the permutation of events
fulfill those requirements – if this is not possible a partial timetable is created
and certain events remain unplaced. Also the timetable builder takes care of
the soft constraints (S-2) and (S-3) directly. Constraints (S-1) and (S-4) are
tried to be fulfilled indirectly by the timetable builder. The high-level mutation
operators can only consider the hard constraints (1’), (2’), (3), . . . , (7) where
soft constraints may be hurt. All soft constraints are considered within the fitness
function.

Automated Solution of a Highly Constrained School Timetabling Problem 437

Table 1. Considered constraints in the fitness function.

level of standard
constraint averaged value deviation

(S-1) classes C ES-1[TT] = 1
|C|

∑
c∈C violation for c

√
VS-1[TT]

(S-2) teachers T ES-3[TT] = 1
|T |

∑
t∈T violation for t

√
VS-3[TT]

(S-3) events E ES-4[TT] = 1
|E|

∑
e∈E violation for e

√
VS-4[TT]

(S-4) events E ES-5[TT] = 1
|E|

∑
e∈E violation for e

√
VS-5[TT]

(S-5) T and C ES-6[TT] = 1
|T∪C|

∑
x∈T∪C violation for x

√
VS-6[TT]

(S-6) periods P ES-7[TT] = 1
|P |

∑
p∈P violation for p

√
VS-7[TT]

(P) timetable EP [TT] = |unplacedevents|
|allevents| —

(Q) timetable EQ[TT] = |partiallyplacedevents|
|allevents| —

The timetable builder consists of three phases. In the first phase, free days
are assigned to the part time teachers (cf. S-2) using a round-robin method. This
method guarantees that the free days are distributed equally over the week. The
strategy which days are assigned to which teacher depends on the event queue
in the individual. The second phase, splits up the events into single or paired
lecture hours based on the preferences contained in the data (cf. S-3). Then, in
the third phase, the placing algorithm in Figure 2 is applied to all events. This
algorithm guarantees that first all hours are tried to be placed in the morning (in
the first instance under consideration of all constraints, then only meeting the
hard constraints). If this fails they are placed in the afternoon. This ensures that
constraint (S-1) is fulfilled as good as possible. Also the uniform distribution of
the hours of each event over the week (S-4) is encouraged by the order of the
days for trying to find a valid time slot.

To define a fitness function the degree of constraint violation has to be mea-
sured. Since the different constraints are defined on different levels within the
timetable we define first all those measures in Table 1. Then, the fitness func-
tion is composed of three components, the number of placed events f , the soft
constraints g, and the standard deviation h concerning the soft constraints:

f(TT) = κ1EP [TT] + κ2EQ[TT]

g(TT) =
6∑
i=1

γiES-i[TT]

h(TT) =
6∑
i=1

ρi

√
VS-i[TT]

438 Marc Bufé et al.

Fig. 3. Graphical user interface displaying the timetables of a class, a teacher, and
a room from left to right. Conflicts are displayed in the top section and at the right
unplaced events and possible free rooms for an event are shown.

where κi, γi, and ρi are adjustable weights. The standard deviation is considered
to guarantee a fair distribution of the constraint violations. The fitness function
is defined as the length of the vector (f(TT), g(TT), h(TT)) which has to be
minimized.

6 Results

The presented concept is implemented in Java (cf. Figure 3). It allows not only
the generation of a timetable using the evolutionary algorithm, also manual
optimizations and further local search are possible.

The timetabling data is provided by a German high school and consists of
61 teachers, 23 classes, 49 rooms, and 351 events. The high school comprises 9
age-classes – the first 7 age-classes are split into three parallel classes, the last
2 age-classes are taught using individual selections of courses. Thus each of the
latter age-classes is considered as one class where only fractions take part in
various parallel courses. The rooms contain many special rooms for the different
subjects.

Several optimization runs have been executed where always 4000 generations
are computed using a population size of 20. Because of restrictions caused by
the Java programming language the rather small population size is necessary.
Each optimization run needs approximately 12 hours computation time. We have
carried out experiments using genotype operations only (A), experiments start-
ing with genotype only operations where after 1200 generations the genotype

Automated Solution of a Highly Constrained School Timetabling Problem 439

50

60

70

80

90

100

110

0 1000 2000 3000 4000

be
st

 f
itn

es
s

generation

A
B
C

40

50

60

70

80

90

100

110

0 1000 2000 3000 4000

vi
ol

at
io

ns
: g

ap
s

in
 c

la
ss

 T
T

generation

A
B
C

200

250

300

350

400

0 1000 2000 3000 4000

vi
ol

at
io

ns
: g

ap
s

in
 te

ac
he

rs
 T

T

generation

A
B
C

A: only genotype operations
B: first genotype, then additional phenotype
C: phenotype mutation only

A B C
Best fitness 61.0 58.6 69.0
Unplaced events 1 0 0
Partially placed events 0 1 1
Gaps in class’ timetables 52 45 63
Gaps in teachers’ timetables 238 219 272
Teachers free day 22 25 28
Double hours 26 28 33

Fig. 4. Experimental results.

mutation is replaced by the phenotype mutations (B), and experiments using
phenotypic mutation only (C).

Due to the expensive fitness function tuning the algorithm is a tedious (and
ongoing) task. As a consequence, we could not produce enough results to get
statistical confidence for any of the above experimental setups. Thus, we provide
the best result for each of the setups.

The experiments show that the phenotype mutations starting after 1200 gen-
erations help to reach a better fitness compared to the experiments using geno-
type operators only. Primary reason for this effect is the improved ability of
the phenotype operators to move single hours and thus create partially placed
events. This also leads to better scores concerning the gaps in individual timeta-
bles. The algorithm using only phenotype mutation is also able to place almost
all events but without the timetables of high quality as starting points created
by the genotype operators it cannot reach an overall quality comparable to the
hybrid approach. Other experiments with slightly changed setups tend to similar
results.

These results indicate that the algorithm is an encouraging approach. How-
ever, the results are still not good enough to be used in daily school practice.
To improve the algorithm in the future, the phenotypic operators are planned to
get more intelligence in choosing time slots for placing events and in resolving
constraint violations in the timetable.

440 Marc Bufé et al.

7 Conclusion

This work presents an evolutionary timetabling algorithm for highly constrained
school timetabling problems. Where most previous work uses an algorithm either
on the high-level representation of a timetable or on a low-level encoding (to-
gether with a timetable builder) this work chooses a hybrid approach where both
techniques are combined. The algorithm respects all hard constraints, i.e. no in-
feasible solutions are generated, – additional soft constraints may be weighted
and are considered within the fitness function. In particular the algorithm is
designed in such a way that there is a high correlation between the individuals
before and after the operators’ application. This enables an effective search where
on the one hand the recombination preserves characteristics of parent candidate
solutions and on the other hand the mutation on the high-level representation
allows the use of very sophisticated heuristics for the fine-tuning of timetables.
These heuristics will be included in the near future. The consideration of stan-
dard deviations within the fitness function guarantees a fair distribution of soft
constraint violations over all events, classes, and teachers.

References

1. Andrea Schaerf. A survey of automated timetabling. Artificial Intelligence Review,
13(2):87–127, 1999.

2. S. Even, A. Itai, and A. Shamir. On the complexity of timetabling and multicom-
modity flow problems. SIAM Journal of Computation, 5(4):691–703, 1976.

3. Alberto Colorni, Marco Dorigo, and Vittorio Maniezzo. Metaheuristics for high-
school timetabling. Computational Optimization and Applications, 9(3):277–298,
1998.

4. Carlos Fernandes, João Paulo Caldeira, Fernando Melicio, and Agostinho Rosa.
High school weekly timetabling by evolutionary algorithms. In ACM SAC 99, pages
344–350, New York, 1999. ACM.

5. Werner Junginger. Timetabling in germany – a survey. Interfaces, 16(4):66–74,
1986.

6. Emma Hart and David Corne. The state of the art in evolutionary approaches to
timetabling and scheduling. EvoStim – The EVONET Working Group on Evolu-
tionary Scheduling and timetabling, 1998.

7. Alberto Colorni, Marco Dorigo, and Vittorio Maniezzo. Genetic algorithms: A new
approach to the time-table problem. In M. Akgül, editor, Combinatorial Optimiza-
tion, pages 235–239. Springer, Berlin, 1990.

8. Andrea Schaerf. Tabu search techniques for large high-school timetabling problems.
Technical Report CS-R9611, CWI, Amsterdam, NL, 1996.

9. Ben Paechter, R. C. Rankin, Andrew Cumming, and Terence C. Fogarty.
Timetabling the classes of an entire university with an evolutionary algorithm. In
Agoston E. Eiben, Thomas Bäck, Marc Schoenauer, and Hans-Paul Schwefel, edi-
tors, Parallel Problem Solving from Nature – PPSN V, pages 865–874, Berlin, 1998.
Springer. Lecture Notes in Computer Science 1498.

Design of Iterated Local Search Algorithms
An Example Application to the Single Machine Total

Weighted Tardiness Problem

Matthijs den Besten1, Thomas Stützle1, and Marco Dorigo2

1 Darmstadt University of Technology, Intellectics Group,
Alexanderstr. 10, 64283 Darmstadt, Germany

2 Université Libre de Bruxelles, IRIDIA,
Avenue Franklin Roosevelt 50, CP 194/6, 1050 Brussels, Belgium

Abstract. In this article we investigate the application of iterated local
search (ILS) to the single machine total weighted tardiness problem.
Our research is inspired by the recently proposed iterated dynasearch
approach, which was shown to be a very effective ILS algorithm for this
problem. In this paper we systematically configure an ILS algorithms
by optimizing the single procedures part of ILS and optimizing their
interaction. We come up with a highly effective ILS approach, which
outperforms our implementation of the iterated dynasearch algorithm
on the hardest benchmark instances.

1 Introduction

In the single machine total weighted tardiness problem (SMTWTP) n jobs have
to be sequentially processed on a single machine. Each job j has a processing time
pj , a weight wj , and a due date dj associated, and the jobs become available for
processing at time zero. The tardiness of a job j is defined as Tj = max{0, Cj −
dj}, where Cj is the completion time of job j in the current job sequence. The
goal is to find a job sequence which minimizes the sum of the weighted tardiness
given by

∑n
i=1 wi · Ti.

The SMTWTP is an NP-hard [9] scheduling problem and instances with
more than 50 jobs can often not be solved to optimality with state-of-the-art
branch & bound algorithms [1,4]. Therefore, several heuristic methods have been
proposed for its solution. These include simple construction heuristics like the
Earliest Due Date or the Apparent Urgency heuristics (see [17] for an overview)
and metaheuristics like simulated annealing [14,17], tabu search [4], genetic algo-
rithms [4], ant colony optimization (ACO) [5,15], and iterated local search (ILS)
[3].

ILS appears to be a very promising approach for solving the SMTWTP,
because the ILS algorithm by Congram, Potts, and de Velde, called iterated dy-
nasearch [3], has shown so far, together with the recent ACO algorithm due
to den Besten, Stützle, and Dorigo[5], the best performance results for the
SMTWTP. Despite the very good performance of iterated dynasearch, it is not

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 441–451, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

442 M. den Besten, T. Stützle, and M. Dorigo

Algorithm 1 Algorithmic outline of iterated local search.
1: s0 = GenerateInitialSolution
2: s∗ = LocalSearch(s0)
3: repeat
4: s′ = Perturbation(s∗, history)
5: s∗′ = LocalSearch(s′)
6: s∗ = AcceptanceCriterion(s∗, s∗′, history)
7: until termination criterion met

very clear, whether this ILS algorithm has been designed in a best possible way.
Therefore, this paper examines the systematic, experimentally driven configura-
tion of an ILS algorithm for the SMTWTP. In particular, we first optimize the
single ILS components and derive in this way a highly effective algorithm. This
step-by-step methodology can also be used as a guideline for the development
of ILS algorithms for other combinatorial optimization problems.

The paper is structured as follows. Section 2 introduces ILS and Section 3
studies the influence of the single procedures which are part of an ILS algorithm
on its performance and gives experimental results with the final ILS algorithm.
We end with some concluding remarks in Section 4.

2 Iterated Local Search

The underlying idea of ILS [2,13,12] is that of building a random walk in S∗, the
space of local optima defined by the output of a given local search algorithm.
Four basic “ingredients” are needed to derive an ILS algorithm: a procedure Gen-
erateInitialSolution, which returns some initial solution, a local search procedure
LocalSearch, a scheme of how to perturb a solution, implemented by a procedure
Perturbation, and an AcceptanceCriterion, which decides from which solution the
search is continued. An algorithmic outline for ILS is given in Algorithm 1. The
particular walk in S∗ followed by the ILS algorithm can also be depend on the
search history, which is indicated by history in Perturbation and AcceptanceCrite-
rion.

The effectiveness of the walk in S∗ depends on the definition the four com-
ponent procedures of ILS: The effectiveness of the local search algorithm is of
major importance, because it strongly influences the final solution quality of
ILS and its overall computation time. The perturbations should allow the ILS
to effectively escape local optima but at the same time avoid the disadvantages
of random restart (hence, not be too strong). The acceptance criterion, together
with the perturbation, strongly influence the type of walk in S∗ and can be used
to control the balance between intensification and diversification of the search.
The initial solution will be mainly be important in the initial part of the search.

The configuration problem in ILS is to find a best possible choice for the
four components such that best overall performance is achieved. Because of the
interactions among the components, this is a difficult problem and it has to be
solved in a heuristic way. Here, we do this by considering at each step only the

Design of Iterated Local Search Algorithms 443

influence of one single component, keeping the others at some fixed, “reasonable”
choices. These are that (i) as the initial solution we use the best construction
heuristic, (ii) the acceptance criterion forces the cost to decrease (this means the
perturbation is always applied to the best solution found so far), and (iii) the
perturbation uses a number of random moves in a given neighborhood. First,
we will optimize the choice of LocalSearch by investigating different local search
algorithms. Once found a good local search, we reconsider the choices for the
solution perturbation and the acceptance criterion in that order.

3 Iterated Local Search for the SMTWTP

3.1 Local Search

Local search for the SMTWTP starts from some initial sequence and repeatedly
tries to improve the current sequence by replacing it with neighboring solutions.
The simplest local search algorithm, iterative descent, repeatedly replaces the
current sequence π with a better sequence found in the neighborhood of π and
stops at the first local minimum encountered. For the SMTWTP we considered
the following two neighborhood structures:

(1) exchanges of jobs placed at the ith and the jth position, i 6= j (interchange)
(2) removal of the job at the ith position and insertion in the jth position (insert)

To allow for a fast evaluation of moves in these neighborhoods, the data struc-
tures proposed in [3] were implemented. The neighborhood structure is critical
for the performance of the local search. Often, with more complex neighborhoods
than the two presented above better solutions may be found. An example of a
more complex neighborhood is the one used in dynasearch [3]. Dynasearch uses
dynamic programming to find a best move which is composed of a set of indepen-
dent interchange moves; each such move exchanges the jobs at positions i and j,
j 6= i. Two interchange moves are independent if they do not overlap, that is if
for two moves involving positions i, j and k, l we have that min{i, j} ≥ max{k, l}
or vice versa. This neighborhood is of exponential size and dynasearch explores
this neighborhood in polynomial time, to be more exact in O(n3). In [3] very
good performance with dynasearch has been reported.

To achieve further improvements of the solution quality, we considered the
application of a variable neighborhood descent (VND) [16]. In our VND we con-
catenate iterative descent algorithms using two different neighborhoods; such
an approach was also proposed in [18] for the permutation flow shop prob-
lem. VND exploits the observation that a local optimum with respect to one
neighborhood structure need not be a local optimum for the other one. In fact,
the variable neighborhood search (VNS) metaheuristic [16] systematically ap-
plies the idea of changing neighborhoods in the search. There are two possi-
ble ways of concatenating the two neighborhoods; these will be denoted in the
following as interchange+insert and insert+interchange, depending on which
neighborhood is searched first. Additionally, we also considered replacing the

444 M. den Besten, T. Stützle, and M. Dorigo

Table 1. Comparison of the local search effectiveness for the SMTWTP. Results on the
100 job instances without local search and using the interchange, the insert, and the
VND variants. We give the average percentage deviation from the best known solutions
(∆avg), the number of best-known solutions found (nopt), and the average CPU time
in seconds (tavg) averaged over the 125 benchmark instances.

start no local search insert interchange dyna interchange

∆avg nopt tavg ∆avg nopt tavg ∆avg nopt tavg ∆avg nopt tavg

EDD 135 24 0.0004 1.19 38 0.29 2.09 26 0.23 1.25 26 0.41
MDD 62 24 0.0007 1.31 36 0.32 1.03 33 0.16 1.02 33 0.27

AU 62 20 0.0018 0.56 39 0.11 0.81 33 0.05 0.90 30 0.12

start dynasearch+insert insert + interchange interchange+insert insert+dynasearch

∆avg nopt tavg ∆avg nopt tavg ∆avg nopt tavg ∆avg nopt tavg

EDD 0.30 45 0.46 0.46 49 0.30 0.52 42 0.28 0.46 50 0.34
MDD 0.39 46 0.33 0.42 42 0.33 0.37 44 0.20 0.42 42 0.40

AU 0.67 46 0.16 0.34 48 0.12 0.63 50 0.08 0.34 48 0.15

interchange local search algorithm with dynasearch, yielding two more variants,
namely dyna+insert and insert+dyna.

We evaluated the proposed local search algorithms using a benchmark set of
randomly generated instances, available via ORLIB at http://www.ms.ic.ac.-

uk/info.html. There are three sets of instances with 40, 50, and 100 jobs. While
for the 40 and 50 job instances the optimal solutions are known, the 100 job
instances are still unsolved and only the best known solutions are available.
The instances are generated by drawing the processing time pj for each job j
randomly according to a uniform distribution of integers between 1 and 100 and
assigning it a weight wj randomly drawn from a uniform distribution over the
integers between 1 and 10. The due dates are randomly drawn integers from the
interval [(1 − TF − RDD/2) ·∑ pi, (1 − TF + RDD/2) ·∑ pi], where TF, the
tardiness factor, and RDD, the relative due date, are two parameters. There are
five instances for each pair of TF and RDD from the set {0.2, 0.4, 0.6, 0.8, 1.0}.
This makes three sets of 125 instances each. The tardiness factor and the relative
due dates determine critically the difficulty of solving the instances. For example,
we found that most of the instances with TF = 0.2 are solved after one single
application of the best local search procedures, while for larger TF, the instances
were much harder to solve. All the experiments were run on a 700MHz Pentium
III CPU with 512 MB RAM. Programs were written in C++ and run under
Suse Linux 6.1.

The computational results are given in Table 1 for three different construc-
tion heuristics and all the described local search variants. Some of the benchmark
instances are very easily solved, as indicated by the large number of best-known
solutions found by the local search algorithms alone. In general, the best perfor-
mance is obtained by the VND local search algorithms, which yield significantly

Design of Iterated Local Search Algorithms 445

Table 2. Comparison of ILS algorithms using different choices for local search. Results
on the 100 job instances with one trial per instance of 10 secs. We give the average
percentage deviation from the best known solutions (∆avg), the number of best-known
solutions found (nopt), and the average CPU time in seconds to find the best solution
in a trial (tavg) averaged over the 125 benchmark instances.

start ILS-inter+insert ILS-dyna+insert ILS-insert+inter ILS-insert+dyna ILS-dynasearch

∆avg nopt tavg ∆avg nopt tavg ∆avg nopt tavg ∆avg nopt tavg ∆avg nopt tavg

AU 0.0006 116 1.95 0.0019 109 2.62 0.0057 107 2.79 0.0046 107 2.97 0.0848 79 5.02

better solution quality at only a slight increase in computation time compared
to the single neighborhood local search.1 The dynasearch local search seems not
to give significantly better solution quality than the interchange algorithm.2

Based on the results reported in Table 1, we run one trial on each instance
for 10 seconds with the basic ILS algorithm using the VND variants for the lo-
cal search and then measured the final solution quality and the number of best
known solutions found. Before discussing the results, let us identify the perturba-
tion applied in the ILS algorithm: We used either six random interchange moves
or six random insert moves, depending on which neighborhood is used in the
next local search. The idea is that the perturbation should be complementary to
the particular local search and it should be difficult for the local search to undo
the perturbation. For example, when applying ILS using the interchange+insert
local search, we use random insert moves for the perturbation, because they are
complementary to the following interchange local search.

The results of these latter experiments are reported in Table 2. In general,
VNDs interchange+insert and dyna+insert appear to perform best when used
inside an ILS algorithm. The insert+interchange VND performs only slightly
worse; significantly worse results are obtained with the ILS-dynasearch. The
results with ILS-dynasearch obtained with our re-implementation of dynasearch
also appear to be worse than those presented in [3], especially when taking into
account computation time (the experiments in [3] were run on a much slower
computer). We verified that our dynasearch implementation works properly from
a solution quality point of view, but it appears to be slower than the interchange
local search, while in [3] interchange was slower than dynasearch. Therefore,
we conjecture, that in particular the dynamic programming algorithm used in
dynasearch to examine the neighborhood could still be speed up and our results
with dynasearch should be taken as preliminary. Additionally, the use of C++
and some of its features like inheritance and templates may make our code
significantly slower.

1 The single results are slightly different to those published in [5], because of minor
changes in the local search implementation.

2 This fact has also noted in [3], where it was argued that the main advantage with
dynasearch comes from a repetitive application of dynasearch in an ILS.

446 M. den Besten, T. Stützle, and M. Dorigo

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

em
pi

ric
al

 s
ol

ut
io

n
pr

ob
ab

ili
ty

log CPU time(sec)

19, dyna+insert
19, insert+dyna
19, insert+inter
19, inter+insert
19, dynasearch

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100

em
pi

ric
al

 s
ol

ut
io

n
pr

ob
ab

ili
ty

log CPU time(sec)

38, dyna+insert
38, insert+dyna
38, insert+inter
38, inter+insert
38, dynasearch

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

em
pi

ric
al

 s
ol

ut
io

n
pr

ob
ab

ili
ty

log CPU time(sec)

42, dyna+insert
42, insert+dyna
42, insert+inter
42, inter+insert
42, dynasearch

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

em
pi

ric
al

 s
ol

ut
io

n
pr

ob
ab

ili
ty

log CPU time(sec)

86, dyna+insert
86, insert+dyna

86, shift+inter
86, inter+insert
86, dynasearch

Fig. 1. We compare different choices for the local search with RTDs. The x-axis gives
the logarithm of the CPU time, the y-axis the cumulative empirical solution probability
(the more to the left a curve is located, the better performs the algorithm). RTDs are
given for the five local searches tested in Table 2. The number in the caption gives the
instances number; for example instance 42 is the 42nd instance of the 125 available one
from ORLIB.

In a second experiment we analyzed the ILS run-time behavior by using
run-time distributions (RTDs). RTDs give the cumulative empirically observed
probability of finding an optimal solution (or a solution within a specific solu-
tion quality bound) as a function of the CPU time [7,20]. Here, for each instance
25 runs have been performed. In total we examined the run-time behavior of
ILS algorithms with different choices for LocalSearch on 10 instances which were
known to be relatively hard; in particular they are not solved by applying one
single local search. Figure 1 presents only results for four instances, the behavior
on the others was similar. The RTDs show, that no single local search algo-
rithm gives the best behavior on all instances. The best performance is obtained
when applying the interchange+insert and dyna+insert VND (an exception is,
for example, instance 42); the ILS with dynasearch is significantly worse for
most instances. Because our interchange implementation is faster than our dy-
nasearch implementation, we use the interchange+insert VND for the following
experiments.

Design of Iterated Local Search Algorithms 447

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

em
pi

ric
al

 s
ol

ut
io

n
pr

ob
ab

ili
ty

log CPU time(sec)

3
6
9

12
0

0.2

0.4

0.6

0.8

1

0.1 1 10 100

em
pi

ric
al

 s
ol

ut
io

n
pr

ob
ab

ili
ty

log CPU time(sec)

3
6
9

12

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

em
pi

ric
al

 s
ol

ut
io

n
pr

ob
ab

ili
ty

log CPU time(sec)

3
6
9

12
0

0.2

0.4

0.6

0.8

1

0.1 1 10 100

em
pi

ric
al

 s
ol

ut
io

n
pr

ob
ab

ili
ty

log CPU time(sec)

3
6
9

12

Fig. 2. We compare different choices for the perturbation with RTDs. The x-axis gives
the logarithm of the CPU time, the y-axis the cumulative empirical solution proba-
bility. RTDs are given for the four different perturbation strengths for pure random
perturbations. Results are given for instances 19 (top left), 38 (top right), 42 (bottom
left) and 86 (bottom right).

3.2 Perturbation

Once fixed the choice for the local search, we closer examined the role of the
solution perturbation. We addressed two important issues:

Perturbation strength: We will refer to the strength of a perturbation as the
number of solution components which are modified. In the SMTWTP this
is the number of jobs directly affected by a perturbation. Different choices
for the perturbation strength, from three to twelve in steps of three, were
examined.

Nature of perturbations: As said before, the perturbations should be com-
plementary to the local search. Here, in addition we examined a variant, in
which the random perturbations were required to involve only late jobs.

Again, we examined the different choices for the perturbation strength using
RTDs, which are given in Figure 2 (results with perturbation focusing on late
jobs are not given to keep the figures as clear as possible). As a first result we
can observe that no single perturbation strength is best among all instances.
Additionally, we found that a focus on late jobs in the perturbation does not

448 M. den Besten, T. Stützle, and M. Dorigo

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

em
pi

ric
al

 s
ol

ut
io

n
pr

ob
ab

ili
ty

log CPU time(sec)

"19, Better"
"19, Backtrack"

"19, RW"
0

0.2

0.4

0.6

0.8

1

0.1 1 10 100

em
pi

ric
al

 s
ol

ut
io

n
pr

ob
ab

ili
ty

log CPU time(sec)

"38, Better"
"38, Backtrack"

"38, RW"

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

em
pi

ric
al

 s
ol

ut
io

n
pr

ob
ab

ili
ty

log CPU time(sec)

"42,Better"
"42,Backtrack"

"42,RW"
0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

em
pi

ric
al

 s
ol

ut
io

n
pr

ob
ab

ili
ty

log CPU time(sec)

"86, Better"
"86, Backtrack"

"86, RW"

Fig. 3. We compare different acceptance criteria with RTDs. The x-axis gives the
logarithm of the CPU time, the y-axis the cumulative empirical solution probability.
RTDs are given for the three different acceptance criteria. The number in the caption
gives the instances number.

significantly improve performance. Therefore, we settled for the following choice
of the perturbation: (i) we do not focus on late jobs, because a simpler choice
gave similar performance and (ii) we varied the perturbation strength in a range
from three to twelve random moves. This latter variation was done in a scheme
analogously to that introduced in the basic VNS HanMla99:mic.

3.3 Acceptance Criterion

A natural choice for the acceptance criterion is to force the cost to decrease
by accepting an s∗′ if its cost is less than that of s∗ (we refer to this accep-
tance criterion as Better in the following). Such a choice leads to a very strong
intensification of the search and may lead to bad behavior for long run-times,
when diversification of the search becomes more important. Diversification of the
search is extremely favored if every s∗′ is accepted as the new solution, resulting
in a random walk in S∗. We call this acceptance criterion RW. In [3], a Backtrack
acceptance criterion is proposed, which is a combination of the Better and the
RW: For β iterations RW is used. If no improved solution is found, the ILS continues
again from the best solution seen so far.

The results of the RTD-based analysis of the acceptance criteria with RTDs
is plotted in Figure 3. We found that with respect to the acceptance criteria

Design of Iterated Local Search Algorithms 449

Table 3. We give some basic statistics on the distribution of the computation times
to solve instances of the three problem sets. We indicate the number of jobs (n),
the average time (averaged over the 125 instances) to solve the benchmark set (tavg)
and its standard deviation (σt), the average time to solve the easiest and the hardest
instance (tmin and tmax, respectively), and the quantils of the average time to solve
a given percentage of the instances. Qx indicates the average time to solve x% of the
benchmark instances.

n tavg σt tmin tmax Q25 Q50 Q75 Q90

100 5.75 14.50 0.0076 105.50 0.052 0.98 5.14 13.12
50 0.20 0.86 0.0017 8.71 0.0064 0.018 0.118 0.28
40 0.040 0.13 0.0011 1.23 0.0031 0.0072 0.033 0.062

the results were somewhat clearer compared to the findings on the other two
components: For almost all instances ILS with the Better acceptance criterion
showed best behavior. Hence, this acceptance criterion was also chosen for our
final ILS algorithm.

3.4 Experimental Results

The final ILS algorithm has the following shape: (i) it uses the AU construction
heuristic to generate the initial solution, (ii) it uses the interchange+insert VND
local search, (iii) it varies the perturbation strength between three to twelve
random insert moves, and (iv) it accepts only better solutions in the random walk
in S∗. We conducted some experiments with this ILS algorithm on all 40, 50, and
100 job SMTWTP instances available from ORLIB. On each instance 25 trials
were performed with a large computation time limit, which was enough that
each instance could be solved to the best-known solutions, which we conjecture
to be optimal, in each single trial. Of the 125 instances with 100 jobs (those with
40 or 50 jobs are very easily solved, see Table 3), only 15 took an average time
to optimal larger than 10 seconds; only 7 of these longer than 20 seconds. The
large majority of the benchmark instances was either solved with a single local
search or within very few seconds.

Our ILS algorithm also compares very favourably to our earlier ACO algo-
rithm presented in [5]. This shows that ILS may be an easily adaptable alterna-
tive to other, often more complex metaheuristics, showing an excellent perfor-
mance after some straightforward optimizations. A more detailed investigation
of different metaheuristics applied to the SMTWTP and a detailed search space
analysis of the SMTWTP are the next steps we will take.

4 Conclusion

The results of this research can be summarized as follows:

1. The independent optimization of the single components of an ILS algo-
rithm for the SMTWTP has led to a high performing ILS algorithm for
the SMTWTP.

450 M. den Besten, T. Stützle, and M. Dorigo

2. VND [16] leads to a very powerful local search for the SMTWTP.
3. For the SMTWTP the optimization of the ILS algorithm leads to improved

performance. Yet, the improvement due to these optimizations is not as
spectacular as observed for other problems [6,19,21], possibly due to the
powerful local search.

4. The SMTWTP instances from ORLIB do not pose a challenge for state-of-
the-art algorithms.

Clearly, these conclusions do raise further questions. The optimization of
ILS for the SMTWTP was certainly rather straightforward and heuristic. We
conjecture that for harder problems, this process will be much more important:
it will need more iterations through the choices for the single components and
statistical methods of experimental design will become more important. The
excellent performance of VND for the SMTWTP naturally lends to the question
whether VND can improve the efficiency of local search also for other scheduling
problems. Preliminary results suggest, that the answer strongly depends on the
particular problem. For example, in [18] encouraging results have been reported
with a VND for the flow shop problem, but some experiments with an ILS
algorithm [19] suggest that this improvement does not carry over to a significant
improvement of ILS.

Future work will include tests of the ILS algorithms on larger instances, and
an extension of our approach to other single machine scheduling problems. The
results of this paper and the very good performance of a variety of ILS algorithms
on several classes of scheduling problems [3,8,11,10,19] suggest that ILS is a very
appropriate metaheuristic to obtained very high quality solutions in scheduling
applications.

Acknowledgments. Marco Dorigo acknowledges support from the Belgian
FNRS, of which he is a Senior Research Associate. This work was partially sup-
ported by the “Metaheuristics Network”, a Research Training Network funded
by the Improving Human Potential programme of the CEC, grant HPRN-CT-
1999-00106. The information provided is the sole responsibility of the authors
and does not reflect the Community’s opinion. The Community is not responsible
for any use that might be made of data appearing in this publication.

References

1. T. S. Abdul-Razaq, C. N. Potts, and L. N. Van Wassenhove. A survey of algo-
rithms for the single machine total weighted tardiness scheduling problem. Discrete
Applied Mathematics, 26:235–253, 1990.

2. E. B. Baum. Towards practical “neural” computation for combinatorial optimiza-
tion problems. In J. Denker, editor, Neural Networks for Computing, pages 53–64,
1986. AIP conference proceedings.

3. R. K. Congram, C. N. Potts, and S. L. Van de Velde. An iterated dynasearch
algorithm for the single–machine total weighted tardiness scheduling problem. IN-
FORMS Journal on Computing, to appear, 2000.

Design of Iterated Local Search Algorithms 451

4. H. A. J. Crauwels, C. N. Potts, and L. N. Van Wassenhove. Local search heuristics
for the single machine total weighted tardiness scheduling problem. INFORMS
Journal on Computing, 10(3):341–350, 1998.

5. M. den Besten, T. Stützle, and M. Dorigo. Ant colony optimization for the total
weighted tardiness problem. In M. Schoenauer et al., editor, Proceedings of PPSN-
VI, volume 1917 of LNCS, pages 611–620. Springer Verlag, Berlin, Germany, 2000.

6. I. Hong, A. B. Kahng, and B. R. Moon. Improved large-step Markov chain variants
for the symmetric TSP. Journal of Heuristics, 3(1):63–81, 1997.

7. H. H. Hoos and T. Stützle. Evaluating Las Vegas algorithms — pitfalls and reme-
dies. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence
1998, pages 238–245. Morgan Kaufmann Publishers, 1998.

8. S. Kreipl. A large step random walk for minimizing total weighted tardiness in a
job shop. Journal of Scheduling, 3(3):125–138, 2000.

9. J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of machine
scheduling problem. In P. L. Hammer et al., editor, Studies in Integer Program-
ming, volume 1 of Annals of Discrete Mathematics, pages 343–362. North-Holland,
Amsterdam, NL, 1977.

10. H. R. Lourenço. Job-shop scheduling: Computational study of local search and
large-step optimization methods. European Journal of Operational Research,
83:347–364, 1995.

11. H. R. Lourenço and M. Zwijnenburg. Combining the large-step optimization with
tabu-search: Application to the job-shop scheduling problem. In I.H. Osman
and J.P. Kelly, editors, Meta-Heuristics: Theory & Applications, pages 219–236.
Kluwer, 1996.

12. O. Martin and S.W. Otto. Combining Simulated Annealing with Local Search
Heuristics. Annals of Operations Research, 63:57–75, 1996.

13. O. Martin, S.W. Otto, and E.W. Felten. Large-Step Markov Chains for the Trav-
eling Salesman Problem. Complex Systems, 5(3):299–326, 1991.

14. H. Matsuo, C. J. Suh, and R. S. Sullivan. A controlled search simulated annealing
method for the single machine weighted tardiness problem. Working paper 87-12-2,
Department of Management, University of Texas at Austin, TX, 1987.

15. D. Merkle and M. Middendorf. An ant algorithm with a new pheromone evalu-
ation rule for total tardiness problems. In S. Cagnoni et al., editor, Proceedings
of EvoWorkshops 2000, volume 1803 of LNCS, pages 287–296. Springer Verlag,
Berlin, Germany, 2000.

16. N. Mladenović and P. Hansen. Variable Neighborhood Search. Computers &
Operations Research, 24:1097–1100, 1997.

17. C. N. Potts and L. N. Van Wassenhove. Single machine tardiness sequencing
heuristics. IIE Transactions, 23:346–354, 1991.

18. C. R. Reeves. Landscapes, operators and heuristic search. To appear in Annals of
Operations Research, 2000.

19. T. Stützle. Applying iterated local search to the permutation flow shop problem.
Technical Report AIDA–98–04, FG Intellektik, TU Darmstadt, August 1998.

20. T. Stützle. Local Search Algorithms for Combinatorial Problems — Analysis, Im-
provements, and New Applications. PhD thesis, Darmstadt University of Technol-
ogy, Department of Computer Science, 1998.

21. Thomas Stützle. Iterated local search for the quadratic assignment problem. Tech-
nical Report AIDA–99–03, FG Intellektik, FB Informatik, TU Darmstadt, March
1999.

An Evolutionary Algorithm for Solving the
School Time-Tabling Problem

Calogero Di Stefano1 and Andrea G. B. Tettamanzi2

1 Genetica S.r.l.
Via San Dionigi 15, I-20139 Milan, Italy

distefano@genetica-soft.com
2 Università degli Studi di Milano

Dipartimento di Tecnologie dell’Informazione
Via Bramante 65, I-26013 Crema (CR), Italy

tettaman@dsi.unimi.it

Abstract. This paper describes an evolutionary algorithm for school
time-tabling, demonstrated through applications to the Italian school
system. Heuristics have been found and perfected which offer good gen-
eralization capabilities. A particular attention has been devoted to prob-
lem formulation, also in terms of fuzzy logic, as well as to testing different
genetic operators and parameter settings. This work has obtained results
of remarkable practical relevance on real-world problem instances illus-
trated in the paper, and eventually gave rise to a successful commercial
product.

1 Introduction

The time-table problem (TTP) is the planning of a number of meetings (e.g.,
exams, lessons, matches) involving a group of people (e.g., students, teachers,
athlets) for a given period and requiring given resources (e.g., rooms, laborato-
ries, sports facilities) according with their availability and respecting some other
constraints.

The TTP is an exciting challenge for computational intelligence and opera-
tions research, essentially because it is NP-complete [1]. School time-tabling is
often even more complicated by the details of a given real situation and real-
world problem instances often involve constraints escaping an exact representa-
tion, such as constraints related to user personal preferences. Advanced search
techniques exploit various heuristics in order to rule out from the search space
those regions where an optimum is not expected to exist. One of these heuristics,
namely evolutionary algorithms, have been successfully applied to various types
of TTP [2,3,4] and are among the most promising techniques available to date
for solving this kind of problem.

This paper is organized as follows: Section 2 presents the data and the con-
straints that make up a problem instance and the form of a solution, in order to
identify its characterizing aspects. Section 3 describes the evolutionary algorithm
implemented. Finally, Section 4 demonstrated the experiments carried out with

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 452–462, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Solving the School Time-Tabling Problem 453

the algorithm on some real-world problem instances, and Section 5 discusses the
results.

2 The Problem

2.1 Instance Representation

School time-tabling is generally based on a significant volume of data and on
different types of constraints. A problem instance is identified by the following
entities and relationships:

– rooms, defined by their type, capacity and location;
– subjects, identified by the room type they require and by a priority with

respect to other subjects;
– teachers, characterized by the subjects they teach and by their fuzzy avail-

ability matrix, defining the degree to which each teacher is available in each
period (see Figure 1);

Fig. 1. An example of a fuzzy availability matrix for a teacher.

– classes (i.e., groups of students, including the degenerate case of single stu-
dents), assigned to a given location (e.g., building) and having their avail-
ability matrix, such as the one in Figure 2;

– lessons, meaning the relation 〈t, s, c, l〉, where t is a teacher, s is the subject,
c is the class attending the lesson and l is the duration in periods. More than
one teacher and more than one class can participate in a lesson, in which
case we speak of grouping.

As the reader will have noticed, some constraints of the school TTP are most
naturally expressed in fuzzy terms [5].

454 C. Di Stefano and A.G.B. Tettamanzi

Fig. 2. An availability matrix for a class.

A candidate solution to this TTP is an assignment of a starting period to
every lesson.

2.2 Constraints

A candidate solution can be considered satisfactory if it meets the teachers’
and students’ requirements, and if it respects the availability of resources. These
properties are formalized through a number of constraints.

Constraints can be of two types: hard or soft, depending on whether their
satisfaction is mandatory or just desirable. Accordingly, a solution will be said
to be feasible if it satisfies all the hard constraints, and a feasible solution will
be said to be more or less acceptable depending on the degree to which soft
constrains are satisfied.

An important thing to notice is that the classification of each constraint as
hard or soft is to some extent arbitrary, and may be thought as being part of
the problem instance definition process.

For the school TTP, based on a thorough analysis of the Italian system, the
following set of general constraints was identified.

– Constraints on rooms: in each period, the number of rooms used per type
cannot be larger than the number of available rooms of that type (bounded
rooms); rooms of some types are not available for a certain time before or
after use for preparation or tidying up (room availability).

– Constraints on subjects: some subjects are better taught before others, or
earlier in the day when students are fresh, or lessons of some other subjects
should not take place after one another, e.g., similar subjects (priority).

– Constraints on teachers: a teacher cannot teach more than one lesson at a
time (physical availability); a teacher must teach a given number of lessons

Solving the School Time-Tabling Problem 455

to each class as provided for by the programme for every subject (contractual
availability); a teacher should be assigned lessons only in the periods he or
she has marked as available (subjective availability); if the school has more
than one building or location, appropriate time must be allowed for a teacher
to travel between buildings when required (displacement); finally, teachers
prefer that their lessons be concentrated in time, minimizing gaps or isolated
lessons (concentration).

– Constraints on classes: if the school has more than one location, each class
belongs to just one location and classes participating in a lesson must be
from the same location (co-location); a lesson cannot take place when one of
the participating classes is not at school (presence); while at school, a class
should always be attending a lesson, except for breaks (no gaps)—this is a
strong requirement in the Italian system, but may not be so important in
other systems.

– Constraints on lessons: some lessons must stick to a pre-assigned schedule for
organizational reasons (pre-assignment); lessons of the same subject should
be uniformly distributed over the week (distribution); the total weight of
lessons for each day should be as uniform as possible over the week (uni-
formity); lesson weight (i.e., priority) should be decreasing within a day
(decreasing burden); multiple lessons on the same subject, with the same
classes on the same day should be scheduled sequentially or, put another
way, only a single lesson on a subject is allowed per day for a class (sequen-
tiality); subsequent lessons on the same subject must take place in the same
room (locality); different lessons involving the same teacher or the same class
cannot overlap (non-overlap).

– Other organizational constraints: for instance, on each day, classes take their
lunch break at different hours in order to avoid overcrowding of the lunch
room (break balance);

The search for an acceptable timetable strongly depends on how constraints
are classified. The case where all constraints are soft brings forth an exceedingly
broad search space, whereas the opposite case where all constraints are hard is
practically meaningless, for it gives rise to a very sparse if not even empty search
space.

For a standard problem instance relevant to a typical Italian secondary
school, a possible partition of the constraints described above into hard and
soft constraints might be the one reported in Table 1.

3 The Evolutionary Algorithm

The approach adopted to solve the problem described in Section 2 is a quite
standard elitist evolutionary algorithm, except for the perturbation operator,
which alternates between an intelligent mutation operator and an improvement
operator, whose details are given below.

456 C. Di Stefano and A.G.B. Tettamanzi

Table 1. A possible classification of constraints for the Italian school system.

hard constraints soft constraints
Constraint Entity Constraint Entity

bounded rooms rooms room availability rooms
physical availability teachers priority subjects

contractual availability teachers subjective availability teachers
co-location classes displacement teachers
presence classes concentration teachers

pre-assignment lessons distribution lessons
sequentiality lessons decreasing burden lessons

no gaps classes locality lessons
non overlap lessons uniformity lessons

3.1 Genetic Representation

A direct representation has been chosen, along the lines of [4,3,6,7], even though
recent work [8] would suggest indirect representation to work much better.

However, given the use of the improvement operator, which is a Lamarckian
local search operator, one might argue that our method should not really be
classed as having a direct representation. If this operator were always applied
then one could possibly describe our algorithm as having an indirect represen-
tation with the chromosome providing a parameterisation to the improvement
operator.

So, in the end, our approach might show the advantages both of an indi-
rect representation and of a direct representation. Moreover, such representation
lends itself to specializations of the kinds required by a many-faceted reality like
the Italian school system.

Gene 3Gene 2Gene 1 Gene 4 Gene i Gene |L|Gene |L|-1

The ith gene correspond to the ith
lesson scheduled starting from period 0

Fig. 3. Representation scheme of a genotype.

An individual in the population is a vector of integers, as depicted in Figure 3,
having the same size as the number of lessons to be scheduled. Each integer
encodes the starting period of the associated lesson.

Solving the School Time-Tabling Problem 457

The values each gene can take up depends on data like the length of the
relevant lesson in periods, the number of days in the school week, the number of
periods in each day, and so on.

Other advantages of this direct representation are:

1. a simple procedure for calculating the penalties to assign to the violation of
each constraint;

2. easy design of operators which preserve feasibility, thus allowing significant
savings of computational power;

3. last but not least, a particularly efficient decoding function which, given a
genotype, reconstructs the corresponding timetable.

3.2 Initialization

The population is seeded with genotypes generated by a randomly driven greedy
algorithm, which places the lessons one by one by selecting at random a starting
period among those that would not violate any constraint. This incremental
procedure goes on until the set of “open” starting periods becomes empty, and
then places all remaining lessons at random.

The main advantage of this seeding heuristics is that it gives the evolutionary
algorithm a jump start, by producing much better timetables than a completely
random initialization would do—practically at the same computational cost.

3.3 Fitness

The fitness function employed by our evolutionary algorithm for school
timetabling is of the form

f(g) =
1

1 +
∑
i αihi

+
γ

1 +
∑
j βjsj

, (1)

where hi ∈ IR+ is the penalty associated to the violation of the ith hard con-
straint, whose relative weight is αi ∈ IR+, and sj ∈ IR+ is the penalty associated
to the degree of violation of the jth soft constraint, whose relative weight is
βj ∈ IR+; finally, γ ∈ {0, 1} is zero until all hard constraints are satisfied, and
one since.

The weights attached to each hard and soft constraint allow the algorithm
to be fine-tuned to better direct search. In practice, the weights were chosen
according to the relative importance of constraints in the problem instances
treated. It should be stressed that the results are very sensitive to the choice of
the weights, because soft constraints correspond to conflicting criteria.

Satisfaction of soft constraints begins only after at least one feasible solution
has been found, and γ is switched to one: this device does not let evolution trade
off slight violations of hard constraints with high satisfaction of soft constraints.

458 C. Di Stefano and A.G.B. Tettamanzi

3.4 Selection

The individuals are chosen for reproduction using tournament selection [9], with
tournament size k ≥ 2, which is a parameter of the algorithm. The implementa-
tion of this selection scheme enforces elitism by introducing at least one copy of
the best individual into the next generation, without perturbation. Apart from
this detail, the algorithm uses a generational replacement reproduction strategy.

3.5 Recombination

Among the cross-over operators described in the literature for an integer rep-
resentation like the one adopted by our algorithm (see e.g. [10]), the one that
proved to be best suited for the TTP, based on experiments on the three sample
problem instances discussed in Section 4, was uniform cross-over, whose mecha-
nism is illustrated in Figure 4: this operator treats the integer genes atomically.
Recombination is performed on each pair of individuals with probability pcross,
which is a parameter of the algorithm.

Gene 3Gene 2Gene 1 Gene 4 Gene i Gene |L|Gene |L|-1

Gene 3Gene 2Gene 1 Gene 4 Gene i Gene |L|Gene |L|-1Gene 3Gene 2Gene 1 Gene 4 Gene i Gene |L|Gene |L|-1

Gene 3Gene 2Gene 1 Gene 4 Gene i Gene |L|Gene |L|-1Gene 3Gene 2Gene 1 Gene 4 Gene i Gene |L|Gene |L|-1

Gene 3Gene 2Gene 1 Gene 4 Gene i Gene |L|Gene |L|-1Gene 3Gene 2Gene 1 Gene 4 Gene i Gene |L|Gene |L|-1

parent 1

parent 2

child 1
child 2

p
cross1/21/21/21/2

Fig. 4. Illustration of uniform crossover on the genetic representation of a school
timetable.

3.6 Perturbation

Typically, mutation in EAs is a blind operator, in the sense that it produces
random perturbations, regardless of the fact that they improve or worsen the
solution represented by the affected individual.

In contrast with that, the two perturbation operators employed in combina-
tion by our algorithm are rather of the Lamarckian type, i.e., based on the law
of use and disuse which, if wrong when referred to natural genetics, sometimes
leads to more efficient search in artificial evolutionary systems.

The two mutually exclusive perturbation operators are:

– intelligent mutation, applied with probability pmut, and

Solving the School Time-Tabling Problem 459

– improvement, applied with probability pimprove.

At each generation, the decision whether to enable the intelligent mutation or
the improvement operator is made by tossing a biased coin. The bias ppert, in
favor of intelligent mutation, is a parameter of the algorithm.

Intelligent Mutation. This operator, while retaining a random nature, is di-
rected towards performing changes that do not decrease the fitness of the indi-
vidual. In particular, if the operator affects the ith gene, it will indirectly affect
all the other lessons involving the same class, teacher or room. The choice of the
“action range” of this operator is random and the variation suffered by the ith
gene is such as to make fitness increase. In practice, intelligent mutation aims
at reducing constraint violation.

Improvement. This operator, which is the perturbing alternative to intelligent
mutation, restructures an individual to a major extent.

Restructuring commences by randomly selecting a gene (i.e., a lesson) and
concentrates on the partial timetables for the relevant class, teacher and room.

First of all, it aims at making periods for which no lesson has been scheduled
contiguous (i.e., compacting “gaps” in the class, teacher, and room timetable).
Then it allocates the contiguous free space thus claimed to the the lesson corre-
sponding to the selected gene.

Application of this operator generally results in a fitness increase and pre-
serves the feasibility of a solution. Furthermore, this operator is responsible for
injecting substantially novel genetic material into the population.

4 Experiments and Results

Experiments have been carried out on a constructed problem instance, designed
to test most aspects of the problem. The instance is a realistic model of a generic
Italian “industrial technical high-school”, which we will call “G. Marconi” for
convenience, summarized in Table 2. A total of 942 lessons are to be scheduled.

Further experiments have been carried out on two real state lycées located
in Milan, namely the G. Carducci classic state lycée and the Leonardo da Vinci
scientific state lycée, both enrolling ca. 1,000 students.

Data for the G. Carducci lycée refer to the school year 1997/1998, with 924
lessons to schedule. Data for the Leonardo da Vinci lycée refer to school year
1996/1997, with 1003 lessons to schedule. Table 3 summarizes information on
these two schools.

The parameter settings for the evolutionary algorithm reported in Table 4,
are the ones that consistently gave the best results on the three problem instances
used for experiments.

A typical run for these problem instances takes 40 minutes on average to
come up with a feasible solution and 5 1

2 hours to devise an acceptable solution
on a 500 MHz PC with 64 Mbyte RAM and the Microsoft NT operating system.

460 C. Di Stefano and A.G.B. Tettamanzi

Table 2. Summary of the G. Marconi model industrial technical high-school.

Resources Main Building Branch Building Remarks
classes 12 18 6 sections of 5 classes

teachers 35 27 3 Physical Education teachers

work in both buildings

subjects 10 13 6 subjects are taught in both

buildings

lessons 558 384 no lesson requires class grouping

labs 8 4
gyms 2 1 the figures refer to the number

classes which can use the gym at

one time

Table 3. Summary of the G. Carducci and Leonardo da Vinci lycées.

Resources G. Carducci Leonardo da Vinci
classes 33 35
teachers 60 71
subjects 13 23
lessons 924 1003
labs 1 3
gyms 2 2

Table 4. Optimal parameter settings for the evolutionary algorithm.

Parameter Value
Population size 100

pcross 0.3
ppert 0.5
pmut 0.02

pimprove 0.02
Tournament size k 30

αi, βj 1 for all i, j

Figure 5 plots the fitness and the penalties associated to constraint violations
during a run of the algorithm on the Leonardo lycée. The first feasible solution
was found at generation 2,001, and the run was stopped at generation 10,200
when the degree of satisfaction of soft constraints did not look likely to increase
anymore.

Solving the School Time-Tabling Problem 461

fitness

generation

worst

average

best

1,4

1,2

1

0,4

0,6

0,8

0,2

0
0 600

8800 102006000460034002800220018001200

generation

constraint satisfaction

0
0

20

600

200

180

160

140

120

100

80

60

40

1200 1800 2200 2800 3400 4600 6000 8800 10200

conflicts (classes)
conflicts (teachers)
conflicts (rooms)
dissatisfaction (teachers)
distribution (subjects)
daily weight (teachers)
distribution (lessons)

Fig. 5. Fitness graph and evolution of constraint satisfaction during a run for the
Leonardo lycée.

5 Discussion

The algorithm described in Section 3 cannot be considered a “pure” evolutionary
algorithm; instead, its efficiency and effectiveness rely critically on the hybridiza-
tion with two heuristics based on local search, implemented by the intelligent
mutation and improvement operators.

Even without fine tuning of the algorithm parameters and of the relative
constraint weights αi and βj , the quality of the results obtained, which cannot
be shown here for lack of space, was remarkable, all the more so because no
simplifying assumption or constraint elimination had to be made to obtain them.

The timetables obtained were submitted to the timetable committee of the
Leonardo da Vinci scientific state lycée, which has been in charge for years of
assembling the school timetable at every opening of the school year. Their expert
assessment of the results was highly positive and their implementation did not
require any manual adjustment.

The practical relevance of the results obtained led Genetica S.r.l. to pack-
age the approach decribed in this paper into a full-fledged commercial software
product, EvoSchool, which has been successfully launched on the Italian market.
Adaptations for other countries are also under way. EvoSchool, version 2.0, is
freely available for evaluation at the URL

http://www.genetica-soft.com/eng/evoschool.html

The demo comes with the datasets for the three examples described in Section 4.

References

1. S. Even, A. Itai, A. Shamir. On the Complexity of Timetable and Multicommodity
Flow Problems. Siam Journal of Computing, Vol. 5, No.4, December 1976, 691-
703.

462 C. Di Stefano and A.G.B. Tettamanzi

2. W. Erben. A Grouping Genetic Algorithm for Graph Colouring and Exam
Timetabling. Proceedings of the Third International Conference on the Prac-
tice and Theory of Automated Timetabling, Constance, Germany, August 16–18,
2000.

3. P. Adamidis and P. Arakapis. Weekly lecture timetabling with genetic algorithms.
Proceedings of the 2nd International Conference on the Practice and Theory of
Automated Timetabling, University of Toronto, Canada, 1997.

4. J.P. Caldeira and A.C Rosa. School timetabling using genetic search. Proceedings
of the 2nd International Conference on the Practice and Theory of Automated
Timetabling, University of Toronto, Canada, 1997.

5. L.A. Zadeh. Fuzzy Sets and Applications: Selected Papers. John Wiley & Sons,
New York, 1987.

6. A.M. Barham and J.B. Westwood. A Simple Heuristic to Facilitate Course
Timetabling. J. Opnl. Res. Soc. 29, 1055-1060.

7. D. Corne,P. Ross, H. Fang. Evolutionary Timetabling: Practice, Prospects and
Work in Progress. Presented at the UK Planning and Scheduling SIG Workshop,
(Strathclyde, UK, September 1994), organised by P Prosser.

8. B. Paechter, R. C. Rankin, A. Cumming. Improving a Lecture Timetabling System
for University Wide Use. Practice and Theory of Automated Timetabling II,
Springer-Verlag, LNCS 1408, Berlin, 1998.

9. A. Brindle. Genetic algorithms for function optimization. Technical Report TR81-
2, Department of Computer Science, University of Alberta, Edmonton, 1981.

10. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, Berlin, 1992.

11. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading, MA, 1989.

Optimizing Employee Schedules by a Hybrid
Genetic Algorithm

Matthias Gröbner1 and Peter Wilke2

1 Lehrstuhl für Programmiersprachen
Universität Erlangen-Nürnberg

Martensstrasse 3, 91058 Erlangen, Germany
email: Groebner@informatik.uni-erlangen.de

2 Centre for Intelligent Information Processing Systems
The University of Western Australia

Nedlands, 6907, Australia
email: wilke@ee.uwa.edu.au

Abstract. Creating an employee schedule means taking into account
many heavy constraints like employee contracts or minimal staffing lev-
els on the one hand and many global, difficult to formalize constraints
like aspects of fairness on the other hand. Optimisation is quite difficult
especially when fix rostering schemata cannot be used, e.g. because of
frequently varying staffing levels. In this paper we present how real-life
employee scheduling problems can be solved by applying a Hybrid Ge-
netic Algorithm that uses problem specific knowledge. First we briefly
describe the given problem domain, then the idea and implementation
of the Genetic Algorithm is presented. Finally we show some application
results and the outlook.

1 Introduction

Rosters (employee schedules) are used in a broad range of economic sectors such
as in industrial production, on the health sector or other service sectors and
therefore their construction is a quite common task. Special planning software
has been developed to support e.g. the supervisor who used to create a roster
by hand for a certain period, typically one week or one month. Most employee
planning algorithms are based on heuristical methods or artificial intelligence
techniques as branch and bound search or constraint logic programming. Imple-
mentations of these methods are limited in most cases to one concrete real-world
problem domain. Off the shelf software has not been developed because the en-
vironment and constraints to be fulfilled turn out to be very specific and unique
even if the optimisation task looks similar for different applications. When the
problem description has to be changed slightly, e.g. with respect to extensions
and changes to get out to most of the available resources, elementary parts of
the algorithm have to be redesigned. In addition most of these techniques can-
not deal with global or soft constraints that can be found in those real-world
problems [1].

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 463–472, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

464 M. Gröbner and P. Wilke

So our goal was to develop a method that facilitates companies in a number
of economical sectors to create rosters automatically and optimise them with
respect to a certain number of global and local constraints. The key idea is to
establish an algorithm which covers the most important constraints of a broad
variety of employee scheduling tasks and can easily be adopted to the specific
circumstances. With this approach we accept the fact that this algorithm will
be only suitable for most of the case while it isn’t appropriate for some.

Because Genetic Algorithms have been successfully applied to some other
similar timetabling and scheduling problems [2] [3] [4] [5] [6] we decided to base
our toolkit on a Genetic Algorithm.

A less detailled presentation of this work is published in [7].

2 The Data

Fortunately data from several real world employee scheduling tasks was available
to us. To make comparison easier these data sets were standardised as follows:

– All datasets describe work around the clock which is divided in shifts.
– In each shift different positions are to be filled, e.g. supervisor, engineer,

driver, secretary etc. Each position requires one or more specific functions
in arbitrary combination to be performed and therefore can only be filled by
a worker qualified for these functions.

– For each position within a shift there are requirements regarding the number
of staff able to perform to fill this position (staffing levels). These require-
ments are noted according to the following scheme: minimal requirement /
target requirement / maximal requirement (see figure 1)

– There is a record for each staff member indicating his qualifications for the
functions to be performed and as a result for which positions he qualifies.

– The employees may have different workloads during a week.

In figure 2 a scheduled roster is shown in part.

3 Constraints

Different constraints have to be considered when planning a roster. For this we
distinguish between constraints that have to be fulfilled under all circumstances
(hard constraints) and constraints that should be fulfilled if possible (soft con-
straints). Examples for hard constraints are:

– Each employee works at most one shift per day.
– Enforcing the minimal required breaks between two working shifts.
– Not to exceed or fall below the employee’s monthly target working hours

(within a tolerance limit).
– Not to exceed the maximum number of working days in uninterrupted se-

quence.

Optimizing Employee Schedules by a Hybrid Genetic Algorithm 465

Friday, Mar. 1 Saturday, Mar 2. Sunday, Mar. 3 Monday, Mar. 4

Shifts/Pos Min/Target/Max Min/Target/Max Min/Target/Max Min/Target/Max

Shift Early 1

Assistant 1/ 1/ 2 0/ 0/ 0 0/ 0/ 0 1/ 1/ 2

Surgery 1 1/ 3/ 3 1/ 1/ 2 1/ 1/ 2 1/ 3/ 3

Surgery 2 1/ 3/ 3 1/ 1/ 2 1/ 1/ 2 1/ 3/ 3

Chief 1/ 1/ 2 0/ 0/ 0 0/ 0/ 0 1/ 1/ 2

Shift Early 2

Assistant 0/ 1/ 2 0/ 0/ 0 0/ 0/ 0 0/ 1/ 2

Surgery 1 0/ 2/ 3 0/ 1/ 2 0/ 1/ 2 0/ 2/ 3

Surgery 2 0/ 2/ 3 0/ 1/ 2 0/ 1/ 2 0/ 2/ 3

Chief 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0

Late Shift

Assistant 1/ 1/ 4 0/ 0/ 0 0/ 0/ 0 1/ 1/ 4

Surgery 1 2/ 2/ 4 1/ 1/ 2 1/ 1/ 2 2/ 2/ 4

Surgery 2 2/ 2/ 4 1/ 1/ 2 1/ 1/ 2 2/ 2/ 4

Chief 1/ 1/ 1 0/ 0/ 0 0/ 0/ 0 1/ 1/ 1

Night Shift

Assistant 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0

Surgery 1 1/ 1/ 4 1/ 1/ 2 1/ 1/ 2 1/ 1/ 4

Surgery 2 1/ 1/ 4 1/ 1/ 2 1/ 1/ 2 1/ 1/ 4

Chief 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0

Fig. 1. Example of a staffing level schedule for a hospital (surgery).

– To keep the assigned number of staff within the lower and upper limit of the
staffing level for all separate positions within a shift.

Among the soft constraints are:

– Keep the number of assigned staff members close to the target staffing level.
– The working and holiday blocks of the employees should be as compact as

possible, i.e. employees should work in sequence as many days as possible
respectively have as many days off as possible. Singular working days or
holidays should be avoided.

– Homogenous shift patterns within each employee’s working block, e.g. not
always alternate between night shift and early shift.

– Aspects of fairness. The shifts, especially the night and weekend shifts, should
be distributed uniformly among the employees.

4 The Algorithm

The core of our algorithm is a standard Genetic Algorithm [8] with tournament
selection and two-point crossover with three individuals. This kind of tourna-

466 M. Gröbner and P. Wilke

January 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ...
Weekday Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su ...

Shift Early 1 (E1)
SURGERY1 3 2 1 1 2 1 3 2 1 1 1 1 2 2 3 3 1 1 2 1 2 1 1 1 1
SURGERY2 1 2 1 1 2 1 2 2 2 1 1 2 1 1 2 1 1 1 2 2 1 2 2 1 1
ASSISTANT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CHIEF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Shift Early 2 (E2)
SURGERY1 2 2 1 1 1 1 2 2 1 1 1 1 1 2 2 2 1 1 0 1 1 1 1 1 0
SURGERY2 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 2 1 0 1
ASSISTANT 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Late Shift (LS)
SURGERY1 2 2 1 1 2 1 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1
SURGERY2 2 2 1 1 2 1 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1
ASSISTANT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CHIEF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Night Shift
SURGERY1 1
SURGERY2 1

January 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ...
Weekday Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su ...

Adam,T. LS LS LS LS E2 E2 E2 E1 E1 E1 E1 NS NS NS LS -1.5

Alexander,P. NS NS NS NS E2 E2 LS LS LS LS LS E1 LS LS NS NS +1,1

Huber,E. E1 E1 LS LS LS NS NS NS E2 E2 E2 E2 E2 E2 LS LS -0.8

Beisser,H. E1 E1 LS E1 E1 E1 LS LS LS E1 E1 E1 E1 E1 E1 E1 +0.5

Cäsar,J. E1 E1 E1 E1 E1 LS LS E1 NS NS LS LS LS E2 E2 E2 E2 -3.1

Escher,H. E1 E1 NS NS NS NS NS LS LS LS E1 LS LS E1 E1 E1 +0.3

Huber,G. LS NS NS NS NS NS E2 E2 LS LS LS E2 E2 E2 E1 +2.3

Kunz,R. LS LS E1 E1 E1 E1 NS NS NS NS NS LS E2 E2 -0.2

Biber,A. LS E2 E2 E2 LS LS LS LS LS LS E1 E1 E1 E1 E1 -2.1

... (further employees)

Fig. 2. Example of a roster computed by the Hybrid Genetic Algorithm. The upper
part shows the number of employees assigned to the positions of each shift. The part
below shows the shifts the employees have been assigned to and the difference to their
target monthly working hours.

ment selection caused better fitness values than tournament selection with two
individuals and one-point-crossover only. The individuals created that way are
added to the population if their fitness value is better than the fitness value of
the worst individual of the population, which is removed then.

4.1 Coding

Direct coding has been chosen to represent the monthly roster in a chromosome,
i.e. the genes represent the sequence of workplaces of the functions of each shift.
Thus we have a gene for each possible assignment of an employee to a function
(see figure 4). The consequence of this coding method is a comparable long gene
string. If the assignment of more employees than provided by the maximum
staffing level should be permitted, additional genes have to be inserted.

Optimizing Employee Schedules by a Hybrid Genetic Algorithm 467

Values
Assigned

Gene 2Gene 1 Gene 3 Gene 4

Job 2
Shift 1

Job 1
Shift 2
Day 2

Job 2
Shift 3
Day 26

Job 1
Shift 3
Day 17Day 8

Employee 1
1st Function

Employee 1
2nd Function

Employee 2
1st Function

Employee k
m−th Function

Fig. 3. Coding of the roster from the point of view of the employees.

Function 1
Shift 1
Day 1

Function 2
Shift 1
Day 1

Function 3
Shift 1
Day 1

Function x
Shift y
Day 31

Assigned

Values

Gene 1 Gene 2 Gene 3 Gene n

Employee
No. 1

Employee Employee Employee
No. 6No. 2No. 6

Fig. 4. Chosen coding of the roster as a pattern of shifts.

The alleles represent the employees respectively the “empty” employee. But
there are only assignments of employees allowed if the employees are able to
fulfill the required function of the position.

Using the above encoding scheme yields assignments of the employees to the
functions of the shifts which are directly apparent and time consuming decoding
algorithms are avoided. The drawback is that several hard constraints are not
enforced, i.e. the genotype represents invalid solutions, e.g. the repeated assign-
ment of the same employee to one day. However, a larger part of the search
space is searched by this method as if certain assignments would be forbidden
by the coding scheme. For this reason direct representation has been preferred
to implicit representation [3]. Of course these violations have to be sorted out in
a later stage of the algorithm.

4.2 Mutation

The chosen coding scheme induces that the mutation operation randomly
changes the assigned employee. In doing so the initially defined mutation rate is
reduced linear to two changes at the end. This is done according to the idea of
Evolution Strategies [9] where the mutation rate is reduced to ensure that the
algorithm converges towards an optimum.

4.3 Fitness Function

The fitness of an individual is computed by assigning penalty costs (penalty
points) for the violation of constraints. These penalty costs are specified by the
user according to the importance of the constraint fulfillment. As mentioned
above the violation of most hard constraints is allowed with the chosen coding
scheme. To sort things out violations result in lower fitness scores (higher penalty
costs) and therefore increase the evolutionary pressure on these individuals.

468 M. Gröbner and P. Wilke

Penalty costs are assigned for each occurrence of a constraint violation. The
penalty is calculated depending on the severity of the violation. E.g. for the
penalisation of the violation of fairness constraints like “uniform distribution of
weekend shifts among the employees” the average number of weekend shifts has
to be calculated first and the penalty costs are assigned representing deviation
of each employee’s number of weekend shifts from the average value.

The quality of a chromosome is expressed by its penalty costs. The better
individual is the one with less penalty points which results in a higher probability
for reproduction by tournament selection.

5 Repair Operators

The Genetic Algorithm described so far yielded relative good rosters, but still an
unacceptable high number of hard constraints remain violated. To improve the
quality and speed of the algorithm it was necessary to introduce problem specific
knowledge resulting in an accelerated convergence. The idea is to apply repair op-
erators which outperform the simple penalisation of constraint violations. These
new operators are applied to the individuals after selection, recombination and
mutation, but before fitness calculation.

The disadvantage which comes with this is that the search behaviour becomes
more locally. So the parameters of the algorithm have to be chosen carefully so
that local search isn’t introduced too early restricting the search space in an
inappropriate fashion. So our repair operators are applied best if their impact is
gradually increased. This parameter is to be fine tuned during the experiment.

The repair operators carry out the following modifications:

Cancelling of assignments. When an employee has been assigned more than
once a day all assignments can be cancelled except one.

Selected assignment. An employee can be assigned to days to those he has
not yet been assigned if his current monthly working hours are less than his
target working hours.

Selected cancelling of an assignment and reassignment of the employee.
Sometimes it is more favourable with respect to the staffing levels of the
shifts to cancel the assignment of an employee and to reassign him to an-
other function within a shift of the same day.

Interchanging of the assignments of two employees to yield a more homoge-
nous sequence of shifts for the employees.

The improvements of the roster found by the repair operators are subse-
quently re-decoded to the genotype. This is establishes a kind of Lamarckian
evolution.

6 Results

The Genetic Algorithm presented here has been tested on several real world
databases and yielded feasible solutions of the problem in nearly all cases i.e.

Optimizing Employee Schedules by a Hybrid Genetic Algorithm 469

a roster without violations of hard constraints. In figure 5 different real world
hospital databases with different configurations are shown. The databases differ
in the number of employees to be scheduled, the employees’ weekly working hours
and the number of shifts and functions. The task was to compute a roster for
one month in advance. The corresponding test run results showing the remaining
violations of hard constraints can be seen in figure 6.

Database No. Employees hours per week No. Shifts No. Functions Comp. Time
Internal Med. 1 22 all 38.5 4 4 3 min
Internal Med. 2 20 38.5, 19.25 3 5 5 min

Geriatrics 24 38.5, 20, 15 2 7 5 min

Fig. 5. Three different input databases for the Hybrid Genetic Algorithm.

h
ar

d
 c

o
n

st
ra

in
ts

 v
io

la
te

d

Thousand Generations

Fig. 6. The Hybrid Genetic Algorithm applied to three different hospital databases.
The curves show the number of remaining violations of hard constraints.

An adapted version of the algorithm has been integrated in the employee
planning software SP-EXPERT c© 1 and is used by several customers since then.

In figure 5 computing times are listed, too. The algorithm required at most 5
minutes on a 600 MHz Pentium to get feasible solutions for several test databases
with less than 25 employees. Longer running times with more generations do not
necessary result in an improvement of solution quality as the example in figure
7 shows. Results get even worse with too long running times because the repair
operators are applied to a more resticted search space then.
1 Contact: Astrum GmbH, Am Wolfsmantel 2, D-91058 Erlangen, Germany or

www.astrum.de

470 M. Gröbner and P. Wilke

Computing time Final fitness value Computing time Final fitness value
0.5 min -721 8 min -1701
1 min -702 10 min -1284
2 min -1009 15 min -1106
5 min -1862 20 min -1324

Fig. 7. Impact of running time to the final result of the Genetic Algorithm (average
value of several test runs). Smaller fitness values indicate better solutions.

The presented technique shows that Genetic Algorithms are suitable to au-
tomatically create rosters. But it seems to be necessary to use problem specific
knowledge — in our example repair operators — to yield finally feasible rosters.
Figure 8 shows the effect of the repair operators and proves that no feasible so-
lutions can be found even after a large number of generations when renouncing
the repair operators (figure 9).

F
it

n
es

s

Generations

application of repair operators

Fig. 8. Comparison of two test runs with and without repair operators. The figure
shows the different trends of the fitness values (penalty costs).

Furthermore the presented Genetic Algorithm verifies that Lamarckian and
Elitist strategies can speed up the search process even if there exists the danger
to converge in local optima [6]. We tried to avoid this by introducing the repair
operators smoothly during the run of the evolution process.

It hasn’t escaped our attention that the chosen fitness calculation is not
completely without problems because there is a large variety of incompatible
constraints. The question is how the algorithm “knows” that a solution with
a better fitness value really has less hard constraints violated. We solved this
problem in our test databases by appropriate parameter values for the penalty
used by the fitness function.

Optimizing Employee Schedules by a Hybrid Genetic Algorithm 471

h
ar

d
 c

o
n

st
ra

in
rt

s
vi

o
la

te
d

Generations

application of repair operators

feasible roster

Fig. 9. Comparison of two test runs with and without repair operators. The figure
shows the number of remaining violations of hard constraints.

7 Conclusion and Outlook

Our tests showed that the presented Genetic Algorithm is flexible with respect to
the integration of future constraints. The only thing to do is to extend the fitness
function to calculate the appropriate penalty costs. Normally the convergence is
slowed by this and sometimes some soft constraints are not satisfied in the final
solution. In some cases the repair operators have to be adapted to take the new
constraints in account. Otherwise the repairs would not be able to improve the
solution found so far. Two problems are connected with the repair operators. The
first problem is the choice of the penalty costs for the fitness function. Often it is
rather difficult for users to express the different constraint violations in penalty
costs. A rating by linguistic formulations (“very important”, “doesn’t matter”,
“not so important”) would make sense. Thus a combination of the presented
algorithm and fuzzy logic would be interesting. Another problem is the control
of the impact of the repair operators. If these operators are introduced too early
the search space turns locally, if they are introduced too late the repair may not
be complete to yield valid solutions. In our tests the optimal point in time to
begin with the repair operators has been determined heuristically.

Further research will be directed towards finding an automated mechanisms
to control the repair operator’s impact on the search space.

The disadvantage of the Genetic Algorithm presented is that coding scheme
and repair operators have to be adapted for each new scheduling problem. But
it looks promising to develop a more general version of this problem specific
method to be able to integrate new constraints easier and to apply this method
to new similar optimisation problems with little effort. For this we will try to
generalize the problem representation and the allowed constraints to cover most
such scheduling problems to be able to apply more general repair operators.

472 M. Gröbner and P. Wilke

As a first step towards this goal we are testing the application of our Genetic
Algorithm to similar new scheduling problems like Employee Scheduling for Call
Centers, student timetabling for University courses or school timetabling. In the
Call Center case the difference is that e.g. employees do not work in shifts but
with variable working times around the clock where for the University timetable
student’s course preferences play a more important role. So the Genetic Algo-
rithm has to be changed if necessary with respect to the coding scheme and
the concrete implementation of the repair operators. First tests verify the good
results yielded with the rostering case.

Acknowledgement. This work has been partly supported by a grant from
the Lehrstuhl fuer Programmiersprachen, Institut fuer Informatik, Friedrich-
Alexander-Universitaet Erlangen-Nuernberg, Martensstrasse 3, 91058 Erlangen,
Germany. We would like to thank them for their support.

References

1. A. Meisels and N. Lusternik, “Experiments on Networks of Employee
Timetabling Problems”, in Proceedings of the Second International Conference
on the Practice and Theory of Automated Timetabling, ed.s E. Burke and M.
Carter, pp. 215-228, Springer, 1997.

2. E. Burke and D. Elliman and R. Weare, “Specialised Recombinative Operators
for Timetabling Problems”, in Proceedings of the AISB (AI and Simulated Be-
haviour) Workshop on Evolutionary Computing, pp. 75-85, Heidelberg, Springer,
1995.

3. D. Corne and P. Ross and H.-L. Fang, “Evolutionary Timetabling: Prac-
tice, Prospects and Work in Progress”, in Proceedings of the UK Planning and
Scheduling SIG Workshop, ed. P. Prosser, University of Strathclyde, 1994.

4. C. Fernandes and J. P. Caldeira and F. Melicio and A. Rosa, “High School
Weekly Timetabling by Evolutionary Algorithms”, in Proceedings of 14th Annual
Acm Symposium On Applied Computing, San Antonio, Texas, 1999.

5. D. Mattfeld, “Scalable Search Spaces for Scheduling Problems”, in Proceedings
of GECCO99, ed.s W. Banzhaf et al, pp. 1616-1621, Morgan Kaufmann, 1999.

6. R. Weare and E. Burke and D. Elliman, “A Hybrid Genetic Algorithm for Highly
Constrained Timetabling Problems”, in Proceedings of the Sixth International
Conference on Genetic Algorithms, ed. L. J. Eshelman, pp. 605-610, Pittsburg,
Morgan Kaufmann, 1995.

7. M. Gröbner and P. Wilke, “Rostering with a Hybrid Genetic Algorithm”, to be
published in Proceedings of Fifth International Conference on Artificial Neural
Networks and Genetic Algorithms, Springer, 2001.

8. D. E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine
Learning”, Addison-Wesley, 1989.

9. I. Rechenberg, “Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution”, Fromann-Holzboog, 1973.

10. M. Gröbner, “Optimierung der Einsatzplanung für Personal im Schichtdienst”,
Master Thesis, Universität Erlangen-Nürnberg, October 1998.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 473-483, 2001.
© Springer-Verlag Berlin Heidelberg 2001

A Genetic Algorithm for the Capacitated Arc Routing
Problem and Its Extensions

Philippe Lacomme, Christian Prins, and Wahiba Ramdane-Chérif

University of Technology of Troyes, Laboratory for Industrial Systems Optimization
12, Rue Marie Curie, BP 2060, F-10010 Troyes Cedex (France)
{Lacomme, Prins, Ramdane}@univ-troyes.fr

Abstract. The NP-hard Capacitated Arc Routing Problem (CARP) allows to
model urban waste collection or road gritting, for instance. Exact algorithms are
still limited to small problems and metaheuristics are required for large scale
instances. The paper presents the first genetic algorithm (GA) published for the
CARP. This hybrid GA tackles realistic extensions like mixed graphs or
prohibited turns. It displays excellent results and outperforms the best
metaheuristics published when applied to two standard sets of benchmarks: the
average deviations to lower bounds are 0.24 % and 0.69 % respectively, a
majority of instances are solved to optimality, and eight best known solutions
are improved.

1 Introduction

The Capacitated Arc Routing Problem (CARP) is defined in the literature on an
undirected network G = (V,E) with a set V of n nodes and a set E of m edges. A fleet
of identical vehicles of capacity Q is based at a depot node s. A subset R of edges
require service by a vehicle. All edges can be traversed any number of times. Each
edge (i, j) has a traversal cost cij � 0 and a demand rij � 0. The CARP consists of
determining a set of vehicle trips of minimum total cost, such that each trip starts and
ends at the depot, each required edge is serviced by one single trip, and the total
demand handled by any vehicle does not exceed Q. The cost of a trip comprises the
costs of its serviced edges and of its intermediate connecting paths.

Many applications occur in road networks: urban waste collection, snow plowing,
sweeping, gritting, etc. Demands are amounts to be collected along the streets (urban
waste) or delivered (salt for ice clearance). Costs are distances or travel times. The
undirected version concern roads that can be serviced during one traversal and in any
direction, which happens in low-traffic suburban areas. In the directed version of the
CARP, each arc represents one street (or one side of street) with a mandatory direction
for service. Both versions are NP-hard, even in the special case where one trip is
sufficient (Rural Postman Problem).

474 P. Lacomme, C. Prins, and W. Ramdane-Chérif

Golden and Wong [1], Benavent et al. [2] and Belenguer and Benavent [3] have
investigated integer linear programming formulations and lower bounds for the CARP.
Since exact algorithms like the branch-and-bound method of Hirabayashi et al. [4] are
still limited to small instances (30 edges), larger instances must be tackled in practice
by heuristics. Good greedy heuristics include Path-Scanning from Golden and Wong
[1], Construct-Strike as improved by Pearn [5], Augment-Insert from Pearn [6],
Augment-Merge from Golden et al. [7] and Ulusoy’s tour splitting method [8].
Concerning metaheuristics, Li [9] applied simulated annealing and tabu search to a
road gritting problem, and Eglese [10] designed a simulated annealing approach for a
multi-depot gritting problem with side constraints. The most efficient metaheuristic
published so far is a sophisticated tabu search method from Hertz et al. [11].

The context of municipal waste collection is adopted in the following, for making
the problem more concrete and talkative. We first present in section 2 our extension of
the basic CARP with its data structures. Section 3 describes the basic components of
our GA, which is tested in section 4 on two standard sets of benchmarks.

2 Extended CARP and Data Structures

Compared with the basic CARP in introduction, we already tackle three extensions.
First, we add a set U of directed arcs to get a mixed graph G = (V,U,E) combining
edges and arcs. m becomes the number of links (arcs or edges). We call tasks the t
links in R (usually defined by a non-zero amount of waste). Second, we define for
each task (i, j) a collecting cost wij � 0 distinct from the true traversal cost cij (without
collecting). Third, we handle prohibited turns, e.g. undesirable U-turns.

In memory, G is converted into an entirely directed internal graph H = (V, A). A
contains nia = |U|+2.|E|+1 internal arcs: one per arc of U, two opposite arcs per edge
of E, and one dummy loop on the depot. We drop the nodes to use arc indexes only.
Each internal arc u is defined by a demand r(u), a traversal cost c(u), a collecting cost
w(u) if u is required, a pointer inv(u) to the inverse arc when u codes one edge, and a
list Succ(u) of successor arcs to which it is allowed to turn. Turn prohibitions become
transparent with this data structure. Shortest path costs are pre-computed in a matrix
D, nia � nia. For any pair of arcs (u,v), D(u,v) is the traversal cost of a shortest path
from u to v (not included to ease arc insertions or deletions in trips), taking turn
prohibitions into account. A modified Dijsktra’s algorithm with arc labels can compute
D in O(m3), or in O(m2.log m) with a heap structure. Since m 4n in real road
networks, these complexities reduce to O(n3) and O(n2.log n) in practice.

In any solution, each trip is stored as a sequence of tasks (internal arc numbers, in
the order of service) with a total cost and a total load. Shortest paths between tasks are
assumed. They are not stored, since their cost can be read in O(1) from D. The cost of
a trip cumulates the collecting costs of its tasks and the traversal costs of its
intermediate paths. The total cost of a solution is the sum of all trip costs.

A Genetic Algorithm for the Capacitated Arc Routing Problem and Its Extensions 475

3 Genetic Algorithms for the Extended CARP

This section describes the basic components of the hybrid GA: chromosomes and
fitness, population, reproduction step (selection of parents and crossover), mutation by
local search, replacement method, and stopping criteria.

3.1 Chromosomes and Fitness

Most GAs for the travelling salesman problem (TSP) use permutation chromosomes.
For the CARP, such a chromosome could be viewed as the order in which a vehicle
must collect all the t tasks, assuming the same vehicle performs all trips in turn. This
encoding is appealing because there always exists one optimal sequence. However, a
given sequence may be split into trips in many ways, and trip delimiters seem
inevitable to avoid ambiguous chromosomes. This raises several problems, for
instance defining trip limits in the children generated by a crossover.

20
12

11 11 20
15

13
14

5

5 5

5

a(4)

b(3) c(5)

d(1)
10

20

20 Step 1: giant tour with 4 tasks
Demands in brackets, capacity ignored

a(37) b(27) c(40) d(32)

ab(51) cd(64)

bc(56)

bcd(80)

0
37 51 91

115

20

11 20

14

5

5 5

5

10

Trip 1 Trip 2

Step 2: auxiliary graph for Q = 9

Step 3: resulting trips

20

Fig. 1. Main steps of Ulusoy’s algorithm

Ulusoy’s algorithm provides an elegant solution for keeping simple permutation
chromosomes. Usually, this algorithm is a CARP heuristic better explained by figure
1. First, capacity is ignored to build one giant tour T covering all tasks (a, b, c and d
in the figure). Second, an auxiliary graph is built in which each arc denotes a
subsequence of T that can be done by one trip. Each arc is weighted by the cost of this
trip. A shortest path in this graph shows where to split T into trips and gives the cost of

476 P. Lacomme, C. Prins, and W. Ramdane-Chérif

the corresponding solution. Third, the solution is built with one trip per arc of the path.
This algorithm is heuristic, because the giant tour giving an optimal CARP solution is
difficult to obtain. However, it splits any given tour optimally. Our GA use step 2 to
evaluate the chromosomes, considered as giant tours. The trips are never expressed,
except to output solutions when the GA stops. The fitness is simply the total cost of
the underlying CARP solution, as returned by step 2.

3.2 Population Structure and Initial Population

The population is an array P of nc chromosomes, sorted in decreasing cost order. It is
initialized with random solutions and three good heuristic solutions. Random ones are
computed by a sequential heuristic that randomly selects at each iteration one task not
yet collected, plus its collecting direction if it is an edge. The current trip ends when
one more task would violate truck capacity. The good solutions are given by Ulusoy’s
heuristic (see 3.1), Path-Scanning and Augment-Merge. All solutions are converted
into chromosomes by concatenating the lists of tasks of their trips and evaluated by
step 2 of Ulusoy’s algorithm. This significantly improves random solutions but seldom
the good heuristic solutions.

Path-Scanning builds trips one by one, starting from the depot, and extends each
trip task per task. The extension step at a node i considers two cases: if no free task is
incident to i, the trip moves to the nearest node with free tasks incident to it, else the
next task (i, j) to be collected is selected using five criteria: 1) maximize distance from
j to the depot, 2) minimize this distance, 3) maximize waste density rij / cij, 4)
minimize waste density and 5) use rule 1 if truck load � Q / 2, else use rule 2. Five
solutions are computed (one for each criterion); the final result is the best solution.

Augment-Merge builds one trip per task and sorts these t trips in decreasing cost
order. An Augment phase compares each trip Ti, i=1,2,...,t-1, with each smaller trip Tj,
j=i+1,i+2,...,t. If Ti traverses the unique task u of Tj, can collect u, and if this improves
total cost, then Ti collects u and Tj is discarded. In the Merge phase, pairs of trips are
merged in descending order of the saving produced, subject to the capacity constraints.
This process stops when no further positive saving remains.

Clones (identical solutions) are forbidden in the population, to have a better
dispersion of solutions and to diminish the risk of premature convergence. As clone
detection is time consuming, we adopt a more restrictive but faster policy in which all
solutions must have distinct costs. When building the initial population, we then check
that each inserted solution has a new cost. We try up to mnt times (50 for instance) to
generate each random solution. If all attempts generate a duplicate cost, the population
P is truncated, but this occurs only when nc is too large.

A Genetic Algorithm for the Capacitated Arc Routing Problem and Its Extensions 477

3.3 Reproduction Step and Extended OX Crossover

Parents are chosen by binary tournament selection. We first randomly select two
solutions from the population. We then select from these two the least cost solution to
be the first parent P1. This procedure is repeated to get the second parent P2. The two
parents undergo an extended version of the classical order crossover (OX). The
reproduction step ends by randomly keeping only one child C and by discarding the
other. This policy works slightly better than keeping two children or the best one.

For two parents P1 and P2 of length t, the classical OX crossover draws two
random subscripts p and q with 1 � p � q � t. To build child C1, it copies the string
P1[p]-P1[q] into C1[p]-C1[q]. Finally, it scans P2 in a circular way from q+1 (mod t)
and copies each element not yet taken to fill C1 circularly, starting from q+1 (mod t)
too. The roles of P1 and P2 are exchanged to get the other child C2. OX must be
extended for the CARP and our data structure. Each chromosome contains all t tasks,
but an edge can appear as one internal arc u or as its inverse inv(u). Therefore, when
copying u from a parent, we must check whether u and inv(u) are not already taken.
As explained in 3.1, the children are evaluated using step 2 of Ulusoy’s algorithm.

1

2

3

45

6

7
8

2

10

412

13

7

8

2

3

45

13

7
1

2

3

412

13

7

Parent 1: 1,2-3,4-5,6,7
 | |
 p=3 q=5

Parent 2: 8,7,13-12,4-2,10
 | |
 p=3 q=5

Child 1: 7,13-3,4,5-2,8 Child 2: 2,3-13,12,4-7,1

Fig. 2. An example of two parents with children generated by the OX crossover

478 P. Lacomme, C. Prins, and W. Ramdane-Chérif

Figure 1 gives two parent chromosomes with children obtained by the extended OX
crossover, for a CARP with 7 edge-tasks. The trip limits are imaginary and result in
practice from Ulusoy’s algorithm, whose execution cannot be detailed here. They are
shown as dashes in the chromosomes only to see the link with the graphical solutions.
Recall that such limits are not stored by the GA. Thick lines are required edges. Thin
lines are shortest paths in the actual network. Edges as traversed in parent 1
correspond to internal arcs 1-7. For each internal arc u � 7, the opposite arc is here
inv(u) = u + 7, e.g., the leftmost edge give internal arcs 6 and 13.

3.4 Local Search as Mutation Operator

We mutate with a fixed rate pm the child C produced by the crossover. The mutation
operator is a local search LS, giving a hybrid GA. It is clear nowadays that hybrid GAs
are better than Holland’s basic GA and can even outperform other metaheuristics.
Before applying LS, the child is converted into a set of trips, using steps 2-3 of
Ulusoy’s algorithm. Each iteration of LS scans in O(t2) all possible ways of moving a
task (in one trip or to another trip) and all possible permutations of two tasks (in one
trip or between two distinct trips). The collecting direction of an edge-task u may be
inverted during this process, i.e. we try to reinsert u or inv(u). We also inspect two
kinds of 2-opt moves by removing two shortest paths (possibly empty) u-v and x-y, in
the same trip or in distinct trips (u, v, x and y denote a task or the depot loop). We
replace them by shortest paths u-y and v-x or by paths u-x and v-y. 2-opt moves are not
always possible in mixed networks because they may invert the trip order.

At each iteration, the first improving move is executed. The process is repeated
until no further saving can be found. Some trips may become empty and are removed
at the end. The child C is kept. A new chromosome S is rebuilt from the final trips (by
concatenating their tasks) and re-evaluated with step 2 of Ulusoy’s algorithm. Quite
often, this slightly improves LS by shifting some trip limits. In [11], Hertz use
sophisticated improvement procedures for the basic CARP, like one called Shorten.
Testing shows that adding such procedures in LS has no significant effect on the
overall GA. We took simpler neighborhoods for speed and also because they remain
valid for our extended CARP model.

3.5 Replacement Method and Stopping Criteria

The replacement is incremental. One chromosome P(k) is randomly selected below
the median: k � int(nc/2). After a mutation by LS, we try to replace P(k) by S if no
clone is created. In case of clone, or when LS is not applied, we replace P(k) by C,
avoiding cost duplication. If this fails too, the current GA iteration is said
unproductive and discarded. This method keeps the best solution P(nc) and allows a
child to reproduce immediately. The GA stops after a maximum number of iterations

A Genetic Algorithm for the Capacitated Arc Routing Problem and Its Extensions 479

mni, after a maximal number of unproductive iterations mnui, or when it reaches a
lower bound LB known for some instances (in that case P(nc) is optimal).

3.6 Summary – General Structure

Before starting the algorithm, we fix nc, mnt, mni, mnui and the mutation rate pm. A
chromosome is encoded in P as a record with two fields Seq (sequence of tasks) and
Cost (fitness). This gives the following general structure:

//Initial population
Put in P the solutions of Path-Scanning, Augment-Merge and Ulusoy
k := 3
Repeat
 k := k + 1
 Randomly generate P(k) with a new cost (mnt attempts)
Until (k = nc) or (failure)
If failure then nc := k - 1
Sort P in decreasing cost order
//Main iteration
ni, nui := 0
Repeat
 Select P1 and P2 by binary tournament
 Apply extended OX crossover and select one child C
 Evaluate C using Ulusoy’s algorithm
 Choose k randomly in [1,int(nc/2)]
 If Random < pm then
 Mutate C by local search giving S
 If S.Cost not in P\{P(k)} then C := S
 EndIf
 If C.Cost not in P\{P(k)} then //Productive iteration
 ni := ni + 1
 If S.Cost < P(nc).Cost then nui := 0 Else nui := nui + 1
 P(k) := S
 Shift P(k) to resort P
 EndIf
Until (ni = mni) or (nui = mnui) or (P(nc).Cost = LB).

4 Computational Evaluation

The GA is implemented in Delphi on a 500 MHz PC under Windows 95 and
compared with the best method for the CARP, the tabu search Carpet from Hertz et al.
[11]. These tests are done on two standard sets of undirected instances in which all
edges are required. The first set (table 1) contains 23 instances from DeArmon [12]
with 7 to 27 nodes and 11 to 55 edges. The second set (table 2) contains 34 harder
instances from Belenguer and Benavent [3], with 24 to 50 nodes and 34 to 97 edges.
All these files can be obtained at ftp://matheron.estadi.uv.es/pub/CARP.

In both tables, Prob gives the instance number and n,m the numbers of nodes and of
edges. LB is a lower bound from Belenguer et al. [3]. TS is the result of Carpet with
the parameter setting yielding the best results on average (same setting for all

480 P. Lacomme, C. Prins, and W. Ramdane-Chérif

instances). Best gives the best solution published, generally obtained by Carpet with
various settings of parameters. GA is the solution of our hybrid GA, with a unique
parameter setting to ease comparison with Carpet. Dev is the deviation of GA to
Carpet in %. New best is the new best solution when running the GA with several
settings. Boldface indicates instances for which the GA improves Carpet. New best
solutions are in boldface italics. Asterisks denote new optimal solutions. Our results
are obtained with a small population of nc = 30 solutions. The local search is applied
with a rate pm = 0.1. The GA performs a first phase stopping after mni = 20000
productive crossovers, mnui = 6000 crossovers without improving the best solution, or
when LB is reached. If LB is not reached, it restarts for 10 short phases with mni =
mnui = 2000 and pm pushed up to 0.2. nc is small to avoid losing too much time in
unproductive crossovers (the rejection rate is 10 to 20% for nc = 30).

Table 1. Results of the GA on De Armon's instances

Prob n,m LB Best TS GA Var % New best

 1 12,22 316 316 316 316 0.00 316
 2 12,26 339 339 339 339 0.00 339
 3 12,22 275 275 275 275 0.00 275
 4 11,19 287 287 287 287 0.00 287
 5 13,26 377 377 377 377 0.00 377
 6 12,22 298 298 298 298 0.00 298
 7 12,22 325 325 325 325 0.00 325
 8 27,46 344 348 352 350 -0.57 348
 9 27,51 303 311 317 303* -4.42 303*
10 12,25 275 275 275 275 0.00 275
11 22,45 395 395 395 395 0.00 395
12 13,23 448 458 458 458 0.00 458
13 10,28 536 544 544 540 -0.74 538
14 7,21 100 100 100 100 0.00 100
15 7,21 58 58 58 58 0.00 58
16 8,28 127 127 127 127 0.00 127
17 8,28 91 91 91 91 0.00 91
18 9,36 164 164 164 164 0.00 164
19 11,11 55 55 55 55 0.00 55
20 11,22 121 121 121 121 0.00 121
21 11,33 156 156 156 156 0.00 156
22 11,44 200 200 200 200 0.00 200
23 11,55 233 233 235 235 0.00 235

The hybrid GA is very efficient: on all instances, it is at least as good as Carpet. On
the 23 DeArmon’s instances, it outperforms Carpet 3 times, improves 2 best known
solutions with one to optimality, and reaches LB 19 times. The average and worst
deviations to LB are roughly divided by 2 compared to Carpet and become
respectively 0.24 % and 2.23 %. For the 34 harder instances from Belenguer et al.,
Carpet is improved upon 16 times and the best solution 5 times, with one new optimal
solution. Optimality is proven on 23 instances. Again, the average and worst

A Genetic Algorithm for the Capacitated Arc Routing Problem and Its Extensions 481

deviations to LB are halved and become 0.69 % and 4.26 %. Table 3 summarizes this
comparison with Carpet and gives some other indicators. CPU times are difficult to
compare: Carpet was tested by Hertz on a Silicon Graphics Indigo 2 at 195 MHz,
while we use a Pentium III PC at 500 MHz.

Table 2. Results of the GA on the instances from Belenguer and Benavent

Prob n,m LB Best TS GA Var % New best

1A 24,39 173 173 173 173 0.00 173
1B 24,39 173 173 173 173 0.00 173
1C 24,39 235 245 245 245 0.00 245
2A 24,34 227 227 227 227 0.00 227
2B 24,34 259 259 260 259 -0.38 259
2C 24,34 455 457 494 462 -6.48 457
3A 24,35 81 81 81 81 0.00 81
3B 24,35 87 87 87 87 0.00 87
3C 24,35 137 138 138 138 0.00 138
4A 41,69 400 400 400 400 0.00 400
4B 41,69 412 412 416 412 -0.96 412
4C 41,69 428 430 453 428* -5.52 428*
4D 41,69 520 546 556 541 -0.92 530
5A 34,65 423 423 423 423 0.00 423
5B 34,65 446 446 448 446 -0.45 446
5C 34,65 469 474 476 474 -0.42 474
5D 34,65 571 593 607 581 -4.28 581
6A 31,50 223 223 223 223 0.00 223
6B 31,50 231 233 241 233 -3.32 233
6C 31,50 311 317 329 317 -3.65 317
7A 40,66 279 279 279 279 0.00 279
7B 40,66 283 283 283 283 0.00 283
7C 40,66 333 334 343 334 -2.62 334
8A 30,63 386 386 386 386 0.00 386
8B 30,63 395 395 401 395 -1.50 395
8C 30,63 517 528 533 533 0.00 527
9A 50,92 323 323 323 323 0.00 323
9B 50,92 326 326 329 326 -0.91 326
9C 50,92 332 332 332 332 0.00 332
9D 50,92 382 399 409 391 -4.40 391
10A 50,97 428 428 428 428 0.00 428
10B 50,97 436 436 436 436 0.00 436
10C 50,97 446 446 451 446 -1.11 446
10D 50,97 524 536 544 535 -1.65 530

6 Conclusion

This paper presents the first GA ever published for the CARP. On two standard sets of
benchmarks, it improves eight best known solutions and its average deviation to the
lower bound is very small, less than 0.7 %. On all tested instances, despite simple

482 P. Lacomme, C. Prins, and W. Ramdane-Chérif

neighborhoods in its local search, this hybrid GA is as least as good as the best
algorithm published, a powerful tabu search. This shows that, contrary to a still
widespread opinion, hybrid GAs can outperform other metaheuristics. Moreover,
thanks to our data structure, our GA can already handle an extended CARP, with a
mixed graph, collecting and traversal costs, and prohibited turns or turn penalties. Our
goal is now to design large instances of that type and to investigate new useful
extensions, like heterogeneous fleets, multitrips, selective collection of several kinds
of waste, several dumping sites, periodic problems over several days or weeks, sectors
with different priorities, and time windows on the arcs.

Table 3. Overall comparison between Carpet and the GA on the two data sets

DeArmon instances Belenguer’s instances
Algorithm Carpet GA Carpet GA
Avg. dev. to LB% 0.5 0.24 1.9 0.69
Worst dev. to LB % 4.62 2.23 8.57 4.26
Avg. dev. to Best % 0.2 -0.08 1.1 -0.10
Proven optima 18 19 16 23
Solutions < Carpet 0 3 0 16
Solutions = Carpet 23 20 34 18
Solutions > Carpet 0 0 0 0
Solutions < Best 0 2 0 5
Solutions = Best 20 19 17 27
Solutions > Best 3 2 17 2
Avg. CPU time (s) 49 21 346 120

References

1. B.L. Golden, R.T.Wong, Capacitated arc routing problems, Networks, 11, 305-315, 1981.
2. E. Benavent, V. Campos, A. Corberan, E. Mota, The capacitated arc routing problem: lower

bounds, Networks, 22, 669-690, 1992.
3. J.M. Belenguer, E. Benavent, A cutting plane algorithm for the capacitated arc routing

problem, Research Report, Dept. of Statistics and OR, Univ. of Valencia (Spain), 1997.
4. R. Hirabayashi, Y. Saruwatari, N. Nishida, Tour construction algorithm for the capacitated

arc routing problem, Asia-Pacific Journal of Oper. Res., 9, 155-175, 1992.
5. W.L. Pearn, Approximate solutions for the capacitated arc routing problem, Computers and

Operations Research, 16(6), 589-600, 1989.
6. W.L. Pearn, Augment-insert algorithms for the capacitated arc routing problem, Computers

and Operations Research, 18(2), 189-198, 1991.
7. B.L. Golden, J.S DeArmon, E.K. Baker, Computational experiments with algorithms for a

class of routing problems, Computers and Operation Research, 10(1), 47-59, 1983.
8. G. Ulusoy, The Fleet Size and Mixed Problem for Capacitated Arc Routing, European

Journal of Operational Research, 22, 329-337, 1985.
9. L.Y.O. Li, Vehicle routing for winter gritting. Ph.D. dissertation, Department of OR and

OM, Lancaster University, Lancaster, UK, 1992.

A Genetic Algorithm for the Capacitated Arc Routing Problem and Its Extensions 483

10. R.W. Eglese, Routing winter gritting vehicles, DAM, 48(3), 231-244, 1994.
11. A. Hertz, G. Laporte, M. Mittaz, A Tabu Search Heuristic for the Capacitated Arc Routing

Problem, Operations Research, 48(1), 129-135, 2000.
12. J.S. DeArmon, A Comparison of Heuristics for the Capacitated Chinese Postman Problem,

Master’s Thesis, The University of Maryland at College Park, MD, USA, 1981.

A New Approach to Solve Permutation
Scheduling Problems with Ant Colony

Optimization

Daniel Merkle and Martin Middendorf

Institute for Applied Computer Science and Formal Description Methods
University of Karlsruhe, Germany

{merkle,middendorf}@aifb.uni-karlsruhe.de

Abstract. A new approach for solving permutation scheduling problems
with Ant Colony Optimization is proposed in this paper. The approach
assumes that no precedence constraints between the jobs have to be ful-
filled. It is tested with an ant algorithm for the Single Machine Total
Weighted Deviation Problem. The new approach uses ants that allocate
the places in the schedule not sequentially, as the standard approach,
but in random order. This leads to a better utilization of the pheromone
information. It is shown that adequate combinations between the stan-
dard approach which can profit from list scheduling heuristics and the
new approach perform particularly well.

1 Introduction

The Ant Colony Optimization (ACO) metaheuristic has recently been applied
to several scheduling problems like the Job-Shop problem [1,2,3], the Flow-Shop
problem [4], the Single Machine Total Tardiness problem (SMTTP) and its
weighted variant the SMTWTP [5,6,7], and the Resource Constrained Project
Scheduling problem [8]. In ACO several generations of artificial ants search for
good solutions. Information exchange between the ants is based on principles
of communicative behavior found in real ant colonies (for an introduction and
overview see [9]). Every ant builds up a solution step by step going through
several probabilistic decisions until a solution is found. Ants that found a good
solution mark their paths through the decision space by putting some amount of
pheromone on the edges of the path. The following ants of the next generation
are attracted by the pheromone so that they will search in the solution space
near good solutions. In addition to the pheromone values the ants will usually be
guided by some problem specific heuristic for evaluating the possible decisions.

It has already been shown that ACO can solve permutation scheduling prob-
lems like SMTWTP [5,6,7] and Flow-Shop [4] very successfully. A comparison
between ACO and other heuristics on a set of benchmark problems from [10]
for the SMTWTP was done in [6]. ACO was able to find for all 125 test in-
stances with 100 jobs the best known solutions. This was significantly better

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 484–494, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A New Approach to Solve Permutation Scheduling Problems 485

than the best known Tabu Search method for SMTWTP. Only iterated dy-
nasearch reached a similar performance as ACO.

There is a general approach to solve permutation scheduling problems like
SMTWTP and Flow-Shop with ACO. Starting with the first place of the schedule
every ant constructs a solution by deciding iteratively which job is at the next
place. For every place i in the schedule and every job j there is pheromone
information τij about the desirability to put job j at place i. This approach is
natural since for many permutation scheduling problems there exists good list
scheduling heuristics which can be used by the ants in addition to the pheromone
information. All ant algorithms that have been proposed so far for the SMTTP,
SMTWTP, and the flow-shop problem follow this approach (cmp. [5,6,7,4]).

In this paper we identify a disadvantage of the standard approach to solve
permutation scheduling problems with ACO. We propose a method to combine
the advantages of the standard approach with a new approach that circumvents
the disadvantage of the standard approach. Since the ACO algorithm of [6] that
uses the standard approach was already able to find the best solutions for all
of the large benchmark instances for the SMTWTP in the OR-Library [10] we
tested our method on a somewhat more difficult problem where in addition to
the weighted tardiness costs also weighted earliness cost have to be considered.
This problem is called the Single Machine Total Weighted Deviation Problem
(SMTWDP).

The paper is organized as follows. The definition of the SMTWDP is given in
Section 2. The new approach is described in Section 3. In Section 4 we describe
the ant algorithm for the SMTWDP. Some variants and further aspects of the ant
algorithm are considered in Section 5. The choice of the parameter values of the
algorithms that are used in the test runs and the test instances are described in
Section 6. Results are reported in Section 7 and a conclusion is given in Section 8.

2 The Single Machine Total Weighted Deviation Problem

The Single Machine Total Weighted Deviation Problem (SMTWDP) is to find
a one machine schedule for a given set of jobs that minimizes the sum of the
earliness and tardiness of the jobs. Formally, SMTWDP is to find for n jobs,
where job j, 1 ≤ j ≤ n has a processing time pj , a due date dj , and two
weights hj , wj , a non-preemptive one machine schedule that minimizes D =∑n
j=1(hj · max{0, dj − Cj} + wj · max{0, Cj − dj}) where Cj is the completion

time of job j. D is called the total weighted deviation of the schedule. Observe
that hj ·max{0, dj−Cj} is the weighted earliness of a job and wj ·max{0, Cj−dj}
is its weighted tardiness. It is known that SMTWDP is NP-hard in the strong
sense even when all weights are the same [11]. Note, that the SMTWTP problem
easier since it can be solved in pseudopolynomial time when all weights are equal
[11].

486 D. Merkle and M. Middendorf

3 The New Approach

The standard approach that ants build up a schedule by always extending an
already fixed prefix can often profit from existing list scheduling heuristics. In
the following we identify a disadvantage of this approach.

The general principle of ant algorithms is that the pheromone information
reflects the outcomes of the decisions that have been made by former ants that
found good solutions. Due to pheromone evaporation older generations of ants
have a smaller influence on the pheromone values than newer ones. The ants of
the actual generation should use this pheromone information in an adequate way.
Hence their decisions should be made according to the probability distribution
that is determined by the relative size of the pheromone values corresponding
to the possible outcomes of the decision. Note, that this probability distribution
might be modified by heuristic information.

The following observation shows a general problem for ant algorithms to
follow this guideline. While the probability distribution for the first decision of
an ant correctly reflects the relative size of the pheromone values this is not
necessarily true for the following decisions. This is illustrated by an example.
Assume that an ant decides with respect to the relative amount of pheromone
and no additional heuristic information is considered. Let there be n = 3 jobs
and the pheromone matrix given by

|τij |i,j∈[1:3] =

∣∣∣∣∣∣∣∣

1
2

1
3

1
6

1
6

1
3

1
2

1
3

1
3

1
3

∣∣∣∣∣∣∣∣
Then, for the first place in the schedule an ant chooses job j, j ∈ [1 : 3] with

probability p1j = τ1j . But for the second place the probabilities are different
from the relative amount of pheromone in the row because the decision for
the first place has to be considered. In particular, p21 = p12(τ21/(τ21 + τ23)) +
p13(τ21/(τ21 + τ22)) = 25/180 < 1/6. Similarly, p22 = 56/180 < 1/3 and p23 =
99/180 > 1/2.

In the following we propose a method to cope with the above mentioned prob-
lem. The new approach is applicable to ant algorithms that solve permutation
scheduling problems where no precedence constraints between the jobs have to
be considered. The general idea is that every ant determines in a random order
over the places which job is assigned to the next place. The advantage is that
every place has the same chance to be the first that is assigned a job. There-
fore, in the average the decisions of the ants will better reflect the information
that is contained in the pheromone matrix. It is likely that this will improve
the optimization behavior compared to an ant algorithm following the standard
approach.

But there is a problem with this approach. An ant that assigns jobs to the
places in a random order can usually not profit from heuristics that are based
on list scheduling. Since there exist good list scheduling heuristics for many per-
mutation scheduling problems and heuristic information is in general important

A New Approach to Solve Permutation Scheduling Problems 487

for the optimization behavior of ant algorithms it is not clear whether the new
approach will be better than a standard ant algorithm that uses a powerful list
scheduling heuristic.

Therefore, we propose to combine both approaches. Some ants should decide
according to the standard sequential order and use the (list scheduling) heuristic
while the other ants make decisions according to a random order without using
heuristic information. But some care has to be taken when two types of ants
work together. When both types of ants are in the same generation it might
often be the case that ants of one type are better than the others. Then, only
the ants of one type will have a chance to update the pheromone matrix and
the other ants are useless (we assume here that only the better ants are allowed
to update the pheromone information). We circumvent this problem by using
ants of different type in different generations so that competition occurs only
between ants of the same type.

4 The Ant Algorithm for SMTWDP

The ant algorithm for the SMTWDP works as follows. In every generation each
of m ants constructs one solution for the SMTWDP. We use two types of ants.
The so called sequential ants select the jobs in the order in which they will appear
in the schedule. Whereas the so called random ants select the jobs according to
some random order in which they will appear in the schedule. For the selection of
a job both types of ants use the pheromone information. The sequential ants use
also some heuristic information. The heuristic information, denoted by ηij , and
the pheromone information, denoted by τij , are indicators of how good it seems
to have job j at place i of the schedule. The heuristic value is generated by some
problem dependent heuristic whereas the pheromone information stems from
former ants that have found good solutions. The next job is chosen according to
the probability distribution over the set of unscheduled jobs S determined by

pij =
τij · ηij∑
h∈S τih · ηih

or pij =
τij∑
h∈S τih

for the sequential ants respectively the random ants.
The heuristic values ηij are computed according a heuristic that has been

obtained by modifying a heuristic proposed in [12]. The idea is that a sequential
ant choses the next job from the set of jobs that already exceed their due date
(with respect to the sum of the processing times of all jobs that are scheduled so
far) or will exceed it when they are scheduled next (if there exists such a job).
For every of these jobs the costs will become higher when it is scheduled later.
From these jobs the shorter ones and those with a high tardiness weight should
be scheduled first. Hence, for dj ≤ T + pj , where T is the sum of the processing
times of all jobs that have already been scheduled, the heuristic value is

ηij =
wj
pj

488 D. Merkle and M. Middendorf

Some of the jobs which will not exceed their due date when they are sched-
uled next might exceed it when they are scheduled after some other job that
is scheduled next. To be able to consider those jobs we give the heuristic some
foresight. All those jobs that have a processing time which is smaller than the
average processing time and where the due date exceeds T + pj by at most
(p− pj) · wj

wj+hj
are given some positive heuristic value. Observe that the thresh-

old becomes larger for jobs which have tardiness costs that are relatively high
compared to the earliness costs. The heuristic values then fell linearly with in-
creasing due date from wj

pj
to zero in the interval [T +pj , T +pj+(p−pj) · wj

wj+hj
].

Hence if dj ∈ [T + pj , T + pj + max {0, p − pj} · wj

wj+hj
] then

ηij = (1 − dj − T − pj
max {0, p − pj} · wj

wj+hj

) · wj
pj

When each remaining job j has a due date dj > T + pj + (p − pj) · wj

wj+hj

then the heuristic value ηij equals

ηij =
pj
hj

so that jobs with a long processing time and small earliness weight will be
preferred.

After all m ants of the generation have constructed a solution the ant that
found the best solution in that generation is allowed to update the pheromone
matrix. But before that some of the old pheromone is evaporated according to

τij = (1 − ρ) · τij

The reason for this is that old pheromone should not have a too strong
influence on the future. Then, for every job j in the schedule of the best solution
found in the generation some amount of pheromone is added to element (ij) of
the pheromone matrix where i is the place of job j in the schedule. The amount
of pheromone added is 1/D where D is the total deviation of the schedule, i.e.,

τij = τij +
1
D

The algorithm stops when a certain number of generations has been done.
We tested different modes of alternation between generations of sequential ants
and generations of random ants.

5 Additional Aspects and Variants

Some variants of the ant algorithm that was described in the last section which
concern the pheromone evaluation and the type of ants used are described in
this section.

A New Approach to Solve Permutation Scheduling Problems 489

5.1 Pheromone Summation Rule

An alternative way to use the pheromone information was proposed in [7] for
the SMTWTP. Since the SMTWTP is the variant of the SMTWDP where all
weights hj are zero, i.e. only the tardiness of a job counts, we use this pheromone
evaluation method — called pheromone summation evaluation in [7] — here also.

The following problem occurs when using the relative pheromone values di-
rectly as the probability to choose the next job. Assume that by chance an ant
chooses to put some job h at place i of the schedule that has a low pheromone
value τih (instead of a job j that has a high pheromone value τij). Then in order
to have a high chance to still end up with a good solution it will likely be nec-
essary for the ant to place job j not too late in the schedule when j has a small
due date. To handle this problem it was proposed in [7] to let a pheromone value
τij also influence later decisions when choosing a job for some place l > i. A
simple way to guaranty this influence is to use the sum of all pheromone values
for every job from the first row of the matrix up to row i when deciding about
the job for place i. Then a sequential ant chooses the next job for place i in the
schedule according to the probability distribution over S determined by

pij =
∑i
k=1 τkj · ηij∑

h∈S(
∑i
k=1 τkh · ηih)

(1)

5.2 Backward Ants

In [13] it was proposed to use (sequential) forward and (sequential) backward
ants for solving the Shortest Common Supersequence problem. Here we study
which kind of ants, forward ants or backward ants, are better for the different
types of problem instances. Backward ants construct solutions by assigning jobs
to the places in reverse order, i.e. they first decide which job is the last in the
schedule. Clearly, for the sequential backward ants the heuristic they use has to
be modified accordingly. This was done as follows.

A sequential backward ant starts with choosing the last job that finishes at
time

∑n
j=1 pj . It always choses the next job from the set of jobs that already

exceed their due date (if there exists such a job). Of these jobs the shorter ones
and those with a high earliness weight should be scheduled first. Hence, for
dj ≥ T , where T is the sum of the processing times of all remaining jobs that
have not been scheduled so far, the heuristic value is

ηij =
hj
pj

Similar as for the sequential forward ants some of the jobs which will not
exceed their due date when they are scheduled next will also be considered. All
those jobs that have a processing time which is smaller than the average and
where the due date is not before T − (p − pj) · hj

wj+hj
are given some positive

heuristic value. If dj ∈
[
T − max {0, p − pj} · hj

wj+hj
, T

]
then

490 D. Merkle and M. Middendorf

(5, 1) (3, 1) (1, 1) (1, 3) (1, 5)

0.2

0.4

0.6

0.8

TF

(e, t) F-A

(5, 1) (3, 1) (1, 1) (1, 3) (1, 5)

0.2

0.4

0.6

0.8

TF

(e, t) B-A

(5, 1) (3, 1) (1, 1) (1, 3) (1, 5)

0.2

0.4

0.6

0.8

TF

(e, t) ΣF-A

(5, 1) (3, 1) (1, 1) (1, 3) (1, 5)

0.2

0.4

0.6

0.8

TF

(e, t) ΣB-A

(5, 1) (3, 1) (1, 1) (1, 3) (1, 5)

0.2

0.4

0.6

0.8

TF

(e, t) R-A

> 5.0%

0.0 − 0.5%
0.5 − 1.0%
1.0 − 1.5%
1.5 − 2.0%
2.0 − 2.5%
2.5 − 3.0%
3.0 − 3.5%
3.5 − 4.0%
4.0 − 4.5%
4.5 − 5.0%

Fig. 1. Results for F-A, B-A, ΣF-A, ΣB-A, and R-A. For each combination of TF and
(e, t) values: average loss in solution quality compared to the best performing variant
for that combination of TF and (e, t) values.

ηij =

1 − T − dj

max {0, p − pj} · hj

wj+hj

 · hj

pj

6 Test Instances and Parameters

We tested the different variants of the algorithm on instances for the SMTWDP
of size 100 jobs. These instances were generated as follows: for each job
j ∈ [1, 100] an integer processing time pj is taken randomly from the interval
[10, 100], the earliness weight hj is taken randomly from the interval [1e, 2e], the
tardiness weight wj is taken randomly from the interval [1t, 2t], and an integer
due date dj is taken randomly from the interval

A New Approach to Solve Permutation Scheduling Problems 491

dj ∈

 100∑
j=1

pj · (1 − TF − RDD

2
),

100∑
j=1

pj · (1 − TF +
RDD

2
)

Note, that this rule was also used for creating the benchmark instances for
the SMTWTP that can be found in the OR-Library [10]. The parameters e and
t allow to control the average influence of the earliness and tardiness weights for
a problem instance. The value RDD (relative range of due dates) determines the
length of the interval from which the due dates were taken. TF (tardiness factor)
determines the relative position of the center of this interval between 0 and the
sum of the processing times

∑100
j=1 pj . The values for TF are chosen from the set

{0.2, 0.4, 0.6, 0.8}. RDD was set to 0.4, i.e. the due dates cover a range of 40%
of the computation interval. For (e, t) we tested the combinations (5, 1), (3, 1),
(1, 1), (1, 3) and (1, 5). For each combination of TF and (e, t) we use a set of 15
test instances. The parameter ρ was set 0.01 and the number of ants in every
generation was m = 10. Every run was stopped after 20000 generations.

We use the following notations for the different versions of the ant algorithm.
F-A: only sequential forward ants are used as in Section 4. B-A: only sequential
backward ants are used as in 5.2. The corresponding versions where the ants use
the pheromone summation rule as in 5.1 are called ΣF-A respectively ΣB-A.
R-A: only random ants are used. Combinations between F-A, B-A, ΣF-A and
ΣB-A with the R-A where exactly the even generations work according to R-A
are denoted by FR-A, BR-A, ΣFR-A and ΣBR-A.

7 Experimental Results

A comparison between F-A, B-A, ΣF-A, ΣB-A, and R-A is shown in Figure
1. In general R-A performed quite well. It was best in about half of the cases
where TF=0.4 and TF=0.6, i.e. the due dates lie in the middle of the scheduling
interval. ΣF-A performed best for TF=0.2 where the due dates are more at the
beginning of the scheduling interval. The opposite is true for ΣB-A. For relative
high earliness weights (large e values) ΣF-A performs better than for relative
high tardiness weights (large t values). Again, the opposite is true for ΣB-A.
Analogous remarks hold for F-A and B-A which performed, in general, worse
than their counterparts with the pheromone summation evaluation. Our results
coincide with an observation of den Besten et al. [6] that for the SMTWTP the
instances with high TF values are more difficult than those with smaller TF
values. We can conclude here that the preferred working direction of the ants
should depend on the type of the problem instances.

Comparing the ant algorithms that use two types of ants (FR-A, BR-A,
ΣFR-A, ΣBR-A) to their single type counterparts (F-A, B-A, ΣF-A, ΣB-A)
our test results show that the two type variants are in every case better than
the corresponding single type variant. A comparison between the algorithms
using two types of ants and algorithm R-A is given in Figure 2. For TF=0.2 and
TF=0.8 ΣFR-A and ΣBR-A are the best variants. It is interesting that in this

492 D. Merkle and M. Middendorf

cases the sequential ants using the pheromone summation evaluation can profit
from the combination with the random ants. For TF=0.4 and TF=0.6 algorithm
FR-A is the best when the earliness weights are relatively large compared to the
tardiness weights. For the opposite case where earliness weights are relatively
small compared to the tardiness weights BR-A is the best variant.

0.3 − 0.6%

2.1 − 2.4%
2.4 − 2.7%
2.7 − 3.0%
> 3.0%

0.0 − 0.3%

0.6 − 0.9%
0.9 − 1.2%
1.2 − 1.5%
1.5 − 1.8%
1.8 − 2.1%

(5, 1) (3, 1) (1, 1) (1, 3) (1, 5)

0.2

0.4

0.6

0.8

(5, 1) (3, 1) (1, 1) (1, 3) (1, 5)

0.2

0.4

0.6

0.8

(5, 1) (3, 1) (1, 1) (1, 3) (1, 5)

0.2

0.4

0.6

0.8

(5, 1) (3, 1) (1, 1) (1, 3) (1, 5)

0.2

0.4

0.6

0.8

(5, 1) (3, 1) (1, 1) (1, 3) (1, 5)

0.2

0.4

0.6

0.8

TF

(e, t) FR-A
TF

(e, t) ΣFR-A

TF

(e, f) ΣBR-A
TF

(e, t) BR-A

(e, t)

TF

R-A

Fig. 2. Results for FR-A, BR-A, ΣFR-A, ΣBR-A, and R-A. For each combination of
TF and (e, t) values: average loss in solution quality compared to the best performing
variant for that combination of TF and (e, t) values.

The effect of the relative influence of the sequential ants and the random ants
was tested for TF=0.4 and e = t = 1. We changed the relative rate of sequen-
tial generations and random generations in the algorithm. With FR-(i, j)-A we
denote the algorithm where i generations of sequential forward ants alternate
with j generations of random ants. Other combinations are denoted analogously.
Result are shown in figure 3 (Note, that FR-(0,∞)-A is the same as R-A). For
the test case we see that a similar influence of sequential generations and random

A New Approach to Solve Permutation Scheduling Problems 493

generations gives the best results for F-(x, y)-A. For ΣF-(x, y)-A more random
influence is better.

86500

87000

87500

88000

88500

89000

89500

90000

0 1 2 3 4 5 6

TF = 0.4

std
sum

(4, 1) (2, 1) (1, 1) (1, 2) (1, 4) (1,∞)(∞, 1)

89500

89000

88500

88000

87000

87500

86500

90000

FR-(x,y)-A

ΣFR-(x,y)-A

Fig. 3. Results for FR-(x, y)-A and ΣFR-(x, y)-A for TF=0.4, e = t = 1

Finally we give the absolute deviation values of the best algorithm versions
in table 7. The table clearly shows that the two type ant algorithms perform
best.

Table 1. Best results

(5,1) (3,1) (1,1) (3,1) (5,1)

TF=0.2 ΣBR-A ΣBR-A ΣBR-A ΣBR-A ΣBR-A

739122 443851 148453 149288 149834

TF=0.4 FR-A FR-A FR-A FR-A BR-A

349575 218472 86738 124358 160203

TF=0.6 FR-A BR-A BR-A BR-A BR-A

152589 121241 87874 226185 363407

TF=0.8 ΣFR-A ΣFR-A ΣBR-A ΣBR-A ΣBR-A

155756 155734 154640 462516 770590

8 Conclusion

We have proposed a new approach for solving permutation scheduling prob-
lems with Ant Colony Optimization. It was shown for the Single Machine Total
Weighted Deviation Problem (SMTWDP) that a combination between gener-
ations of ants that use the standard method of always extending a prefix of

494 D. Merkle and M. Middendorf

the schedule with generation of ants that allocate the places in the schedule in
random order leads to significant improvements. Further we studied the influ-
ence of the type of problem instances on the best working direction (forward or
backward) that the ants should follow.

References

1. A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant system for job-shop
scheduling. JORBEL - Belgian Journal of Operations Research, Statistics and
Computer Science, 34:39–53, 1994.

2. M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a
colony of cooperating agents. IEEE Trans. Systems, Man, and Cybernetics – Part
B, 26:29–41, 1996.

3. S. van der Zwaan and C. Marques. Ant colony optimisation for job shop scheduling.
In Proceedings of the Third Workshop on Genetic Algorithms and Artificial Life
(GAAL 99), 1999.

4. T. Stützle. An ant approach for the flow shop problem. In Proceedings of the
6th European Congress on Intelligent Techniques & Soft Computing (EUFIT ’98),
volume 3, pages 1560–1564. Verlag Mainz, Aachen, 1998.

5. A. Bauer, B. Bullnheimer, R.F. Hartl, and C. Strauss. An ant colony optimization
approach for the single machine total tardiness problem. In Proceedings of the
1999 Congress on Evolutionary Computation (CEC99), 6-9 July Washington D.C.,
USA, pages 1445–1450, 1999.

6. M.L den Besten, T. Stützle, and M. Dorigo. Ant colony optimization for the total
weighted tardiness problem. In M. Schoenauer et al., editor, Parallel Problem
Solving from Nature: 6th international conference, volume 1917 of Lecture Notes
on Computer Science, pages 611–620, Berlin, September 2000. Springer Verlag.

7. D. Merkle and M. Middendorf. An ant algorithm with a new pheromone evaluation
rule for total tardiness problems. In Proceeding of the EvoWorkshops 2000, number
1803 in Lecture Notes in Computer Science, pages 287–296. Springer Verlag, 2000.

8. D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization for resource-
constrained project scheduling. In D. Whitley et al., editor, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2000), pages 893–
900, Las Vegas, Nevada, USA, 10-12 July 2000. Morgan Kaufmann.

9. M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages
11–32. McGraw-Hill, 1999.

10. http://mscmga.ms.ic.ac.uk/jeb/orlib/wtinfo.html.
11. M.R. Garey and D.S. Johnson. Computers and Intractibility: A Guide to the Theory

of NP-Completeness. W. H. Freeman and Company, New York, 1979.
12. P.S. Ow and T.E. Morton. The single machine early/tardy problem. Management

Science, 35:177–191, 1998.
13. R. Michels and M. Middendorf. An ant system for the shortest common super-

sequence problem. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in
Optimization, pages 51–61. McGraw-Hill, 1999.

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 495-504, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Street-Based Routing Using an Evolutionary
Algorithm

Neil Urquhart, Ben Paechter, and Kenneth Chisholm

School Of Computing
Napier University
219 Colinton Rd

Edinburgh
EH14 1DJ

n.urquhart@napier.ac.uk

Abstract. Much research has been carried out into solving routing problems
using both Evolutionary Techniques and other methods. In this paper the
authors investigate the usage of an Evolutionary Algorithms to solve the Street-
Based Routing Problem (SBRP). The SBRP is a subset of the Travelling
Salesman Problem that deals specifically with a street-based environment. The
paper also compares two possible strategies for evolving networks of routes.
This paper may be considered introduction to the particular problem, and opens
the way for future research into this area.

1 A Description of the Problem

Much previous research into routing has concentrated on solving the Travelling
Salesman Problem (TSP) [11][12]. The objective of the TSP is to produce the
optimum (shortest) route around a set of delivery points, visiting each point only once
and returning to the start. Most previous attempts at solving this problem using
evolutionary algorithms have used a permutation-based representation.

If the pattern of deliveries to households within an urban area is examined, it will
become immediately apparent that significant adjacent clusters of delivery points
occur as they are grouped into streets. It follows that all delivery points within a
street will normally be serviced in sequence, before moving on to the next street.
Some considerable advantage may be drawn from grouping delivery points into street
sections and solving the problem by ordering street sections rather than individual
delivery points. For practical purposes a street section is defined as all the delivery
points on one side of a street between two junctions. Thus most named streets within
a town are divided into several street sections. The authors have named this technique
Street Based Routing (SBR).

The street based routing problem (SBRP) may be considered to be a sub-problem
of the Travelling Salesman Problem. It is the authors’ belief that when the proposed
representation is applied to street-based routing problems the majority of excluded
solutions will be inefficient solutions. For example, given a problem that involves
delivery to 471 delivery points a permutation-based approach would yield 471! =
1.499x10^1056 potential solutions. By grouping the houses into short sections, and

496 N. Urquhart, B. Paechter, and K. Chisholm

then using a permutation of sections, the reduction in search space is significant. For
instance if the delivery points are grouped into 113 sections the search space is now
113!=2.23x10^184.

Within each street section, one of three pre-defined delivery patterns may be
applied to obtain the order in which the delivery points within the section are to be
serviced. Within each street section the possible patterns of delivery have been
identified, as:

1. Deliver to all the households on one side of the street, then cross over and deliver
to the opposite side, ending up at the start point (see fig1).

2. Traverse the street from end to end, delivering to both sides, crossing over as
required, finishing at the opposite end of the street from the starting point (see fig
2).

3. Deliver to all of the households on one side, then deliver to the opposite side at a
later stage in the route (see fig 3).

Fig. 1. Deliveries pattern 1; deliver to both sides of the street, crossing at the last house.

Fig. 2. Deliveries pattern 2; deliver to both sides of the street, crossing as required.

Fig. 3. Deliveries pattern 3; the two sides of the road receive deliveries at separate points within
the round.

Street-Based Routing Using an Evolutionary Algorithm 497

2 An Evolutionary Algorithm for Solving the SBRP

2.1 Introduction

Evolutionary algorithms have been utilised to solve a wide range of tasks, including
scheduling and routing tasks [2][3][4][5][6][7][10][12][13][14]. It is assumed that the
reader has a reasonable understanding of Evolutionary Techniques (if the reader
requires any background information [9] is a useful reference work).

2.2 The Initial Algorithm

In the initial attempt at constructing an algorithm, utilised a direct representation, each
chromosome consisted of a permutation of street-section genes. Within each gene the
direction of traversal and the delivery pattern used had to be specified explicitly. The
direction and delivery patterns were altered by mutations. A recombination operator
was used to alter the ordering of the delivery sections. This initial algorithm produced
very disappointing results, mostly due to inappropriate delivery patterns and streets
being traversed in the ‘wrong’ direction.

2.3 Improvements to the Initial Algorithm

A memetic algorithm was constructed, this utilised an indirect representation in the
form of ‘memes’. The genotype only holds the order in which the street sections are
to be considered. No information is held within the genotype as to in what direction
the section is to be traversed or which delivery pattern is to be used. These genotypes
may then be decoded into phenotypes (i.e. a complete route) by applying a simple set
of rules to determine the appropriate delivery pattern. Previous research in a variety of
areas has suggested that the addition of local search to an evolutionary algorithm can
improve its performance. [10][6].

The mutation operator randomly selects a sub-string of genes from within the
chromosome and moves this sub-string to another point selected at random within the
gene. The recombination operator is based on uniform crossover, but makes use of a
global precedence operator, in this case it is the total length of the route. When two
parents have been selected, the first gene from one parent is copied to the child.
Subsequent genes are copied from either parent, based on selection of the gene that
results in the smallest increase in walk length. In some cases the choice will be
restricted by the requirement for the child chromosome to contain a valid permutation.

The algorithm used employed a steady state population incorporating elitism and
tournament selection and replacement. Initial experiments showed that a population
size of 100, a recombination rate of 0.3 and a mutation rate of 0.2 were reasonable
parameters. Having built a route based on the above methods, the fitness value is the
length of the route under consideration.

2.4 Initial Experimentation

The initial experiments were carried out on a delivery network representing the centre
of Edinburgh, this data set has 471 delivery points, distributed amongst 113 street
sections and a total “mileage” of 2346 units.

498 N. Urquhart, B. Paechter, and K. Chisholm

Some experimentation was carried out to determine sizes for the population and the
selection tournaments. Populations of 500 and 250 were tried and tournament sizes of
20 and 50 were compared also. The initial results are shown in table 1. An example of
a route produced using local search is shown in fig 4.

2.5 Integrating a Heuristic with the EA

Some recent research [8][10][2][3] has concentrated on integrating heuristics and
EAs. To improve the results obtained with algorithm as initially constructed, a simple
nearest neighbour, re-ordering heuristic has been added. Because our algorithm has a
computationally expensive evaluation function (due to it having to build the routes) a
hill climbing heuristic which would require a large number of evaluations was not felt
to be suitable.

Although the heuristic dramatically improves inefficient routes there are however
situations where the next street in the optimum solution is not necessarily the closest
street, in this situation the heuristic can actually lengthen the route. The heuristic only
applied to individuals in the population every 1,000 evaluations. When the heuristic is
applied to an individual the modified individual is only accepted back into the
population if the heuristic has improved the fitness else the original unmodified
phenotype is retained. Thus the EA may make subtle adjustments to the route without
the heuristic removing them. See fig 5.

3 Constructing a Delivery Network

3. Introduction

Construction of a single delivery route is an interesting academic exercise, but the
real-life problem involves the construction of multiple delivery routes. A maximum
number of deliveries is specified for the routes; this is a hard constraint and thus
cannot be contravened. It is also desirable to ensure that the routes are as close to
equal length as is possible. Some similarity exists with the classic graph-partitioning
problem, which researchers have attempted to solve using a mixture of evolutionary
algorithms and heuristics [1][16]. The individual routes are constructed using the
SBRP methods outlined in section 2.

3.2 Two Approaches to Building Networks

The authors have opted to investigate two approaches to building delivery networks
using Evolutionary Algorithms.

Table 1. Distances averages over 10 runs ,each for 250,000 evaluations.

Run P=500 T =5 P=250 T = 5 P=500 T=20 P=250 T=20

Average 2281.4 2164.6 1973.5 2037.6

Deviation 407.098459 198.9417559 176.639149 192.7913092

Street-Based Routing Using an Evolutionary Algorithm 499

Fig. 4. The best result produced using the hybrid algorithm (reproduced with kind permission
of James Brown Designs).

500 N. Urquhart, B. Paechter, and K. Chisholm

Fig. 5. A comparison of the hybrid and conventional heuristic.

The first approach modifies the routing algorithm to allow a single chromosome to
contain multiple routes. Within the chromosome a series of marker genes define
where one route stops and the next commences. Thus the routes may be evolved and
evaluated together. This approach is referred to as the ‘Single Chromosome’
approach.

A second approach that may be taken allows the construction of the delivery
network to take place in two distinct stages, firstly a grouping algorithm is utilised to
divide the streets into groups. Each group of streets contains no more than the
maximum number of deliveries and should be as geographically adjacent as possible.
The groups of streets are then passed individually to the SBRP routing algorithm,
allowing the each route to be constructed and optimised. This approach is known as
‘Group and Build’.

The grouping stage ensures that the route builder algorithm commences with data
that does not contain more the maximum number of deliveries for each route, it also
ensures that the streets are geographically adjacent. The route builder algorithms can
fully optimise a route for the streets allocated to it by the grouping algorithm. This
version of the architecture would appear to overcome one of the disadvantages of the
first architecture in that it allows co-evolution of the routes without interference.

3.3 Description of the Grouping EA Used for the ‘Group and Build’ Approach

The user initially enters the maximum no of deliveries permissible on each route, the
minimum number of routes (n) can then be calculated as the total deliveries divided
by the maximum allowed per route, and rounded up to the nearest whole number.

The initial population is seeded by randomly allocating each street section to a
group. A mutation consists of randomly reallocating a street to another route. The
recombination works by selecting a route from parent 1 this is then copied to the
child. The remaining routes are copied from parent 2. The first route is preserved

Length of route

Run

Hybrid solution Vs. ’conventional’ EA

With heuristic

No Heuristic

Street-Based Routing Using an Evolutionary Algorithm 501

without being altered, the other routes may be changed slightly to prevent them from
‘overwriting’ the initial set of genes copied from parent 1.

The fitness function is as follows; for each group calculate the deviation between
number of delivery points and the target, if the route has too many deliveries (ie more
deliveries than the user has specified as a maximum) then multiply the deviation by a
constant (4) and add a penalty (100). This penalises groups that contain too many
delivery points. For each group calculate the average distance between each street end
within that group. The closer the streets are clustered the smaller this value. The final
value is the total deviation from the desired number of delivery points, added to the
average distance. The deviation is multiplied by a weight (usually 2) to force the EA
to quickly discount those individuals whose routes break this hard constraint.

If after a set number of evaluations one or more routes contain more than the max
number of deliveries, the algorithm is executed again, but with the number of routes
incremented.

4.2 Experiments and Results Obtained

The division of the ‘Edinburgh’ data set (471 deliveries) into 5 routes, each with a
maximum of 100 deliveries has been attempted using both the Group And Build-EA
(GAB-EA) and the single chromosome-EA(SC-EA) approaches. The results are
shown in tables 2 and 3. The SC-EA was allowed to run for 250,000 evaluations,
whilst the first stage of GAB-EA ran for 50,000 evaluations and each of the routes
were evolved over 40,000 evaluations, thus both networks were created using the
same number of evaluations.

Regarding the ability of each algorithm to satisfy the hard constraint that no single
route contains more than 100 deliveries, table 3 shows that the GAB-EA satisfies this
constraint 100% of the time. An inspection of table 5 reveals that the SC-EA breaks
this constraint 22 times (44% of the total routes constructed). A perusal of tables 4
and 6 reveals that the average length of routes constructed with the GAB-EA is 384
units compared to 749 units (GAB-EA produced routes are on average 49% shorter
than those produced with the with the single-EA).

Fig. 6. A grouping of streets (by colour) after running the grouping EA. (Reproduced with kind
permission of James Brown Designs.)

502 N. Urquhart, B. Paechter, and K. Chisholm

Using the GAB-EA approach gives a much superior result to utilising the SC-EA
approach. The reasons for this include the fact that the GAB-EA attempts to satisfy
the maximum delivery constraint prior to beginning the routing process. Because both
the grouping and the routing process are taking place concurrently within the SC-EA
it may be deduced that it is unable to evolve satisfactory routes. If we consider that
each group of streets that makes up a route has its own section of the fitness
landscape, then the addition and removal of streets from a particular route alters the
nature of the landscape. In this manner the SC-EA is unable to evolve routes due to
the continuously changing nature of the landscape sections being considered. The
GAB-EA however, divides the landscape into sections when grouping the routes and
then does not alter the section boundaries while building the routes.

Table 2. The number of deliveries per route when constructing a network of 5 routes (averaged
over 10 runs) using the Multi-EA.

Route Avg Distance
(multi-EA)

Avg deliveries
(single EA)

1 96.1 156.9

2 95.6 129.3

3 94.7 82.6

4 89.7 70.6

5 94.9 31.6

StdDev 2.57682 49.43071

Table 3. The length of routes when constructing a network of 5 routes (averaged over 10 runs).

Route Avg length
(Multi EA)

Avg length
(single EA)

1 362.5 869.7

2 392.5 825.4

3 377.4 733.9

4 431.9 656.1

5 359.2 660.2

Avg 384.7 749.1

5 Conclusions and Future Work

The concept of using the SBR representation for particular problems has been
presented and discussed in this paper. It can be proven wthat the search space for an
SBR-based routing problem is smaller than one based on a more ‘traditional’ routing
problem. Future work intends to prove that for problems exhibiting specific
characteristics in their grouping of delivery points and streets the smaller search space
of solutions allowable by SBR contains the optimum solutions. Thus this search space
may be navigated more quickly to find the desired solution.

The representation was altered to an indirect representation by the elimination of
the StartAt portion of the gene, the system using the simple heuristic described earlier
to set the direction for each street. As previous work on EAs has shown, moving from

Street-Based Routing Using an Evolutionary Algorithm 503

a direct to an indirect representation reduces the search space and thus produces faster
and higher quality results.

The research is currently concentrating on comparing the SBR approach outlined
above to other approaches to the TSP, it is hoped to prove that for specific types of
problem the SBR can outperform more traditional heuristics. Future research will
look at the application of hybrid solutions (heuristics and evolutionary algorithms) to
the SBR problem.

References

1. A Hybrid Genetic Algorithm for Multiway Graph Partitioning. So-Jin Kang, Byung-Ro
Moon. Proceedings of the Genetic and Evolutionary Computation Conference 2000. Eds
D. Whitley, D Goldberg, E Cantu-Paz, Lee Spector, Ian Parmee, Hans-Georg Beyer.
Morgan Kaufman Publishers 2000

2. A Memetic Algorithm With Self-Adaptive Local Search: TSP as a case study. Natalio
Krasnogor, Jim Smith. Proceedings of the Genetic and Evolutionary Computation
Conference 2000. Eds D. Whitley, D Goldberg, E Cantu-Paz, Lee Spector, Ian Parmee,
Hans-Georg Beyer. Morgan Kaufman Publishers 2000.

3. A Comparison of Nature Inspired Heuristics on the Traveling Salesman Problem. Thomas
Stutzle, Andreas Grun, Sebastian Linke, Marco Ruttger. Parallel Problem Solving from
Nature VI. Eds Marc Schoenauer, Kalyanmoy Deb, Guenter Rudolph, Xin Yao, Evelyne
Lutton, Juan Julian Merelo, Hans-Paul Schwefel
Eds. Pub Springer-Verlag 2000.

4. Evolving Schedule Graphs for the Vehicle Routing Problem with Time Windows. H
Timucin Ozdemir, Chilukuri K. Mohan. Congress on Evolutionary Computation 2000.
Pub IEEE 2000.

5. Scheduling Chicken Catching – An Investigation Into The Success Of A Genetic
Algorithm On A Real World Scheduling Problem. Hart E, Ross P, Nelson J. Annals Of
Operations Research 92 Baltzer Science Publishers 1999.

6. A Genetic Algorithm for Job-shop problems with various schedule criteria. Hsio-Lan
Fang, David Corne, Peter Ross. Evolutionary Computing, AISB Workshop Brighton UK
April 1996 Ed. Terence C. Fogarty Pub: Springer-Verlag 1996

7. Extensions to a Memetic Timetabling System. Paechter B, Norman M, Luchian H.
Practice and theory of Automated Timetabling, Burke and Ross Eds. Springer Verlag
1996.

8. New Genetic Local Search Operators for the Traveling Salesman Problem. Bernd
Freisleben and Peter Merz. Parallel Problem Solving from Nature - PPSN IV Eds: Hans-
Michael Voigt, Werner Ebeling Ingo Rechenberg, Hans-Paul Schwefel Springer Verlag
1996..

9. Genetic Algorithms + Data Structures = Evolution Programs (Third, Revised and
Extended Edition). Michalewicz Z. Springer-Verlag 1996.

10. Two Solutions to the General Timetable Problem Using Evolutionary Methods. Peachter
B, Cumming A, Luchian H, Petruic. Proceedings of the First IEEE Conference on
Evolutionary Computionary Computation 1994.

11. A Comparison Study of Genetic Codings for the Travelling Salesman Problem. Tamaki H,
Kita H, Shimizu N, Maekawa K, Nishikawa Y. Proceedings of the First IEEE Conference
on Evolutionary Computionary Computation 1994.

12. A new Genetic Approach for the Travelling Salesman Problem. Bui T, Moon B.
Proceedings of the First IEEE Conference on Evolutionary Computionary Computation
1994.

504 N. Urquhart, B. Paechter, and K. Chisholm

13. Vehicle Routing with Time Deadlines using Genetic and Local Algorithms. Thangiah S,
Vinayagamoorthy R, Gubbi A. Proceedings of the Fifth International Conference on
Genetic Algorithms Forrest S Ed. Morgan Kaufmann 1993.

14. Multiple Vehicle Routing with Time and Capacity Constraints using Genetic Algorithms.
15. Proceedings of the Fifth International Conference on Genetic Algorithms Forrest S Ed.

Morgan Kaufmann, 1993.
16. Intelligent Structural Operators for the K-way Graph partitioning Algorithm. Gregor von

Laszewski. 4th International Conference on Genetic Algorithms. Morgan Kaufmann 1991.

Investigation of Different Seeding Strategies in a
Genetic Planner

C. Henrik Westerberg and John Levine

AI Applications Institute, University of Edinburgh,
80 South Bridge, Edinburgh, EH1 1HN
{carlw,johnl}@dai.ed.ac.uk

http://www.dai.ed.ac.uk/homes/carlw/

Abstract. Planning is a difficult and fundamental problem of AI. An
alternative solution to traditional planning techniques is to apply Genetic
Programming. As a program is similar to a plan a Genetic Planner can
be constructed that evolves plans to the plan solution. One of the stages
of the Genetic Programming algorithm is the initial population seeding
stage. We present five alternatives to simple random selection based on
simple search. We found that some of these strategies did improve the
initial population, and the efficiency of the Genetic Planner over simple
random selection of actions.

1 Introduction

This paper presents an investigation into different seeding strategies for initial
population formation. This work is performed in the context of Genetic Pro-
gramming (GP) applied to classical planning. An already implemented Genetic
Planner [1,2] was altered to use the different seeding strategies. We then ex-
perimented with the different strategies to determine their effect on the GP
algorithm in terms of CPU time used to solve the problem, the quality of the
initial population, and the number of generations required to solve the problem.

There are many areas in the GP algorithm which can be improved, such as
population seeding, crossover, and the fitness function. We started at the begin-
ning and wanted to improve the initial population seeding stage. The efficiency
of the GP algorithm could be improved by increasing the quality of the initial
population. This can be done by adopting simple rules or doing some limited
search to decide which non-terminal should come next in the candidate. An easy
example, from timetabling, would be add the easy time-course relationships into
the initial population. We used simple search strategies like Depth First Search
(DFS) and Best First Search (BFS)to improve the quality of the initial popula-
tion.

This paper will first discuss the available work on Genetic Planning and seed-
ing. The subsequent section gives a quick overview of planning and the types of
planning problems the Genetic Planner caters for. This is followed by a descrip-
tion of how the GP algorithm was implemented a description of some specific

E.J.W. Boers et al. (Eds.) EvoWorkshop 2001, LNCS 2037, pp. 505–514, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

506 C.H. Westerberg and J. Levine

algorithmic features. The next section describes the different seeding strate-
gies which were implemented and results from experiments done using those
strategies. Finally the last section discusses some conclusions and possibilities
for further work.

2 Current Work

There are three papers that relate closest to the idea of domain independent
planning by evolutionary means. Spector looked at using GP for simple planning
problems in the blocks domain and also using GP to come up with general
which work on any problem [3]. Muslea looked at the effectiveness of using GP
for domain independent planning [4]. Westerberg summarises some work done
studying the effectiveness of using GP on classical planning domains [1,2].

There is also other related work to Genetic Planning. Handley looked at GP
applied to robot control planning [5]. Aler has looked at generating heuristics
for planning [6] and generating control rules for planning problems [7]. Finally,
Koza looked at generating a general plan for a blocks stacking problem [8].

Work on population seeding for evolutionary methods is equally sparse. One
example of a positive result from improving the seeding algorithm is Langon’s
work [9]. In Langdon’s work the author starts by seeding the population with per-
fect individuals and then asks the GP algorithm to generalise them. The author
compared this method with a random seeding strategy. The population based
on perfect individuals was able to generalise better than the random method.
This is an indication of the fact that there are benefits to improving the initial
population seeding method rather than resorting to a simple random method.

3 Style of Planning

Planning is the task of deciding on which sequence of actions will best achieve
some goal or set of goals. In general a planning system is given the world, rep-
resented by a set of facts, a set of descriptions of actions the planner can choose
from, and goals that need to become true or remain true. Given this information
the planner must then find a plan that when executed will achieve the goal or set
of goals. There is interaction between actions in that some actions have to occur
before others. For example if someone wants to buy some bread they would have
to go to a shop before trying to purchase the bread. There are a large variety
of planning problems depending on how the actions, goals, and world state are
described.

The Genetic Planner concentrates on a style of planning called Classical
Planning. One form of classical planning is called STRIPS planning [10]. This
style of planning gives us the rules on how to set out a planning domain. The
world state is made up of a list of facts that are true about the world. Using
the Briefcase Domain as an example, also used by Muslea [4], facts look like:
at(papers,london), at(mybriefcase,london). STRIPS planning also tells us

Investigation of Different Seeding Strategies 507

how we should design our operators. For example, one of the planning operators
from the Briefcase Domain is putin:

Operator: putin(Object,Briefcase)
Preconditions: at(Object,Location),

at(Briefcase,Location)
Add List: in-briefcase(Object,Briefcase)
Delete List: at(Object,Location)

We give the operator’s name and what types of objects the operator takes.
The preconditions are those facts that need to be present in the world state
before the action can execute. If the action executes the facts in the add list
get added to the world state and the those facts in the delete list are deleted
from the world state. Those facts which slowly get added and deleted from the
knowledge base should hopefully push the world state towards the goal state.

Given the following initial state and goal state we can come up with a plan
using our operators to transform the initial state to the goal state.

Initial State Goal State
at(mypapers,london) at(mypaper,paris)
at(mybriefcase,london) at(mybriefcase,paris)

The plan shown in Fig.1 solves the above problem:

 mybriefcase)

putin(mypapers, takeout(mypapers,

mybriefcase)

In
itia

l S
ta

te

G
o

a
l S

ta
te

movebriefcase(

mybriefcase,

paris)

Fig. 1. An example plan/chromosome

The first step is to put the papers in the briefcase, the second step is to move
the briefcase to paris. The last step is to take the papers out of the briefcase. The
task of the Genetic Planner is to solve this style of planning problems. Finding
solutions to these problems is quite difficult but we are more often interested in
finding an optimal plan. For a domain independent system this is known to be
NP-hard for most cases [11].

4 Genetic Planning

Genetic Planning is the application of GP to planning. An important difference
between this and normal GP is that Genetic Planning works on plans as opposed

508 C.H. Westerberg and J. Levine

to programs. Programs and plans are analogous as they can both be considered as
an ordered set of instructions. The Genetic Planner starts by producing an initial
population of candidates according to some strategy. The Genetic Planner then
evolves the population of plans using survival of the fittest in order to produce
a plan that will achieve some set of goals.

The Genetic Planner, reported here uses a generational algorithm with tour-
nament selection, a domain independent fitness function, 1-point crossover, re-
production, and an addition mutation.

To highlight the other major differences between Genetic Planning and GP
we will consider three specific algorithmic details.

4.1 Representing a Candidate/Chromosome

We decided to represent candidates using a linear genome rather than a tree
genome [12]. This decision resulted in a considerable speed up and simplification
of the system [1]. The linear genome is a linear list of planning operators and their
arguments, much like Fig. 1. Each planning operator and associated arguments
makes up an atomic action. Each candidate is made up of these atomic actions.
In a GP context the planning operators from a particular problem domain are
the non-terminals and the objects those actions take are the terminals. Each
planning operator also takes arguments of a particular type. For example the
putin operator from the Briefcase Domain takes an object and a briefcase. Those
terminals that belong in each of these sets is already predefined so that no non-
working actions are created due to having arguments of the wrong type in the
operator. Also crossover in the system works at the action level so that actions
are always being swapped with other actions. Crossover points can never occur
in the middle of the arguments to an action. The atomic structure of the actions
is thus preserved.

4.2 Creating a Candidate/Chromosome

The first strategy we implemented for creating new candidates for the initial pop-
ulation was the random method (Strategy 0). First the candidate is constrained
to a specific length. For example, we may want to seed the population with can-
didates of length ten actions. For each action one of the available non-terminals
is selected, and arguments for that non-terminal are selected. The non-terminal
and the arguments are selected at random and the arguments are selected from
sets of the correct type. The non-terminal and its arguments make up a single
planning action. The strategy then adds the created action to the candidate and
continues creating new actions until the maximum length of the candidate is
reached.

4.3 Finding the Fitness

A difference between GP and Genetic Planning is that GP operates on a mul-
titude of fitness cases and in Genetic Planning there is only one fitness case for

Investigation of Different Seeding Strategies 509

each problem. Before the fitness function can assess a particular candidate the
candidate must first be simulated. The simulation function starts with the initial
state of the problem and sequentially starts applying the actions in the candidate
to the initial state. For each action the preconditions of that action are checked
against the current state. If the preconditions are satisfied that action is allowed
to execute by updating the world state and the next action is considered. If the
preconditions are not present in the current state then that action is ignored
and the simulator moves to the next action. The current state is carried over to
the next action untouched. The resulting state from applying all the actions in
the candidate is then used as input for the fitness function. The fitness function
works by comparing the input state with the goal state.

The fitness value in the Genetic Planner is made up of two parts. The first
and main part considers how many facts from the goal state are present in
the resulting state. This forms a proportion of number of achieved goals over
number of actual goals. A small part of the fitness value comes from the number
of working actions in the candidate. Currently 80% of the fitness value is given
by the correctness of the plan, and the remaining 20% is given by the proportion
of working actions in the plan.

5 Seeding Strategies

We now present the different initial population seeding strategies we considered.
The intuition that prompted this work was to provide the Genetic Planner with
a higher quality initial population to evolve from and therefore reducing the
evolution time. As the order of actions is important in planning, we should have a
seeding strategy that takes this ordering into account somehow, but the random
strategy ignores this completely. Hence, we developed some seeding strategies
based on different search methods. Each of the strategies works at the candidate
level, and each candidate is set to a particular initial length.

5.1 Strategy 1: All Action Method

The first seeding strategy is a modification of the random one. In this case all
possible actions for a particular domain-problem pairing are created and stored
in a list. For a new candidate the strategy then selects actions randomly from
the list and adds those actions to the new candidate. Each time an action is
selected it is removed from the possible list of actions and random selection
takes place on this smaller list. This continues until the list is empty, at this
stage the list is reset. This method ensures that all the actions are present in
the initial population and are present with almost equal diversity.

5.2 Strategy 2: DFS

The second new seeding strategy was one based on DFS. In this case the strategy
starts with the initial state and the set of all actions. The strategy then searches

510 C.H. Westerberg and J. Levine

for an action that can execute from the current state. Once an action is then
added to the candidate. The action is applied to the current state to produce a
new state. The strategy then proceeds to work from this new state. The strategy
continues adding actions until the maximum initial size for plans is reached.

5.3 Strategy 3: DFS + Random Actions

A variation to the second seeding strategy is to force it to occasionally select a
random action. In this instance at a particular state the strategy is either going
to select an action at random from the set of all actions or the strategy is going
to search for an action which executes. The probability of selecting either is set
by a parameter. This strategy was added in case Strategy 2 produces initial
populations which are not diverse enough.

5.4 Strategy 4: DFS from Random States + Random Actions

A second variation to the DFS strategy would be to alter the initial state the
strategy did DFS from. This strategy works by creating a random initial state
and then working like strategy number 3 from that initial state. Once a candidate
has been produced a new initial state is created and the strategy proceeds. This
would increase the variation of the initial population but would also give strings
of applicable actions from all over the search space.

5.5 Strategy 5: BFS + Random Actions

The final strategy is based on Best First Search. This strategy starts with the
initial state and the set of all possible actions. Using the initial state as input BFS
strategy attempts to find the best action to apply from that state. Therefore it
applies all actions to the state and records the fitness for each of the states. The
action that does best is then added to the candidate. The state is updated by
applying that action and the search continues. If more than one action return the
same best fitness then an action is chosen randomly from the set of best actions.
The final alteration to make is that like Strategy 2, this strategy occasionally
picks random actions rather than the best action.

6 Experiments

Each experiment was conducted using the parameters described in Table 1, un-
less otherwise indicated.

One large experiment was done on all the Blocks World problems available to
the planner for the Blocks World Domain. We reproduce results for the four hard-
est problems called Large A to Large D. The problem specifications were taken
from the BlackBox distribution [13]. We used Spector’s puton and newtower
actions thereby shrinking the plan length by half when compared with plans

Investigation of Different Seeding Strategies 511

Table 1. Experimental Setup

Parameter Setting

Termination Maximum number of generations is 100
Pop Size 2000
Initial Length 15-30 actions
Tournament Size 4
Max plan size 200 actions
Genetic op. prop 80% crossover and 20% reproduction
Addition Mutation Applied 10% of the time and adds 8 random

actions to random positions
Seeding Strategy All, with 50% random actions for 3,4, and 5
Fitness As described in Section 4.3.

created using the BlackBox distribution. This is due to the Blocks World Do-
main implemented for BlackBox explicitly modelling the robot arm, thus the
their domain containing four planning operators.

Each problem is an extension of the predecessor by adding more blocks to
the problem. Large A contains 9 blocks with a shortest plan of 6 actions, up to
Large D, which contains 19 blocks with a shortest plan of 18 actions. For each
of the problems, each strategy was used, and for each strategy there were ten
runs.

6.1 Results

The following four tables report the results of the experimentation. Table 2
shows the average fitness of the initial populations and average value of the
best individual in parenthesis. Table 3 shows the average number of generations
used to solve each problem. The number in parenthesis for Table 3 indicates the
number of failures. No parentheses indicates that there were no failures. This
average also includes those runs that went to a hundred generations and failed
to find a solution. A dash indicates that none of the ten runs were successful.
Table 4 shows the average CPU time in seconds for that particular problem.
This time includes population initialisation time and at the moment there is no
accurate means to separate the two. This time was computed by dividing the
total CPU time taken for the ten runs divided by the number of successful runs.
Table 5 shows the results of varying the proportion of randomly selected actions
for the Large B problem and using 10 runs for each proportion.

7 Discussion

The results from using Strategy 0 are the benchmark results. The first refine-
ment, Strategy 1, reduced the amount of time and generations needed, but had
little impact on the last two problems. An interesting point is that though initial

512 C.H. Westerberg and J. Levine

Table 2. Average and Best Fitness of Initial Populations

Strategy Large A Large B Large C Large D

0 32.1 (60.7) 26.1 (49.6) 10.0 (29.7) 9.8 (22.6)
1 26.4 (60.7) 21.9 (46.1) 9.4 (18.2) 8.0 (16.8)
2 26.3 (62.8) 23.8 (53.8) 13.3 (42.0) 11.6 (28.5)
3 27.4 (61.5) 24.8 (52.5) 12.1 (36.6) 11.0 (27.1)
4 26.9 (57.5) 22.1 (46.3) 9.4 (22.6) 8.2 (18.9)
5 57.2 (100.0) 51.3 (90.1) 30.5 (72.7) 29.3 (74.5)

Table 3. Generations used to Solve Problem

Strategy Large A Large B Large C Large D

0 7.9 16.3 80.8 (5) -
1 6.7 15.4 76.7 (6) -
2 4.6 9.4 44.7 89.5 (7)
3 5.0 9.8 51.5 (2) -
4 7.2 16.0 75.0 (3) -
5 0.0 2.9 8.1 5.5

Table 4. Time Taken to Solve Problem

Strategy Large A Large B Large C Large D

0 51.8 197.4 3862.4 -
1 41.9 168.8 4492.9 -
2 53.3 112.1 1064.7 8834.3
3 43.9 97.0 1484.5 -
4 64.8 194.8 2614.8 -
5 302.9 557.5 1459.8 3176.6

Table 5. Varying the Proportion of Random Actions for Strategy 5, for Large B

Proportion Random Average Generations

0.1 20.6
0.2 13.4
0.3 5.2
0.4 0.0
0.5 2.0
0.6 3.9
0.7 3.8
0.8 6.1
0.9 11.8

Investigation of Different Seeding Strategies 513

population looks slightly worse, Strategy 1 does better than Strategy 0. Strategy
2, using DFS, allowed for significantly less time and generations when compared
with Strategy 0. Also notable is that Large D was solvable using this strategy.
Strategy 3 performs slightly worse than Strategy 2. Both 2 and 3 produced initial
populations with good fitness values. Strategy 4 resulted in being equivalent to
Strategy 0 in terms of number of generations, time taken, and quality of initial
population.

Perhaps the most interesting result is Strategy 5, based on BFS. Using this
seeding strategy, most of the work goes into seeding the population, about 80%
of the CPU time. This strategy used the fewest generations to solve each of the
problems. Although it took longer to solve the simpler problems, the rate at
which the time taken to solve a particular problem is increasing at a slower rate
than the other seeding strategy methods. This last strategy also produced by far
the best individuals for the initial population.

Table 5 confirms that a 50/50 proportion of random actions and searched
actions was a good idea. In fact, having nearly no random actions gave perfor-
mance which was worse than the random strategy. But having initial candidates
made of 40% random actions and 60% best actions gave the least number of
generations for Large B.

8 Conclusions

We believed that the efficiency of the Genetic Planner can be improved by im-
proving the quality of the initial population. We also had some intuitions about
what features a good initial population should have. There should be many work-
ing actions in the initial populations. The order of the actions is important in
planning so it’s important that this is reflected in the initial population. Also the
initial population should be diverse in that it includes all the actions. We feel
that some of these intuitions have been weakened. The strategies that worked
best, strategies 2 and 5, produced the least diverse populations but performed
well. This is probably because the order of the actions is more useful than having
a diverse population. Strategy 4 would satisfy all three requirements, but per-
formed only as well as a random method. Perhaps this is because the ordering
was completely lost. However the final table indicates that some randomness in
the initial population is clearly beneficial. When this combined with an initial-
isation strategy that gives the best ordering of actions, the strategy produces
the best result for Large B. Clearly, however more statistical methods and ex-
perimental work has to be carried out before any of these conclusions can be
confirmed.

Acknowledgements. The first author would like to thank the EPSRC for
support via a quota studentship.

514 C.H. Westerberg and J. Levine

References

1. Westerberg, C.H.: An investigation into the use of using Genetic Programming
to solve Classical Planning Problems. 4th Year CS/AI Project, Division of Infor-
matics, University of Edinburgh, 2000

2. Westerberg, C.H., Levine, J.: “GenPlan”: Combining Genetic Programming and
Planning. Proceedings for the UK Planning and Scheduling Special Interest Group
2000, Milton Keynes, UK, 2000

3. Spector, L.: Genetic Programming and AI Planning Systems. Proceedings of
Twelfth National Conference on Artificial Intelligence, Seattle Washington USA
AAAI Press/MIT Press, 1994

4. Muslea, I.: SINERGY: A Linear Planner Based on Genetic Programming. Pro-
ceedings of the 4th European Conference on Planning, 1997

5. Handley, S.G.: The automatic generations of plans for a mobile robot via ge-
netic programming with automatically defined functions. In Advances in Genetic
Programming, MIT Press, pages 391-407, 1994

6. Aler, R., Borrajo, D., Isasi, P.: GP Fitness Functions to Evolve Heuristics for
Planning. Proceeding of the GECCO 2000 Conference, EvoPlan Workshop (2000)

7. Aler, R., Borrajo, D., Isasi, P.: Genetic Programming and deductive-inductive
learning: A multistrategy approach. Proceedings of the Fifteenth International
Conference on Machine Learning, ICML’98, Madison Wisconsin, (1998) 10-18

8. Koza, J.R.: Genetic Programming. The MIT Press, Cambridge MA (1992)
9. Langdon, W.B., Nordin, J.P.: Seeding Genetic Programming Populations. Pro-

ceedings of the Third European Conference on Genetic Programming, EURO GP
2000, Edinburgh (2000)

10. Fikes, R.E., Nilsson, N.: STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. Artificial Intelligence 2 (1971) 189-208

11. Bylander, T.: The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1-2):165-204, (1994)

12. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming An
Introduction. Morgan Kaufmann Publishers, San Francisco CA (1998)

13. Blackbox: http://www.cs.washington.edu/homes/kautz/blackbox/index.html
14. Tate, A., Hendler, J., Drummond, M.: A Review of AI Planning Techniques.

Readings in Planning. Morgan Kaufmann Publishers, San Mateo CA (1990)
15. Weld, S.: An Introduction to least commitment planning. AI Magazine 15(4),

(1994)

Author Index

Bachelet, Vincent 140
Ballerini, Lucia 268
Baraglia, Ranieri 193
Bevilacqua, Alessandro 278
Borisovsky, Pavel A. 161
Bortfeldt, Andreas 40
Boumaza, Amine M. 288
Brabazon, Anthony 343
Bufé, Marc 431
Burke, Edmund K. 203

Campanini, Renato 278
Carbonaro, Antonella 80
Chardaire, Pierre 30
Chisholm, Kenneth 495
Collins, J.J. 343
Cordone, Roberto 60
Corno, Fulvio 298
Costa, Ernesto 421
Cowling, Peter I. 203
Cumani, Gianluca 298

Darcheville, Jean-Claude 384
Delepoulle, Samuel 384
den Besten, Matthijs 441
Di Stefano, Calogero 452
Dike, Bruce A. 233
Din, Der-Rong 150
Doerner, Karl 70
Dorigo, Marco 441

El-Fallah, Adel 233
Eremeev, Anton V. 161
Esquivel, Susana 223

Ferreira da Silva, Adelino R. 307
Filho, Geraldo Ribeiro 130
Fischer, Tim 431
Fotakis, Dimitris A. 120

Gallard, Raúl 223
Gatica, Claudia 223
Gaube, Thomas 1
Gehring, Hermann 40
Golfarelli, Matteo 80
Gottlieb, Jens 50

Gregori, Stefano 100
Gröbner, Matthias 463
Grosche, Tobias 257
Gubbels, Holger 431
Guntsch, Michael 213

Häcker, Claudius 431
Hart, Emma 394
Hartl, Richard F. 70
Hasprich, Oliver 431
Heinzl, Armin 257
Hidalgo, José Ignacio 193

Keuthen, Ralf 203
Knödler, Kosmas 110
Köppen, Mario 317
Kosman, David 374
Kuntz, Pascale 172

Lacomme, Philippe 473
Lamma, Evelina 404
Lanconelli, Nico 278
Lehn, Rémi 172
Levenhagen, Jens 40
Levine, John 505
Lévy Véhel, Jacques 325
Li, Yu 11
Liberali, Valentino 100
Likothanassis, Spiridon D. 120
Ljubić, Ivana 20
Louchet, Jean 288
Lutton, Evelyne 325

Maffioli, Francesco 60
Maki, Jameel A. 30
Maniezzo, Vittorio 80
McKeown, Geoff P. 30
Meents, Ingo 90
Mehra, Raman K. 233
Merkle, Daniel 484
Middendorf, Martin 213, 484
Minerva, Tommaso 335

Neri, Filippo 414
Nickolay, Bertram 317
Nogueira Lorena, Luiz Antonio 130

516 Author Index

Nyongesa, Henry O. 243

O’Neill, Michael 343
Olague, Gustavo 353

Paechter, Ben 495
Pelillo, Marcello 182
Perego, Raffaele 193
Pereira, Francisco B. 421
Pereira, Lúıs M. 404
Piazza, Enrico 248
Poland, Jan 110
Poli, Irene 335
Preux, Philippe 384
Prins, Christian 473

Raidl, Günther R. 20
Ramdane-Chérif, Wahiba 473
Ramos, Vitorino 364
Ravichandran, B. 233
Reimann, Marc 70
Reinitz, John 374
Riguzzi, Fabrizio 404
Rizzi, Stefano 80
Ross, Peter 394
Rossi, Roberto 100
Rothlauf, Franz 1, 257
Ryan, Conor 343

Scheibel, Christian 431
Smith, Robert E. 233
Sonza Reorda, Matteo 298
Spirov, Alexander V. 374
Squillero, Giovanni 298
Stefanakos, Stamatis K. 120
Stützle, Thomas 441

Talbi, El-Ghazali 140
Tettamanzi, Andrea G.B. 452
Timakin, Dmitry L. 374
Torelli, Guido 100
Treugut, Hendrik 317
Tseng, Shian-Shyong 150

Urquhart, Neil 495

Weicker, Karsten 431
Weicker, Nicole 431
Weinberg, Benjamin 140
Wenig, Michael 431
Westerberg, C. Henrik 505
Wilke, Peter 463
Wolfangel, Christian 431

Zell, Andreas 110

	Applications of Evolutionary Computing
	Volume Editors
	Preface
	Organization
	Table of Contents
	The Link and Node Biased Encoding Revisited: Bias and Adjustment of Parameters
	Introduction
	A Short Description of the LNB Encoding
	Unbiased Initial Populations and Building Block Supply
	The Node-Biased Encoding
	All Links Have the Same Length
	Random Length of Links

	The Link-and-Node-Biased Encoding
	Summary and Conclusions
	References

	An Effective Implementation of a Direct Spanning Tree Representation in GAs
	Introduction
	Crossovers and Mutations Based on a Direct Tree Representation in [8]
	Effective Implementation Based on Predecessor Vectors
	Distinction between Representation and Implementation in GAs
	Representing a Tree with a Predecessor Vector
	Transformation of a Tree Rooted at r to Rooted at r'
	Algorithm for Adding and Deleting an Edge
	Algorithm for Generating a Path in a Predecessor Vector
	Example of textit {Path Crossover} Based on This Implementation

	Application to the OCCST Problem
	Conclusions
	References

	An Evolutionary Algorithm with Stochastic Hill-Climbing for the Edge-Biconnectivity Augmentation Problem
	Introduction
	The Edge-Biconnectivity Augmentation Problem
	Preprocessing
	The Evolutionary Algorithm
	Edge-Set Encoding
	Stochastic Hill-Climbing
	Initialization
	Edge Crossover
	Edge-Delete Mutation
	Edge-Cost Based Heuristics
	General EA Properties

	Experimental Results
	Conclusion
	References

	Application of GRASP to the Multiconstraint Knapsack Problem
	Introduction
	Application of GRASP to the Multi-knapsack Problem
	Results for MKP Test Problems
	Conclusions
	References

	Path Tracing in Genetic Algorithms Applied to the Multiconstrained Knapsack Problem
	Introduction
	Two State of the Art Genetic Algorithms for the Multiconstrained Knapsack Problem
	Path Tracing and Embedded Local Search
	Path Tracing
	Embedded Local Search

	Extension of the Raidl/Gottlieb GA by Path Tracing and Embedded Local Search
	Numerical Tests
	Conclusions
	References

	On the Feasibility Problem of Penalty-Based Evolutionary Algorithms for Knapsack Problems
	Introduction
	The Multidimensional Knapsack Problem
	Penalty Functions
	Analysis of the Fitness Landscape
	Characterizing Fitness Landscapes by Fitness Segments
	The Bias Towards the Boundary of the Feasible Region
	A Comparison of the Penalty Functions

	Analysis of Average Hamming Weight Dynamics
	Conclusion
	References

	Coloured Ant System and Local Search to Design Local Telecommunication Networks
	Introduction
	Survey
	Coloured Ant System
	The Greedy Heuristic
	The Penalization Factor
	The Trail Function
	The Root Choice

	The Swinging Forest Procedure
	The Coloured Ant System and Swinging Forest

	Computational Results
	Parameter Settings
	Experience on the emph {CAS} Parameters
	A Comparison between Algorithms
	Interaction between emph {CAS} and emph {Swinging Forest}
	References

	Cooperative Ant Colonies for Optimizing Resource Allocation in Transportation
	Introduction
	Description of the Problem
	Cooperative Ant Colonies to Handle Multiple Objectives
	The Ant Colony Algorithm
	Pheromone Information

	Numerical Analysis
	Conclusions and Future Research
	References

	An ANTS Algorithm for Optimizing the Materialization of Fragmented Views in Data Warehouses: Preliminary Results
	Introduction
	Background
	The Vertical Fragmentation Problem
	Mathematical Formulation

	The ANTS Metaheuristic
	Computational Results
	Conclusions
	References

	A Genetic Algorithm for the Group-Technology Problem
	Introduction
	Problem Formulation
	Solution Approach Using a Genetic Algorithm
	Goal Function
	Chromosome Representation
	Genetic Operators
	Heuristic

	Results
	Conclusion
	References

	Generation of Optimal Unit Distance Codes for Rotary Encoders through Simulated Evolution
	Introduction
	The Rotary Encoder System
	Mechanical Assembly
	Codes for Absolute Rotary Encoders
	Design Constraints
	Non-conventional Codes

	The Evolutionary Algorithm
	Encoding
	Mutation
	Fitness
	Selection

	Experiments and Results
	Results
	Discussion

	Conclusion
	References

	On the Efficient Construction of Rectangular Grids from Given Data Points
	Introduction
	Calculating the Grid Size
	Allocation of the Points
	Data Preprocessing and Self Organizing Maps
	Practical Tests
	Conclusions
	References

	An Evolutionary Annealing Approach to Graph Coloring
	Introduction
	The Generic Evolutionary Annealing Algorithm
	GCP-Specific Details of Our Implementation
	Experimental Results
	Conclusions and Future Work
	References

	A Constructive Evolutionary Approach to School Timetabling
	Introduction
	CGA Modeling
	Representation
	Modeling

	The Evolution Process
	Selection, Recombination, and Mutation

	Computational Tests
	Conclusion
	References

	A Co-evolutionist Meta-heuristic for the Assignment of the Frequencies in Cellular Networks
	Introduction
	Frequency Assignment Problem
	Encoding and Operators
	COSEARCH for Solving the FAP
	Evaluation of COSEARCH
	Conclusion
	References

	A Simulated Annealing Algorithm for Extended Cell Assignment Problem in a Wireless ATM Network
	Introduction
	Problem Formulation
	Simulated Annealing Algorithm
	Configuration Space and Perturbation Mechanism
	Cooling Schedule
	Enhanced-SA Algorithm of Extended Cell Assignment Problem

	Experimental Results
	Conclusions
	References

	On Performance Estimates for Two Evolutionary Algorithms
	Introduction
	Notations and Assumptions of the Model

	Bounds for the Probability of Obtaining "Good" Solutions
	Comparison of the (1+1)-ES with the (1,$lambda $)-ES

	Some Connections with Complexity Theory
	Conclusions
	References

	A Contribution to the Study of the Fitness Landscape for a Graph Drawing Problem
	Introduction
	Definition of a Local Transformation Landscape
	Local Transformations
	First Characteristics

	Exhaustive Exploration for Small Graphs
	Global and Local Optima
	Global Optimum Attracting Sets

	Exploration with a Set of Hill-Climbers
	Discussion
	References

	Evolutionary Game Dynamics in Combinatorial Optimization: An Overview
	Replicator Equations and Their Properties
	Maximum Clique Problems
	Graph Isomorphism
	Subtree Isomorphism
	Multi-population Models
	Conclusions
	References

	A Parallel Hybrid Heuristic for the TSP
	Introduction
	The Compact Genetic Algorithm
	A Parallel Hybrid Heuristic for the TSP
	Experimental Results

	Conclusions
	References

	Effective Local and Guided Variable Neighbourhood Search Methods for the Asymmetric Travelling Salesman Problem
	Introduction
	Heuristic Methods for the ATSP
	Local Search for the ATSP
	Variable Neighbourhood Search

	Computational Results
	Conclusions
	References

	Pheromone Modification Strategies for Ant Algorithms Applied to Dynamic TSP
	Introduction
	Ant Algorithms
	Pheromone Modification Strategies
	Restart
	eta-Strategy
	tau-Strategy

	Empirical Evaluation
	Conclusion and Future Work
	References

	Conventional and Multirecombinative Evolutionary Algorithms for the Parallel Task Scheduling Problem
	Introduction
	The List Scheduling Algorithm (LSA)
	Evolutionary Approaches for the Task Scheduling Problem
	Direct Representation of Solutions
	Indirect Representation of Solutions
	Multiple Crossover Per Couple (MCPC)

	Experiments and Results
	Conclusions
	References

	Two-Sided, Genetics-Based Learning to Discover Novel Fighter Combat Maneuvers
	Introduction
	The LCS Used Here
	Two-Sided Learning Results
	Similar Aircraft (X-31 v. X-31)

	Final Comments
	References

	Generation of Time-Delay Algorithms for Anti-Air Missiles Using Genetic Programming
	Introduction
	Application of GP for a Time-Delay Algorithm
	Simulation Results
	 Conclusions
	References

	Surface Movement Radar Image Correlation Using Genetic Algorithm
	Introduction
	Test Images
	Radar Images
	Template Images

	Genetic Algorithms
	Creation of Initial Population
	Selection
	Crossover
	Mutation
	Genes Mapping
	Fitness Evaluation

	Parameter Optimisation
	Four Coefficients Polynomial
	Correlation Between a Template and a Real Image

	Conclusions
	References

	A Conceptual Approach for Simultaneous Flight Schedule Construction with Genetic Algorithms
	Introduction
	Traditional Schedule Construction
	Sequential Planning Activities
	Major Planning Activities
	Overall Assessment of Existing Flight Schedule Construction Process and Methodologies

	Simultaneous Flight Schedule Construction with Genetic Algorithms
	Basic Representation Concept
	Context Specific Genetic Operators
	Fitness Evaluation

	Discussion
	References

	Genetic Snakes for Color Images Segmentation
	Introduction
	Active Contours (Snakes)
	Genetic Snakes
	Evolution of Genetic Snakes
	Results
	Experiments on Synthetic Images
	Applications to Meat Images

	Conclusions
	References

	A Distributed Genetic Algorithm for Parameters Optimization to Detect Microcalcifications in Digital Mammograms
	Introduction
	The Detection Method
	The Genetic Algorithm
	Design
	Implementation

	Results
	The Analysis of Performance
	Experimental Results

	Conclusion
	References

	Dynamic Flies: Using Real-Time Parisian Evolution in Robotics
	Introduction
	Fly-Based Robot Vision
	Evolutionary Operators
	Integrating Velocities: An Asynchronous Algorithm for Dynamic Flies

	Application to Obstacle Avoidance
	Using Artificial Potential Fields
	Robot's Internal Representation
	Escaping Local Minima
	Robot Simulator Architecture

	Experimental Results
	Conclusion
	The Potential Function
	Random Walk Cost Function
	References

	ARPIA: A High-Level Evolutionary Test Signal Generator
	Background
	ARPIA
	Fault Model
	Fault Simulation Technique
	Algorithm

	Experimental Analysis
	Conclusions and Future Works
	References

	A Pursuit Architecture for Signal Analysis
	Introduction
	Signal Approximations
	Formulation of Coadapted Decompositions
	A Pursuit Architecture of Coadapted Dictionaries
	Modularity
	Intra-dictionary Adaptation
	Coadaptation: Inter-dictionary Adaptation

	Experimental Results
	Conclusion
	References

	Genetic Algorithm Based Heuristic Measure for Pattern Similarity in Kirlian Photographs
	Introduction
	Material and Method
	Genetic Algorithms for Heuristic Measuring
	Results and Discussion
	References

	Evolutionary Signal Enhancement Based on Hölder Regularity Analysis
	Introduction
	Hölder Regularity Analysis
	Signal Enhancement
	Evolutionary Signal Enhancement with EASEA
	Numerical Experiments
	Conclusion
	References

	Building ARMA Models with Genetic Algorithms
	Introduction
	The EvoARMA Models
	Simulation Studies
	References

	Evolving Market Index Trading Rules Using Grammatical Evolution
	Introduction
	Technical Analysis
	Potential for Application of Evolutionary Automatic Programming
	Motivation for Study

	Background
	Technical Indicators

	Grammatical Evolution
	Problem Domain & Experimental Approach
	Data Preprocessing
	Selection of Fitness Function

	Results
	Discussion
	Conclusions & Future Work
	References

	Autonomous Photogrammetric Network Design Using Genetic Algorithms
	Introduction
	Photogrammetric Network Modeling
	Constraints on Network Design
	Main Objective and Primary Constraints
	Secondary Constraints

	The Multi-cellular Genetic Algorithm
	Examples and Conclusion
	References

	The Biological Concept of Neoteny in Evolutionary Color Image Segmentation - Simple Experiments in Simple Non-memetic Genetic Algorithms
	Introduction
	Genetic Representation and Clustering in Image Segmentation
	Testing Dynamic Mutation Rates
	Implementing and Testing Artificial Neoteny (aNeoteny)
	Discussion and Future Work
	References

	Using of Evolutionary Computations in Image Processing for Quantitative Atlas of Drosophila Genes Expression
	Introduction
	Computer-Aided Analysis of Biological Images
	Elastic Deformations: "Stripe Straightening" Procedure
	Registration of Serial Images
	Interpolation

	Methods and Approaches
	Images of Drosophila Genes Expression: The Dataset
	Technique of Genetic Algorithms
	Elastic Deformation Algorithm
	Image Registration Algorithm
	Interpolation Algorithm

	Results and Discussion
	Search Spaces Features
	Construction of a Quantitative Atlas of Gene-Expressions

	Conclusions
	References

	Selection of Behavior in Social Situations
	Introduction
	The Selection of the Law of Effect
	The Law of Effect Selects Social Behaviors
	Social Behaviors Select The Dynamics of the Arm Reaching Movement
	Discussion
	References

	Clustering Moving Data With a Modified Immune Algorithm
	Introduction
	Description of the Proposed Model
	Experimental Details
	Control of Number of Species

	Experiments
	Simple Pattern Tracking
	Results

	Investigating the Memory Retention
	Conclusion
	References

	Belief Revision by Lamarckian Evolution
	Introduction
	Preliminaries
	A Genetic Algorithm for Multi-agent Belief Revision
	Experiments
	Related Work
	Conclusions and Future Work
	References

	A Study on the Effect of Cooperative Evolution on Concept Learning
	Introduction
	The System REGAL
	Two Cooperative Learning Strategies

	Empirical Qualitative Evaluation
	Characteristics of the Selected Application
	Choosing Proper Experimental Configurations

	REGAL with or without Using a Cooperative Strategy
	Conclusion
	References

	The Influence of Learning in the Evolution of Busy Beavers
	Introduction
	The Busy Beaver Problem
	Experimental Model
	Representation
	Simulation and Evaluation
	Learning Models

	Experimental Settings
	Results
	Conclusions and Further Work
	References

	Automated Solution of a Highly Constrained School Timetabling Problem - Preliminary Results
	Introduction
	The School Timetabling Problem
	Related Work
	Concept
	Details
	Results
	Conclusion
	References

	Design of Iterated Local Search Algorithms
	Introduction
	Iterated Local Search
	Iterated Local Search for the SMTWTP
	Local Search
	Perturbation
	Acceptance Criterion
	Experimental Results

	Conclusion

	An Evolutionary Algorithm for Solving the School Time-Tabling Problem
	Introduction
	The Problem
	Instance Representation
	Constraints

	The Evolutionary Algorithm
	Genetic Representation
	Initialization
	Fitness
	Selection
	Recombination
	Perturbation

	Experiments and Results
	Discussion
	References

	Optimizing Employee Schedules by a Hybrid Genetic Algorithm
	Introduction
	The Data
	Constraints
	The Algorithm
	Coding
	Mutation
	Fitness Function

	Repair Operators
	Results
	Conclusion and Outlook
	References

	A Genetic Algorithm for the Capacitated Arc Routing Problem and Its Extensions
	Introduction
	Extended CARP and Data Structures
	Genetic Algorithms for the Extended CARP
	Chromosomes and Fitness
	Population Structure and Initial Population
	Reproduction Step and Extended OX Crossover
	Local Search as Mutation Operator
	Replacement Method and Stopping Criteria
	Summary Œ General Structure

	Computational Evaluation
	Conclusion
	References

	A New Approach to Solve Permutation Scheduling Problems with Ant Colony Optimization
	Introduction
	The Single Machine Total Weighted Deviation Problem
	The New Approach
	The Ant Algorithm for SMTWDP
	Additional Aspects and Variants
	Pheromone Summation Rule
	Backward Ants

	Test Instances and Parameters
	Experimental Results
	Conclusion
	References

	Street-Based Routing Using an Evolutionary Algorithm
	A Description of the Problem
	An Evolutionary Algorithm for Solving the SBRP
	Introduction
	The Initial Algorithm
	Improvements to the Initial Algorithm
	Initial Experimentation
	Integrating a Heuristic with the EA

	Constructing a Delivery Network
	Introduction
	Two Approaches to Building Networks
	Description of the Grouping EA Used for the ‚Group and Build™ Approach
	Experiments and Results Obtained

	Conclusions and Future Work
	References

	Investigation of Different Seeding Strategies in a Genetic Planner
	Introduction
	Current Work
	Style of Planning
	Genetic Planning
	Representing a Candidate/Chromosome
	Creating a Candidate/Chromosome
	Finding the Fitness

	Seeding Strategies
	Strategy 1: All Action Method
	Strategy 2: DFS
	Strategy 3: DFS + Random Actions
	Strategy 4: DFS from Random States + Random Actions
	Strategy 5: BFS + Random Actions

	Experiments
	Results

	Discussion
	Conclusions
	References

	Author Index

